Efficient Processing of Deep Neural Networks

Total Page:16

File Type:pdf, Size:1020Kb

Efficient Processing of Deep Neural Networks Efficient Processing of Deep Neural Networks Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, Joel Emer Massachusetts Institute of Technology Reference: V. Sze, Y.-H.Chen, T.-J. Yang, J. S. Emer, ”Efficient Processing of Deep Neural Networks,” Synthesis Lectures on Computer Architecture, Morgan & Claypool Publishers, 2020 For book updates, sign up for mailing list at http://mailman.mit.edu/mailman/listinfo/eems-news June 15, 2020 Abstract This book provides a structured treatment of the key principles and techniques for enabling efficient process- ing of deep neural networks (DNNs). DNNs are currently widely used for many artificial intelligence (AI) applications, including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the- art accuracy on many AI tasks, it comes at the cost of high computational complexity. Therefore, techniques that enable efficient processing of deep neural networks to improve key metrics—such as energy-efficiency, throughput, and latency—without sacrificing accuracy or increasing hardware costs are critical to enabling the wide deployment of DNNs in AI systems. The book includes background on DNN processing; a description and taxonomy of hardware architectural approaches for designing DNN accelerators; key metrics for evaluating and comparing different designs; features of DNN processing that are amenable to hardware/algorithm co-design to improve energy efficiency and throughput; and opportunities for applying new technologies. Readers will find a structured introduction to the field as well as formalization and organization of key concepts from contemporary work that provide insights that may spark new ideas. 1 Contents Preface 9 I Understanding Deep Neural Networks 13 1 Introduction 14 1.1 Background on Deep Neural Networks . 14 1.1.1 Artificial Intelligence and Deep Neural Networks . 14 1.1.2 Neural Networks and Deep Neural Networks . 16 1.2 Training versus Inference . 18 1.3 Development History . 21 1.4 Applications of DNNs . 23 1.5 Embedded versus Cloud . 24 2 Overview of Deep Neural Networks 26 2.1 Attributes of Connections Within a Layer . 26 2.2 Attributes of Connections Between Layers . 27 2.3 Popular Types of Layers in DNNs . 28 2.3.1 CONV Layer (Convolutional) . 28 2.3.2 FC Layer (Fully Connected) . 31 2.3.3 Nonlinearity . 32 2 CONTENTS Sze, Chen, Yang, Emer 2.3.4 Pooling and Unpooling . 33 2.3.5 Normalization . 34 2.3.6 Compound Layers . 35 2.4 Convolutional Neural Networks (CNNs) . 35 2.4.1 Popular CNN Models . 36 2.5 Other DNNs . 44 2.6 DNN Development Resources . 45 2.6.1 Frameworks . 45 2.6.2 Models . 46 2.6.3 Popular Datasets for Classification . 46 2.6.4 Datasets for Other Tasks . 48 2.6.5 Summary . 48 II Design of Hardware for Processing DNNs 49 3 Key Metrics and Design Objectives 50 3.1 Accuracy . 50 3.2 Throughput and Latency . 51 3.3 Energy Efficiency and Power Consumption . 57 3.4 Hardware Cost . 60 3.5 Flexibility . 61 3.6 Scalability . 62 3.7 Interplay Between Different Metrics . 63 4 Kernel Computation 64 4.1 Matrix Multiplication with Toeplitz . 65 4.2 Tiling for Optimizing Performance . 66 3 CONTENTS Sze, Chen, Yang, Emer 4.3 Computation Transform Optimizations . 71 4.3.1 Gauss’ Complex Multiplication Transform . 71 4.3.2 Strassen’s Matrix Multiplication Transform . 72 4.3.3 Winograd Transform . 73 4.3.4 Fast Fourier Transform . 74 4.3.5 Selecting a Transform . 75 4.4 Summary . 75 5 Designing DNN Accelerators 77 5.1 Evaluation Metrics and Design Objectives . 78 5.2 Key Properties of DNN to Leverage . 79 5.3 DNN Hardware Design Considerations . 81 5.4 Architectural Techniques for Exploiting Data Reuse . 82 5.4.1 Temporal Reuse . 82 5.4.2 Spatial Reuse . 83 5.5 Techniques to Reduce Reuse Distance . 85 5.6 Dataflows and Loop Nests . 89 5.7 Dataflow Taxonomy . 95 5.7.1 Weight Stationary (WS) . 97 5.7.2 Output Stationary (OS) . 