Significant Achievements in the Planetary Geology Program 1977-1978
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
GENERAL MEETING NORMAN SLEEP, Ph.D. Professor Of
Vol. 63, No. 10 – October 2015 GENERAL MEETING THE PRESIDIO . OBSERVATION POST . BUILDING 211 211 Lincoln Boulevard, San Francisco 7:00 pm Doors Open . 7:30 pm Announcements . 8:00 pm Speaker SFAA’s General Meetings occur on the 3rd TUESDAY of each month (except January) October 20, 2015 NORMAN SLEEP, Ph.D. Professor of Geophysics, Stanford University OUR MOON FROM FORMATION TO ASTEROID TARGET: MESSAGE FOR LIFE ON EARTH The present EarthMoon system formed in the aftermath of the impact of a Mars sized body on our planet. The Earth was then mostly melted and the Moon accreted from a ring of vapor and liquid orbiting the Earth. Part of the impactor’s core ended up in the Moonforming disk around the Earth. Iron metal within the disk was partly oxidized by ferric iron and water. Metallic iron remained and this formed our Moon’s small core, and about 2% of the impactor’s core ended up within Earth’s mantle. It is conceivable that early asteroid bombardment on the Earth was relatively benign and that planet sterilizing impact never occurred. A dense CO2 atmosphere blanketed Earth within about 10 million years of the impact, and a solarheated greenhouse maintained 200 degrees C temperatures at the surface. Earth did not become habitable until the CO2 subducted into the mantle. Subducted oceanic crust carried carbonates into the mantle, which partially melted beneath island arcs to form alkaline CO2rich lavas. Groundwaters within these lavas are an attractive prebiotic environment. By the time of Earth’s earliest sedimentary record at about 3.8 billion years ago, the surface was clement, the ocean was near its current pH about 8, and the CO2 pressure in the air was comparable to the modern value. -
Life's Origins
THE SEARCH FOR LIFE'S ORIGINS Progress and Future Directions in Planetary Biology and Chemical Evolution SPACE STUDIES BOARD Committee on Planetary Biology and Chemical Evolution Commission on Physical Sciences, Mathematics, and Applications National Research Council (NASA-CR-190929) THE SEARCH FCR N93-11603 LIFF'S nRIGINS: PROGRESS AND FUTURE DTR_CTI_NS IN PLANETARY biOLOgY AND CHEMICAL FVOLUTION (NAS-NRC) Unclas i59 p G3191 0125180 NATIONAL ACADEMY PRESS Washington, D.C. 1990 NATIONAL ACADEMY PRESS - 2101 Constitution Avenue, N.W. • Washington, D.C. 20418 NOTICE: The project that is the subject of this report was approved by the Governing Board of the National l_esearch Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. The members of the committee responsible for the report were chosen for their special compe- tences and with regard for appropriate balance. This report has been reviewed by a group other than the authors according to procedures approved by a Report Review Committee consisting of members of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. Support for this project was provided by Contract NASW 4102 between the National Academy of Sciences and the National Aeronautics and Space Administration. Library of Congress Cataloging-in-Publication Data The Search for life's origins : progress and future directions in planetary biology and chemical evolution / Committee on Planetary Biology and Chemical Evolution. p. cm. Includes bibliographical references. Includes index. ISBN 0-309-04246-1 1. Life--Origin. 2. Space biology. -
A Geochemist in His Garden of Eden
A GEOCHEMIST IN HIS GARDEN OF EDEN WALLY BROECKER 2016 ELDIGIO PRESS Table of Contents Chapter 1 Pages Introduction ................................................................................................................. 1-13 Chapter 2 Paul Gast and Larry Kulp ......................................................................................... 14-33 Chapter 3 Phil Orr...................................................................................................................... 34-49 Chapter 4 230Th Dating .............................................................................................................. 50-61 Chapter 5 Mono Lake ................................................................................................................ 62-77 Chapter 6 Bahama Banks .......................................................................................................... 78-92 Chapter 7 Doc Ewing and his Vema ........................................................................................ 93-110 Chapter 8 Heezen and Ewing ................................................................................................ 111-121 Chapter 9 GEOSECS ............................................................................................................. 122-138 Chapter 10 The Experimental Lakes Area .............................................................................. 139-151 Table of Contents Chapter 11 Sea Salt ................................................................................................................. -
