CALIFORNIA STATE UNIVERSITY, NORTHRIDGE Comparative

Total Page:16

File Type:pdf, Size:1020Kb

CALIFORNIA STATE UNIVERSITY, NORTHRIDGE Comparative CALIFORNIA STATE UNIVERSITY, NORTHRIDGE Comparative Thermal Tolerances, Performance Eurythermy, and Temperature- Dependent Energy Demands of the World’s Southernmost Gecko with Implications for a Changing Climate A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Biology by Denita M. Weeks December 2013 The thesis of Denita M. Weeks is approved: Peter J. Edmunds, Ph.D. Date Steven R. Dudgeon, Ph.D. Date Robert E. Espinoza, Ph.D. Chair Date California State University, Northridge ii ACKNOWLEDGMENTS I would like to thank Robert E. Espinoza, Félix B. Cruz, Gabriela Perotti, Lorena B. Quiroga, Eduardo A. Sanabria, and Jason R. Warner for help in the field. I am especially grateful to Cristián S. Abdala, Félix B. Cruz, Juan Pablo Juliá, Fernando Lobo, Gabriela Perotti, Lorena B. Quiroga, Eduardo A. Sanabria, Soledad Valdecantos, and their families for their logistical support and kind hospitality. The members of my committee, Robert E. Espinoza, Peter J. Edmunds, and Steven R. Dudgeon, have been invaluable to my accomplishments at CSUN. Without their knowledge, support, and guidance, this study and all of my professional growth would not have been so productive and rewarding. Much thanks to Barbara Joos, Cristián S. Abdala, and Rocio Aguilar for providing helpful resources or feedback on the thesis and to Michael J. Angilletta for statistical advice. Additionally, I thank the following people for contribution to this thesis and making my time at California State University, Northridge so enjoyable and productive: Beck A. Wehrle, Alissa de Koning, Jason R. Warner, Mark V. Oliva, Fritz Hertel, Paul Wilson, Tim J. Karels, Dave A. Gray, and Cindy Hitchcock. I would like to acknowledge the unending personal support from family and friends. Thanks to my family, Sonya L. Weeks, Michael A. Weeks, and Patricia L. Weeks, Anita L. Gasper and Dennis R. Gasper, for the constant support, encouragement, and enthusiasm. Many thanks to my boyfriend, Eric A. R. Hernandez, for supporting me and enduring two years of my absence while I pursued my academic goals far from home. iii The IACUC of California State University, Northridge (CSUN) approved this research (0708-0002a,b) and collecting permits were authorized by the respective provincial faunal offices (APN, National Parks of Argentina: 0945/09–10 [L. Buria]; Neuquén: APN 008/10 [F. Lonac]; Chubut: 251/09 [S. Montanelli]; Río Negro: 127414– DF-2008–2010 [M. Failla]; Santa Cruz: 024/08 [L.B. Ortega). My research was supported by funding from the American Society of Ichthyologists and Herpetologists, CSUN, the National Science Foundation, Sigma Xi, and the Society for the Study of Amphibians and Reptiles. iv TABLE OF CONTENTS Signature Page .................................................................................................................... ii Acknowledgments .............................................................................................................. iii Abstract .............................................................................................................................. vi Chapter 1: Thermal Tolerances Of Homonota darwinii ..................................................... 1 Chapter 2: Sprint Performance Of Homonota darwinii .................................................... 20 Chapter 3: Temperature-Dependent Physiology And Energetics Modeling For Homonota darwinii in Current and Future Climates .......................................................................... 41 Literature Cited ................................................................................................................. 63 Appendix A: Tables .......................................................................................................... 78 Appendix B: Figures ......................................................................................................... 