99 5.7.3 Input Stationary (IS) . 101 5.7.4 Row Stationary (RS) . 101 5.7.5 Other Dataflows . 107 5.7.6 Dataflows for Cross-Layer Processing . 108 5.8 DNN Accelerator Buffer Management Strategies . 109 5.8.1 Implicit versus Explicit Orchestration . 109 4 CONTENTS Sze, Chen, Yang, Emer 5.8.2 Coupled versus Decoupled Orchestration . 110 5.8.3 Explicit Decoupled Data Orchestration (EDDO) . 111 5.9 Flexible NoC Design for DNN Accelerators . 113 5.9.1 Flexible Hierarchical Mesh Network . 115 5.10 Summary . 119 6 Operation Mapping on Specialized Hardware 120 6.1 Mapping and Loop Nests . 121 6.2 Mappers and Compilers . 124 6.3 Mapper Organization . 126 6.3.1 Map Spaces and Iteration Spaces . 126 6.3.2 Mapper Search . 131 6.3.3 Mapper Models and Configuration Generation . 132 6.4 Analysis Framework for Energy Efficiency . 132 6.4.1 Input Data Access Energy Cost . 133 6.4.2 Partial Sum Accumulation Energy Cost . 134 6.4.3 Obtaining the Reuse Parameters . 135 6.5 Eyexam: Framework for Evaluating Performance . 137 6.5.1 Simple 1-D Convolution Example . 137 6.5.2 Apply Performance Analysis Framework to 1-D Example . 138 6.6 Tools for Map Space Exploration . 142 III Co-Design of DNN Hardware and Algorithms 145 7 Reducing Precision 146 7.1 Benefits of Reduce Precision . 146 7.2 Determining the Bit Width . 148 5 CONTENTS Sze, Chen, Yang, Emer 7.2.1 Quantization . 148 7.2.2 Standard Components of the Bit Width . 154 7.3 Mixed Precision: Different Precision for Different Data Types . 157 7.4 Varying Precision: Change Precision for Different Parts of the DNN . 158 7.5 Binary Nets . 161 7.6 Interplay Between Precision and Other Design Choices . 162 7.7 Summary of Design Considerations for Reducing Precision . 163 8 Exploiting Sparsity 164 8.1 Sources of Sparsity . 164 8.1.1 Activation Sparsity . 165 8.1.2 Weight Sparsity . ..
Recommended publications
  • DEEP-Hybriddatacloud ASSESSMENT of AVAILABLE TECHNOLOGIES for SUPPORTING ACCELERATORS and HPC, INITIAL DESIGN and IMPLEMENTATION PLAN
    DEEP-HybridDataCloud ASSESSMENT OF AVAILABLE TECHNOLOGIES FOR SUPPORTING ACCELERATORS AND HPC, INITIAL DESIGN AND IMPLEMENTATION PLAN DELIVERABLE: D4.1 Document identifier: DEEP-JRA1-D4.1 Date: 29/04/2018 Activity: WP4 Lead partner: IISAS Status: FINAL Dissemination level: PUBLIC Permalink: http://hdl.handle.net/10261/164313 Abstract This document describes the state of the art of technologies for supporting bare-metal, accelerators and HPC in cloud and proposes an initial implementation plan. Available technologies will be analyzed from different points of views: stand-alone use, integration with cloud middleware, support for accelerators and HPC platforms. Based on results of these analyses, an initial implementation plan will be proposed containing information on what features should be developed and what components should be improved in the next period of the project. DEEP-HybridDataCloud – 777435 1 Copyright Notice Copyright © Members of the DEEP-HybridDataCloud Collaboration, 2017-2020. Delivery Slip Name Partner/Activity Date From Viet Tran IISAS / JRA1 25/04/2018 Marcin Plociennik PSNC 20/04/2018 Cristina Duma Aiftimiei Reviewed by INFN 25/04/2018 Zdeněk Šustr CESNET 25/04/2018 Approved by Steering Committee 30/04/2018 Document Log Issue Date Comment Author/Partner TOC 17/01/2018 Table of Contents Viet Tran / IISAS 0.01 06/02/2018 Writing assignment Viet Tran / IISAS 0.99 10/04/2018 Partner contributions WP members 1.0 19/04/2018 Version for first review Viet Tran / IISAS Updated version according to 1.1 22/04/2018 Viet Tran / IISAS recommendations from first review 2.0 24/04/2018 Version for second review Viet Tran / IISAS Updated version according to 2.1 27/04/2018 Viet Tran / IISAS recommendations from second review 3.0 29/04/2018 Final version Viet Tran / IISAS DEEP-HybridDataCloud – 777435 2 Table of Contents Executive Summary.............................................................................................................................5 1.