EARTHSCIENCES April 2014 News Notes
SCHOOL OF EARTHSCIENCES April 2014 News Notes • Alumni Change Lives • Professor E. Scott Bair Retires • Faculty Profile: Michael Wilkins • Appalachian Field Geology for Educators • SES scores again at the Denman Undergraduate Research Forum • Brevia Alumni Change Lives Christina Zerda (BS 2014) received support from The Friends of Orton Hall fund. Here, Christina describes how this helped advance her career. The picture shows Christina with poster at the Denman Forum, where she won third place. I began my research with Dr. Barton my sophomore year without any knowledge of the subject or what I was getting into. Two years later, I am graduating with a BS with research distinction, a 3rd place finish in the 2014 Denman Forum, a successful poster presentation at AGU, and knowing I found my niche in geology. My re- search focuses on the magma chambers beneath the East Pacific Rise, which is a mid-ocean ridge in the Pacific Ocean off of the coast of Central America. We chose the EPR due to its fast spreading rate and the prominence of several transform faults in the northern section. Ultimately, we hope to better understand not only what affects these transforms and other features have upon oceanic crust petrology, but a better understanding of mid- ocean ridges in general. While we originally looked at the depths at which these rocks began the process of crystallization, focus eventually turned to the surface features of the ridge and their effect upon the pressures of partial crystalli- zation. What I think is the coolest aspect of this project and area of study is the challenge of it. -
Preface the Turn of the 21St Century Ushered in an Upsurge Of
Preface The turn of the 21st century ushered in an upsurge of questioning of contemporary visions of the nature of mantle convection and, most importantly, its link with surface volcanism. Since the early 1970s the mantle plume hypothesis had been the most popular explanation for volcanism apparently not explained by plate tectonics, including both large-volume magmatism and volcanism in regions not near to plate boundaries. The plume hypothesis, originally proposed by W.J. Morgan in 1971, provided a mechanism for the formation and sustaining of the “hot spot” in the mantle that J.T. Wilson had suggested in 1963 was the cause of the Hawaiian volcano chain. Morgan’s plume hypothesis envisaged a cylindrical column of hot rock rising from the deep mantle to continually feed the surface volcanism. Furthermore, approximately 20 such plumes were proposed to exist in the Earth. In addition to Hawaii, these were postulated to underlie Macdonald seamount, Easter island, the Galapagos. Juan Fernandez, Brazil, Yellowstone, Iceland, the Azores, the Canary Islands, Hoggar, Ascension island, Tristan da Cunha, the Bouvet triple junction, Crozet, Reunion, Kerguelen, Caroline seamount and Lord Howe. Plume theory provided an elegant explanation for time-progressive volcanic chains and relative fixity between melting anomalies. Major later expansions of the hypothesis included the proposals that plume development involves a plume-head/plume-tail sequence, represented by large igneous province formation followed by time-progressive volcanic chains, and that lower- mantle and core-mantle boundary geochemical tracers may be detected in hot spot basalts. More plumes than the original ~ 20 were proposed, popular lists typically containing 50 - 100 candidates. -
ASK the Academy Volume 3 Anthology
ASK THE ACADEMY VOLUME 3 ANTHOLOGY TABLE OF CONTENTS ABOUT ASK THE ACADEMY ..................................................................................................... 5 MESSAGES FROM THE ACADEMY DIRECTOR .......................................................................... 7 THE POWER OF A VISION .................................................................................................. 7 T RENDS IN PROJECT MANAGEMENT ................................................................................. 7 KNOWLEDGE EXPLOSION ................................................................................................... 8 LESSONS FROM TORINO .................................................................................................... 9 C HANGE MANAGEMENT AND ADAPTIVE CHALLENGES .................................................... 9 V IRTUAL PROJECT TEAMS AND LEARNING ..................................................................... 10 THE GOOD IDEA PARADOX .............................................................................................. 11 ACADEMY BRIEFS .................................................................................................................... 13 PM CHALLENGE LEADERSHIP ROUNDUP ....................................................................... 13 PM CHALLENGE INTERNATIONAL FORUM ROUNDUP .................................................... 14 J EAN-JACQUES DORDAIN ON GLOBAL OPPORTUNITIES AND CHALLENGES ................ 15 M ASTERS WITH MASTERS EVENT HIGHLIGHTS INTERNATIONAL -