96 v ABSTRACT Comparative Thermal Tolerances, Performance Eurythermy, and Temperature- Dependent Energy Demands of the World’s Southernmost Gecko with Implications for a Changing Climate by Denita M. Weeks Master of Science in Biology Most aspects of the lives of ectotherms (e.g. distribution, locomotion, digestion, and reproduction) are dependent on body temperature (Tb). For ectotherms living in cool environments, the ability to cope with extreme temperatures and even achieve the warmer Tbs needed for optimal performance can be particularly challenging. Nocturnal ectotherms in such climates face an added challenge because they lack solar radiation as a heat source during periods of activity. Darwin’s marked gecko (Homonota darwinii)— the world’s southernmost gecko species—is broadly distributed from central to southern Argentina and adjacent Chile (35–52 °S latitude) where cold climates and high winds likely pose a thermal challenge for this nocturnal species. I measured the thermal tolerances and temperature-dependent sprint performance of four populations of H. darwinii spanning most of the latitudinal range of this species in southern Argentina. I also estimated rates of temperature-dependent metabolism and evaporative water loss of geckos from the same populations to characterize their physiological response to vi temperature. Temperature dataloggers were deployed at each field site to record annual operative temperatures (Te). The metabolic data were combined with the Te data in an energetic model to estimate annual energy budgets for the current climate and following predicted site-specific changes in climate. I hypothesized that the lower thermal tolerances (critical thermal minimum, CTmin) of these geckos would differ among populations such that geckos from the southernmost (and therefore presumably the coolest) populations would have lower CTmin relative to northern populations, but that the upper thermal tolerances (panting threshold, Tpant) would not differ among populations. I found that CTmin differed among populations, but not latitudinally as predicted. Remarkably, some populations had subzero CTmin suggesting freeze tolerance or supercooling ability—the first time this phenomenon has been reported for any gecko. Tpant did not differ among populations. Geckos from populations with the most thermal heterogeneity had the widest thermal tolerance ranges. I also hypothesized that the southernmost populations of this species would be the most thermally challenged, as evidenced by lower temperature-dependent sprint performance relative to northern populations. Temperature-dependent sprint performance indicated non-latitudinal shifts in performance over the geographic range of H. darwinii, yet most populations shared a similarly broad range for optimal performance indicating eurythermy. Eurythermy in performance suggests that future climate change may be neutral or even beneficial to H. darwinii. Differences in rates of resting metabolism and evaporative water loss were marginally significant among populations, yet only at higher experimental Tbs. The southernmost population of H. darwinii experiences a relatively mild, thermally homogenous climate and was estimated to have the highest annual energy demands, vii suggesting both an opportunity and need for longer daily and seasonal activity. Furthermore, my model estimates this population will be the least affected by climate warming. More northern populations that inhabit more thermally variable environments were predicted to experience similarly marginal effects of climate change based solely on abiotic considerations. viii CHAPTER 1: THERMAL TOLERANCES OF HOMONOTA DARWINII ABSTRACT Knowledge of the thermal limits of a species is essential to predicting its response to climate change. Most organisms are limited by a range of body temperatures (Tb) in which normal function of biological processes (i.e., cellular respiration, foraging, digestion) take place. These are known as thermal tolerances, and exceeding these bounds often translates to slowed performance and even death in some cases. Behavior is a widely used mechanism across taxa to avoid extreme environmental temperatures. Ectotherms, such as lizards, are especially efficient at behavioral thermoregulation because they rely almost exclusively on the abiotic environment to regulate Tb. However, sometimes, behavior is insufficient and physiological adaptations at the cellular level allow them to cope with variable, even extreme, thermal environments. Yet, challenges may still exist for nocturnal ectotherms (lack of solar radiation as a heat source during activity), particularly for those living in harsh, cold environments such as Homonota darwinii. As the world’s southernmost gecko species, it already likely faces thermal challenges in addition to being nocturnal. I measured thermal tolerances (critical thermal minimum, CTmin and panting threshold, Tpant) for four populations of Homonota darwinii spanning most of the latitudinal range of the species. CTmin differed across populations, but not latitudinally as predicted, likely because latitude was not as good a proxy for operative temperatures (Te). Some populations had subzero CTmin indicating potential supercooling or freeze tolerance—the first time either phenomenon has been reported for 1 a gecko. Tpant did not differ significantly among populations. Finally, thermal tolerance breadth appears to be correlated with thermal variability in the environment. INTRODUCTION Most multicellular organisms function over a limited range of temperatures. This range typically falls