    [Show full text]
  • Wire-Aware Architecture and Dataflow for CNN Accelerators
    Wire-Aware Architecture and Dataflow for CNN Accelerators Sumanth Gudaparthi Surya Narayanan Rajeev Balasubramonian University of Utah University of Utah University of Utah Salt Lake City, Utah Salt Lake City, Utah Salt Lake City, Utah [email protected] [email protected] [email protected] Edouard Giacomin Hari Kambalasubramanyam Pierre-Emmanuel Gaillardon University of Utah University of Utah University of Utah Salt Lake City, Utah Salt Lake City, Utah Salt Lake City, Utah [email protected] [email protected] pierre- [email protected] ABSTRACT The 52nd Annual IEEE/ACM International Symposium on Microarchitecture In spite of several recent advancements, data movement in modern (MICRO-52), October 12–16, 2019, Columbus, OH, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3352460.3358316 CNN accelerators remains a significant bottleneck. Architectures like Eyeriss implement large scratchpads within individual pro- cessing elements, while architectures like TPU v1 implement large systolic arrays and large monolithic caches. Several data move- 1 INTRODUCTION ments in these prior works are therefore across long wires, and ac- Several neural network accelerators have emerged in recent years, count for much of the energy consumption. In this work, we design e.g., [9, 11, 12, 28, 38, 39]. Many of these accelerators expend sig- a new wire-aware CNN accelerator, WAX, that employs a deep and nificant energy fetching operands from various levels of the mem- distributed memory hierarchy, thus enabling data movement over ory hierarchy. For example, the Eyeriss architecture and its row- short wires in the common case. An array of computational units, stationary dataflow require non-trivial storage for scratchpads and each with a small set of registers, is placed adjacent to a subarray registers per processing element (PE) to maximize reuse [11].
    [Show full text]
  • Hardware Architecture
    Hardware Architecture Components Computing Infrastructure Components Servers Clients LAN & WLAN Internet Connectivity Computation Software Storage Backup Integration is the Key ! Security Data Network Management Computer Today’s Computer Computer Model: Von Neumann Architecture Computer Model Input: keyboard, mouse, scanner, punch cards Processing: CPU executes the computer program Output: monitor, printer, fax machine Storage: hard drive, optical media, diskettes, magnetic tape Von Neumann architecture - Wiki Article (15 min YouTube Video) Components Computer Components Components Computer Components CPU Memory Hard Disk Mother Board CD/DVD Drives Adaptors Power Supply Display Keyboard Mouse Network Interface I/O ports CPU CPU CPU – Central Processing Unit (Microprocessor) consists of three parts: Control Unit • Execute programs/instructions: the machine language • Move data from one memory location to another • Communicate between other parts of a PC Arithmetic Logic Unit • Arithmetic operations: add, subtract, multiply, divide • Logic operations: and, or, xor • Floating point operations: real number manipulation Registers CPU Processor Architecture See How the CPU Works In One Lesson (20 min YouTube Video) CPU CPU CPU speed is influenced by several factors: Chip Manufacturing Technology: nm (2002: 130 nm, 2004: 90nm, 2006: 65 nm, 2008: 45nm, 2010:32nm, Latest is 22nm) Clock speed: Gigahertz (Typical : 2 – 3 GHz, Maximum 5.5 GHz) Front Side Bus: MHz (Typical: 1333MHz , 1666MHz) Word size : 32-bit or 64-bit word sizes Cache: Level 1 (64 KB per core), Level 2 (256 KB per core) caches on die. Now Level 3 (2 MB to 8 MB shared) cache also on die Instruction set size: X86 (CISC), RISC Microarchitecture: CPU Internal Architecture (Ivy Bridge, Haswell) Single Core/Multi Core Multi Threading Hyper Threading vs.