Abstract Volume
T I I II I II I I I rl I Abstract Volume LPI LPI Contribution No. 1097 II I II III I • • WORKSHOP ON MERCURY: SPACE ENVIRONMENT, SURFACE, AND INTERIOR The Field Museum Chicago, Illinois October 4-5, 2001 Conveners Mark Robinbson, Northwestern University G. Jeffrey Taylor, University of Hawai'i Sponsored by Lunar and Planetary Institute The Field Museum National Aeronautics and Space Administration Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113 LPI Contribution No. 1097 Compiled in 2001 by LUNAR AND PLANETARY INSTITUTE The Institute is operated by the Universities Space Research Association under Contract No. NASW-4574 with the National Aeronautics and Space Administration. Material in this volume may be copied without restraint for library, abstract service, education, or personal research purposes; however, republication of any paper or portion thereof requires the written permission of the authors as well as the appropriate acknowledgment of this publication .... This volume may be cited as Author A. B. (2001)Title of abstract. In Workshop on Mercury: Space Environment, Surface, and Interior, p. xx. LPI Contribution No. 1097, Lunar and Planetary Institute, Houston. This report is distributed by ORDER DEPARTMENT Lunar and Planetary institute 3600 Bay Area Boulevard Houston TX 77058-1113, USA Phone: 281-486-2172 Fax: 281-486-2186 E-mail: order@lpi:usra.edu Please contact the Order Department for ordering information, i,-J_,.,,,-_r ,_,,,,.r pA<.><--.,// ,: Mercury Workshop 2001 iii / jaO/ Preface This volume contains abstracts that have been accepted for presentation at the Workshop on Mercury: Space Environment, Surface, and Interior, October 4-5, 2001. -
The Rationale for a Long-Lived Geophysical
THE RATIONALE FOR A LONG-LIVED GEOPHYSICAL NETWORK MISSION TO MARS Submitted to The Mars Panel, NRC Decadal Survey for the Planetary Sciences Division, SMD, NASA Phil Christensen, Chair; Wendy Calvin, Vice Chair Written by Bruce Banerdt JPL Robert Grimm SwRI Franck Montmessin Scot Rafkin SwRI Tilman Spohn DLR Matthias Grott DLR Service Aeronomie Peter Read Oxford Ulli Christensen MPS Bob Haberle NASA-Ames Yosio Nakamura Gerald Schubert UCLA Veronique Dehant ROB Martin Knapmeyer DLR U Texas (ret.) Sue Smrekar JPL Linda Elkins-Tanton MIT Philippe Lognonné IPGP Roger Phillips SwRI Mike Wilson JPL Endorsed by Oded Aharonson Caltech François Forget Kurt Klaus Boeing Thomas Ruedas Carnegie Don Albert CRREL CNRS-LMD Jörg Knollenberg DLR Chris Russell UCLA Carlton Allen NASA-JSC Matt Fouch ASU Naoki Kobayashi JAXA David Sandwell Scripps Robert Anderson JPL Brenda Franklin JPL Ulrich Koehler DLR Nicholas Schmerr Carnegie Scott Anderson SwRI Herbert Frey GSFC Carlos Lange U Alberta Nicole Schmitz DLR Jeff Andrews-Hanna Jeannine Gagnepain- Gary Latham DOE (ret.) Richard Schultz U Nevada Colo. School of Mines Beyneix IPGP Mark Leese Open U Mindi Searls U Colorado Jafar Arkani-Hamed Rafael Garcia Frank Lemoine GSFC Karsten Seiferlin U Bern McGill U Obs. Midi-Pyrenees Robert Lillis UC Berkeley Nikolai Shapiro IPGP Gabriele Arnold U Münster Jim Garvin GSFC John Longhi Charles Shearer UNM Sami Asmar JPL Rebecca Ghent U Toronto Lamont-Doherty Brian Shiro NOAA Lisa Baldwin DLR Domenico Giardini ETH Paul Lundgren JPL Mark Simons Caltech Don Banfield Cornell Lori Glaze GSFC Mioara Mandea GFZ Norman Sleep Stanford Amy Barr SwRI Matthew Golombek JPL Michael Manga John C. -
Lunar Impact Basins Revealed by Gravity Recovery and Interior
Lunar impact basins revealed by Gravity Recovery and Interior Laboratory measurements Gregory Neumann, Maria Zuber, Mark Wieczorek, James Head, David Baker, Sean Solomon, David Smith, Frank Lemoine, Erwan Mazarico, Terence Sabaka, et al. To cite this version: Gregory Neumann, Maria Zuber, Mark Wieczorek, James Head, David Baker, et al.. Lunar im- pact basins revealed by Gravity Recovery and Interior Laboratory measurements. Science Advances , American Association for the Advancement of Science (AAAS), 2015, 1 (9), pp.e1500852. 10.1126/sci- adv.1500852. hal-02458613 HAL Id: hal-02458613 https://hal.archives-ouvertes.fr/hal-02458613 Submitted on 26 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. RESEARCH ARTICLE PLANETARY SCIENCE 2015 © The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. Distributed Lunar impact basins revealed by Gravity under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). Recovery and Interior Laboratory measurements 10.1126/sciadv.1500852 Gregory A. Neumann,1* Maria T. Zuber,2 Mark A. Wieczorek,3 James W. Head,4 David M. H. Baker,4 Sean C. Solomon,5,6 David E. Smith,2 Frank G. -