    [Show full text]
  • Efficient Management of Scratch-Pad Memories in Deep Learning
    Efficient Management of Scratch-Pad Memories in Deep Learning Accelerators Subhankar Pal∗ Swagath Venkataramaniy Viji Srinivasany Kailash Gopalakrishnany ∗ y University of Michigan, Ann Arbor, MI IBM TJ Watson Research Center, Yorktown Heights, NY ∗ y [email protected] [email protected] fviji,[email protected] Abstract—A prevalent challenge for Deep Learning (DL) ac- TABLE I celerators is how they are programmed to sustain utilization PERFORMANCE IMPROVEMENT USING INTER-NODE SPM MANAGEMENT. Incep Incep Res Multi- without impacting end-user productivity. Little prior effort has Alex VGG Goog SSD Res Mobile Squee tion- tion- Net- Head Geo been devoted to the effective management of their on-chip Net 16 LeNet 300 NeXt NetV1 zeNet PTB v3 v4 50 Attn Mean Scratch-Pad Memory (SPM) across the DL operations of a 1 SPM 1.04 1.19 1.94 1.64 1.58 1.75 1.31 3.86 5.17 2.84 1.02 1.06 1.76 Deep Neural Network (DNN). This is especially critical due to 1-Step 1.04 1.03 1.01 1.10 1.11 1.33 1.18 1.40 2.84 1.57 1.01 1.02 1.24 trends in complex network topologies and the emergence of eager execution. This work demonstrates that there exists up to a speedups of 12 ConvNets, LSTM and Transformer DNNs [18], 5.2× performance gap in DL inference to be bridged using SPM management, on a set of image, object and language networks. [19], [21], [26]–[33] compared to the case when there is no We propose OnSRAM, a novel SPM management framework SPM management, i.e.
    [Show full text]
  • Accelerate Scientific Deep Learning Models on Heteroge- Neous Computing Platform with FPGA
    Accelerate Scientific Deep Learning Models on Heteroge- neous Computing Platform with FPGA Chao Jiang1;∗, David Ojika1;5;∗∗, Sofia Vallecorsa2;∗∗∗, Thorsten Kurth3, Prabhat4;∗∗∗∗, Bhavesh Patel5;y, and Herman Lam1;z 1SHREC: NSF Center for Space, High-Performance, and Resilient Computing, University of Florida 2CERN openlab 3NVIDIA 4National Energy Research Scientific Computing Center 5Dell EMC Abstract. AI and deep learning are experiencing explosive growth in almost every domain involving analysis of big data. Deep learning using Deep Neural Networks (DNNs) has shown great promise for such scientific data analysis appli- cations. However, traditional CPU-based sequential computing without special instructions can no longer meet the requirements of mission-critical applica- tions, which are compute-intensive and require low latency and high throughput. Heterogeneous computing (HGC), with CPUs integrated with GPUs, FPGAs, and other science-targeted accelerators, offers unique capabilities to accelerate DNNs. Collaborating researchers at SHREC1at the University of Florida, CERN Openlab, NERSC2at Lawrence Berkeley National Lab, Dell EMC, and Intel are studying the application of heterogeneous computing (HGC) to scientific prob- lems using DNN models. This paper focuses on the use of FPGAs to accelerate the inferencing stage of the HGC workflow. We present case studies and results in inferencing state-of-the-art DNN models for scientific data analysis, using Intel distribution of OpenVINO, running on an Intel Programmable Acceleration Card (PAC) equipped with an Arria 10 GX FPGA. Using the Intel Deep Learning Acceleration (DLA) development suite to optimize existing FPGA primitives and develop new ones, we were able accelerate the scientific DNN models under study with a speedup from 2.46x to 9.59x for a single Arria 10 FPGA against a single core (single thread) of a server-class Skylake CPU.
    [Show full text]
  • Architectural Adaptation for Application-Specific Locality
    Architectural Adaptation for Application-Specific Locality Optimizations y z Xingbin Zhang Ali Dasdan Martin Schulz Rajesh K. Gupta Andrew A. Chien Department of Computer Science yInstitut f¨ur Informatik University of Illinois at Urbana-Champaign Technische Universit¨at M¨unchen g fzhang,dasdan,achien @cs.uiuc.edu [email protected] zInformation and Computer Science, University of California at Irvine [email protected] Abstract without repartitioning hardware and software functionality and reimplementing the co-processing hardware. This re- We propose a machine architecture that integrates pro- targetability problem is an obstacle toward exploiting pro- grammable logic into key components of the system with grammable logic for general purpose computing. the goal of customizing architectural mechanisms and poli- cies to match an application. This approach presents We propose a machine architecture that integrates pro- an improvement over traditional approach of exploiting grammable logic into key components of the system with programmable logic as a separate co-processor by pre- the goal of customizing architectural mechanisms and poli- serving machine usability through software and over tra- cies to match an application. We base our design on the ditional computer architecture by providing application- premise that communication is already critical and getting specific hardware assists. We present two case studies of increasingly so [17], and flexible interconnects can be used architectural customization to enhance latency tolerance to replace static wires at competitive performance [6, 9, 20]. and efficiently utilize network bisection on multiproces- Our approach presents an improvement over co-processing sors for sparse matrix computations. We demonstrate that by preserving machine usability through software and over application-specific hardware assists and policies can pro- traditional computer architecture by providing application- vide substantial improvements in performance on a per ap- specific hardware assists.
    [Show full text]
  • Development of a Predictable Hardware Architecture Template and Integration Into an Automated System Design Flow
    Development Secure of Reprogramming a Predictable Hardware of Architecturea Network Template Connected and Device Integration into an Automated System Design Flow Securing programmable logic controllers MARCUS MIKULCAK MUSSIE TESFAYE KTH Information and Communication Technology Masters’ Degree Project Second level, 30.0 HEC Stockholm, Sweden June 2013 TRITA-ICT-EX-2013:138Degree project in Communication Systems Second level, 30.0 HEC Stockholm, Sweden Secure Reprogramming of a Network Connected Device KTH ROYAL INSTITUTE OF TECHNOLOGY Securing programmable logic controllers SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY ELECTRONIC SYSTEMS MUSSIE TESFAYE Development of a Predictable Hardware Architecture TemplateKTH Information and Communication Technology and Integration into an Automated System Design Flow Master of Science Thesis in System-on-Chip Design Stockholm, June 2013 TRITA-ICT-EX-2013:138 Author: Examiner: Marcus Mikulcak Assoc. Prof. Ingo Sander Supervisor: Seyed Hosein Attarzadeh Niaki Degree project in Communication Systems Second level, 30.0 HEC Stockholm, Sweden Abstract The requirements of safety-critical real-time embedded systems pose unique challenges on their design process which cannot be fulfilled with traditional development methods. To ensure their correct timing and functionality, it has been suggested to move the design process to a higher abstraction level, which opens the possibility to utilize automated correct-by-design development flows from a functional specification of the system down to the level of Multiprocessor Systems-on-Chip. ForSyDe, an embedded system design methodology, presents a flow of this kind by basing system development on the theory of Models of Computation and side-effect-free processes, making it possible to separate the timing analysis of computation and communication of process networks.