PS Skill Sheets.Book
Skill and Practice Worksheets CPO Focus on Physical Science Skill and Practice Worksheets Credits Project Manager and Principal Writer Laine Ives Writers Scott W. Eddleman Mary Beth Abel Hughes Erik Benton Patsy Eldridge Tom Hsu Mary Ann Erickson Sonja Taylor Catherine Reed Kelly Story Laura Tierney Sharon Faulkner Beverly Vissoe Melissa Vela Jill Elenbaas Lisa Laverdiere James Sammons Fran Lyons Sammons Becky Porter Stacy Kissel Leslie Sheen - Graphic Organizers Patricia Tremblay Graphic Artists Polly Crisman Jesse Van Valkenburgh Bruce Holloway CPO Focus on Physical Science Teacher’s Resource CD 1 Copyright 2007 Delta Education LLC, a member of the School Specialty Family ISBN-10: 1-58892-297-9 ISBN-13: 978-1-58892-297-7 All rights reserved. No part of this work may be reproduced or transmitted in any form or by an means, electronic or mechanical, including photocopying and recording, or by any information store or retrieval system, without permission in writing. For permission and other rights under this copyright, please contact: CPO Science 80 Northwest Boulevard Nashua, NH 03063 (866)588-6951 http://www.cposcience.com Produced in the United States of America Contents 1.1: Using Your Textbook 4.2B: Buoyancy 1.2A: Stopwatch Math 4.2C: Archimedes’ Principle 1.2B: SI Units 6.1A: Ernest Rutherford 1.2C: SI-English Conversions 6.1B: Niels Bohr 1.2D: Dimensional Analysis 6.1C: Marie and Pierre Curie 1.2E: Reading Strategies (SQ3R) 6.1D: Rosalyn Sussman Yalow 1.3A: Study Notes 6.1E: Atoms, Isotopes, and Ions 1.3B: James Prescott Joule 6.2A: -
Extending the Frontiers of Science
Summer SS PP EE CC TT RR AA 2000 THE NEWSLETTER OF THE CARNEGIE INSTITUTION Extending the Frontiers of Science Above is the Carnegie Observatories’ official first-day envelope and cancellation for the Edwin P. Hubble commemorative stamps. The envelope features the young Hubble at the 100-inch Mount Wilson telescope. INSIDE: New Board Members ................................................. 2 Fruit Fly Genome Sequenced .................................... 9 Signatures of Life—Carnegie Evening 2000 ........... 3 Algae at the Desert Lab? ............................................. 9 Honoring Hubble .......................................................... 4 Watery Mars ................................................................10 One Little Cell with Lots to Tell................................ 5 New Reading................................................................10 Magellan I Mirror Is In! ................................................ 8 Web Watch...................................................................16 Department of Department of Department of The Geophysical CASE/ Plant Biology Terrestrial Magnetism Embryology Observatories Laboratory First Light LETTER FROM THE CHAIRMAN Carnegie has been in human diseases. This means that as environments. Ultimately all of this work the business of science scientists learn more about gene function in will help to improve the planet’s long-term for almost one hundred the fruit fly, they will learn more about habitability. years. When we reflect curing illnesses in people. -
The Michigan Basin
UMR Journal -- V. H. McNutt Colloquium Series Volume 3 Article 4 December 1982 The Michigan Basin L. L. Sloss Follow this and additional works at: https://scholarsmine.mst.edu/umr-journal Part of the Geology Commons, and the Geophysics and Seismology Commons Recommended Citation Sloss, L. L. (1982) "The Michigan Basin," UMR Journal -- V. H. McNutt Colloquium Series: Vol. 3 , Article 4. Available at: https://scholarsmine.mst.edu/umr-journal/vol3/iss1/4 This Article - Journal is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in UMR Journal -- V. H. McNutt Colloquium Series by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. UMR Journal, No. 3 (December 1982) 25 The Michigan Basin L. L. SLOSS* ABSTRACT The Michigan basin is widely acknowledged to be the archetype among those basins of cratonic interiors whose subsidence is dominated by flexure rather than faulting. Broadly ovate in plan over an area of some hundreds of thousands of square kilometers, with a preserved Phanerozoic sediment thickness exceeding 4 km accumulated during distinct episodes of subsidence over a 500-million year span, the basin is endowed with significant fossil-fuel resources. The basin area is crossed, from north-northwest, by a rift zone filled with mafic igneous rock and great thickness of sedimentary rock resting on Archean and Middle Proterozoic crystallines. Rifting is presumably of Keweenawan age, but the igneous rocks cannot be dated more explicitly than “older than 600 myBP”.