    [Show full text]
  • Computer Architectures an Overview
    Computer Architectures An Overview PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sat, 25 Feb 2012 22:35:32 UTC Contents Articles Microarchitecture 1 x86 7 PowerPC 23 IBM POWER 33 MIPS architecture 39 SPARC 57 ARM architecture 65 DEC Alpha 80 AlphaStation 92 AlphaServer 95 Very long instruction word 103 Instruction-level parallelism 107 Explicitly parallel instruction computing 108 References Article Sources and Contributors 111 Image Sources, Licenses and Contributors 113 Article Licenses License 114 Microarchitecture 1 Microarchitecture In computer engineering, microarchitecture (sometimes abbreviated to µarch or uarch), also called computer organization, is the way a given instruction set architecture (ISA) is implemented on a processor. A given ISA may be implemented with different microarchitectures.[1] Implementations might vary due to different goals of a given design or due to shifts in technology.[2] Computer architecture is the combination of microarchitecture and instruction set design. Relation to instruction set architecture The ISA is roughly the same as the programming model of a processor as seen by an assembly language programmer or compiler writer. The ISA includes the execution model, processor registers, address and data formats among other things. The Intel Core microarchitecture microarchitecture includes the constituent parts of the processor and how these interconnect and interoperate to implement the ISA. The microarchitecture of a machine is usually represented as (more or less detailed) diagrams that describe the interconnections of the various microarchitectural elements of the machine, which may be everything from single gates and registers, to complete arithmetic logic units (ALU)s and even larger elements.
    [Show full text]
  • Exploring the Programmability for Deep Learning Processors: from Architecture to Tensorization Chixiao Chen, Huwan Peng, Xindi Liu, Hongwei Ding and C.-J
    Exploring the Programmability for Deep Learning Processors: from Architecture to Tensorization Chixiao Chen, Huwan Peng, Xindi Liu, Hongwei Ding and C.-J. Richard Shi Department of Electrical Engineering, University of Washington, Seattle, WA, 98195 {cxchen2,hwpeng,xindil,cjshi}@uw.edu ABSTRACT Custom tensorization explores problem-specific computing data This paper presents an instruction and Fabric Programmable Neuron flows for maximizing energy efficiency and/or throughput. For Array (iFPNA) architecture, its 28nm CMOS chip prototype, and a example, Eyeriss proposed a row-stationary (RS) data flow to reduce compiler for the acceleration of a variety of deep learning neural memory access by exploiting feature map reuse [1]. However, row networks (DNNs) including convolutional neural networks (CNNs), stationary is only effective for convolutional layers with small recurrent neural networks (RNNs), and fully connected (FC) net­ strides, and shows poor performance on the Alexnet CNN CONVl works on chip. The iFPNA architecture combines instruction-level layer and RNNs. Systolic arrays, on the other hand, feature both programmability as in an Instruction Set Architecture (ISA) with efficiency and high throughput for matrix-matrix computation [4]. logic-level reconfigurability as in a Field-Prograroroable Gate Anay But they take less advantage of convolutional reuse, thus require (FPGA) in a sliced structure for scalability. Four data flow models, more data transfer bandwidth. namely weight stationary, input stationary, row stationary and Fixed data flow schemes in deep learning processors limit their tunnel stationary, are described as the abstraction of various DNN coverage of advanced algorithms. A flexible data flow engine is data and computational dependence. The iFPNA compiler parti­ desired.
    [Show full text]
  • Deep Learning Inference in Facebook Data Centers: Characterization, Performance Optimizations and Hardware Implications
    Deep Learning Inference in Facebook Data Centers: Characterization, Performance Optimizations and Hardware Implications Jongsoo Park,∗ Maxim Naumov†, Protonu Basu, Summer Deng, Aravind Kalaiah, Daya Khudia, James Law, Parth Malani, Andrey Malevich, Satish Nadathur, Juan Pino, Martin Schatz, Alexander Sidorov, Viswanath Sivakumar, Andrew Tulloch, Xiaodong Wang, Yiming Wu, Hector Yuen, Utku Diril, Dmytro Dzhulgakov, Kim Hazelwood, Bill Jia, Yangqing Jia, Lin Qiao, Vijay Rao, Nadav Rotem, Sungjoo Yoo and Mikhail Smelyanskiy Facebook, 1 Hacker Way, Menlo Park, CA Abstract The application of deep learning techniques resulted in re- markable improvement of machine learning models. In this paper we provide detailed characterizations of deep learning models used in many Facebook social network services. We present computational characteristics of our models, describe high-performance optimizations targeting existing systems, point out their limitations and make suggestions for the fu- ture general-purpose/accelerated inference hardware. Also, Figure 1: Server demand for DL inference across data centers we highlight the need for better co-design of algorithms, nu- merics and computing platforms to address the challenges of In order to perform a characterizations of the DL models workloads often run in data centers. and address aforementioned concerns, we had direct access to the current systems as well as applications projected to drive 1. Introduction them in the future. Many inference workloads need flexibility, availability and low latency provided by CPUs. Therefore, Machine learning (ML), deep learning (DL) in particular, is our optimizations were mostly targeted for these general pur- used across many social network services. The high quality pose processors. However, our characterization suggests the visual, speech, and language DL models must scale to billions following general requirements for new DL hardware designs: of users of Facebook’s social network services [25].
    [Show full text]
  • Integrated Circuit Technology for Wireless Communications: an Overview Babak Daneshrad Integrated Circuits and Systems Laboratory UCLA Electrical Engineering Dept
    Integrated Circuit Technology for Wireless Communications: An Overview Babak Daneshrad Integrated Circuits and Systems Laboratory UCLA Electrical Engineering Dept. email: [email protected] http://www.ee.ucla.edu/~babak Abstract: Figure 1 shows a block diagram of a typical wireless com- This paper provides a brief overview of present trends in the develop- munication system. Moreover it shows the partitioning of the ment of integrated circuit technology for applications in the wireless receiver into RF, IF, baseband analog and digital components. communications industry. Through advanced circuit, architectural and In this paper we will focus on two main classes of integrated processing technologies, ICs have helped bring about the wireless revo- circuit technologies. The first is ICs for analog and more lution by enabling highly sophisticated, low cost and portable end user importantly RF communications. In general the technologist as terminals. In this paper two broad categories of circuits are highlighted. The first is RF integrated circuits and the second is digital baseband well as the circuit designer’s challenge here is to first, make the processing circuits. In both areas, the paper presents the circuit design transistors operate at higher carrier frequencies, and second, to challenges and options presented to the designer. It also highlights the integrate as many of the components required in the receiver manner in which these technologies have helped advance wireless com- onto the IC. The second class of circuits that we will focus on munications. are digital baseband circuits. Where increased density and I. Introduction reduced power consumption are the key factors for optimiza- tion.
    [Show full text]
  • UNIVERSITY of CALIFORNIA, SAN DIEGO Holistic Design for Multi-Core Architectures a Dissertation Submitted in Partial Satisfactio
    UNIVERSITY OF CALIFORNIA, SAN DIEGO Holistic Design for Multi-core Architectures A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Computer Science (Computer Engineering) by Rakesh Kumar Committee in charge: Professor Dean Tullsen, Chair Professor Brad Calder Professor Fred Chong Professor Rajesh Gupta Dr. Norman P. Jouppi Professor Andrew Kahng 2006 Copyright Rakesh Kumar, 2006 All rights reserved. The dissertation of Rakesh Kumar is approved, and it is acceptable in quality and form for publication on micro- film: Chair University of California, San Diego 2006 iii DEDICATIONS This dissertation is dedicated to friends, family, labmates, and mentors { the ones who taught me, indulged me, loved me, challenged me, and laughed with me, while I was also busy working on my thesis. To Professor Dean Tullsen for teaching me the values of humility, kind- ness,and caring while trying to teach me football and computer architecture. For always encouraging me to do the right thing. For always letting me be myself. For always believing in me. For always challenging me to dream big. For all his wisdom. And for being an adviser in the truest sense, and more. To Professor Brad Calder. For always caring about me. For being an inspiration. For his trust. For making me believe in myself. For his lies about me getting better at system administration and foosball even though I never did. To Dr Partha Ranganathan. For always being there for me when I would get down on myself. And that happened often. For the long discussions on life, work, and happiness.
    [Show full text]