Recommended publications
  • CV Septiembre De 2012
    M ARIANA M ORANDO Curriculum Vitae Grupo de Herpetología Patagónica. CENPAT-CONICET. Universidad Nacional de la Patagonia San Juan Bosco Bld. Alte. Brown 2825. U9120ACF. Puerto Madryn. Chubut. ArgenOna email: [email protected]. [email protected] T.E.: 54-280-4451024 ext. 1214; Fax: 54-2965-451543; e-mail: [email protected] pagweb: hXp://www.cenpat.edu.ar/. hXp://patagonia.byu.edu/ 1 F O R M A C I O N A C A D E M I C A 1990-1994 Licenciada en Ciencias Biológicas. Universidad Nacional de Río Cuarto. Córdoba, Argentina. Promedio general: 8.94/10 2001-2003 Master of Science. Body size and rates of molecular evolution. Is there a relationship? The lizard clade Liolaemini as a study case. 51 pp. Director: Dr. D. MacClellan. Department of Biology. Brigham Young University. Provo, Utah, USA. 2000-2004 Doctora en Cs. Biológicas. Orientación Zoología. Sistemática y filogenia de grupos de especies de los géneros Phymaturus y Liolaemus (Squamata: Tropiduridae: Liolaeminae) el oeste y sur de Argentina. 265pp. Calificación: 10 Summa cum lauden con recomendación de publicación. Universidad Nacional de Tucumán. Argentina. Director: Dr. Gustavo Scrocchi. O T R A F O R M A C I O N A C A D E M I C A Cursos de Actualización y Postgrado realizados: 40 (desde 1998 a 2012) Asistencia a Seminarios: 2000-2002 Seminarios aproximadamente quincenales del College of Biology and Agriculture. BYU. Provo. 2000-2003 Seminarios del Zoology/Integrative Biology Department. BYU. Provo. 2001 Seminario Biology Department: Comparative Method in Biology. Dr. Emilia Martins. University of Utah.
    [Show full text]
  • Cretaceous Fossil Gecko Hand Reveals a Strikingly Modern Scansorial Morphology: Qualitative and Biometric Analysis of an Amber-Preserved Lizard Hand
    Cretaceous Research 84 (2018) 120e133 Contents lists available at ScienceDirect Cretaceous Research journal homepage: www.elsevier.com/locate/CretRes Cretaceous fossil gecko hand reveals a strikingly modern scansorial morphology: Qualitative and biometric analysis of an amber-preserved lizard hand * Gabriela Fontanarrosa a, Juan D. Daza b, Virginia Abdala a, c, a Instituto de Biodiversidad Neotropical, CONICET, Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucuman, Argentina b Department of Biological Sciences, Sam Houston State University, 1900 Avenue I, Lee Drain Building Suite 300, Huntsville, TX 77341, USA c Catedra de Biología General, Facultad de Ciencias Naturales, Universidad Nacional de Tucuman, Argentina article info abstract Article history: Gekkota (geckos and pygopodids) is a clade thought to have originated in the Early Cretaceous and that Received 16 May 2017 today exhibits one of the most remarkable scansorial capabilities among lizards. Little information is Received in revised form available regarding the origin of scansoriality, which subsequently became widespread and diverse in 15 September 2017 terms of ecomorphology in this clade. An undescribed amber fossil (MCZ Re190835) from mid- Accepted in revised form 2 November 2017 Cretaceous outcrops of the north of Myanmar dated at 99 Ma, previously assigned to stem Gekkota, Available online 14 November 2017 preserves carpal, metacarpal and phalangeal bones, as well as supplementary climbing structures, such as adhesive pads and paraphalangeal elements. This fossil documents the presence of highly specialized Keywords: Squamata paleobiology adaptive structures. Here, we analyze in detail the manus of the putative stem Gekkota. We use Paraphalanges morphological comparisons in the context of extant squamates, to produce a detailed descriptive analysis Hand evolution and a linear discriminant analysis (LDA) based on 32 skeletal variables of the manus.
    [Show full text]
  • Endemic to the Hills of Paraje Tres Cerros, Corrientes Province, Argentina
    Zootaxa 3709 (2): 162–176 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3709.2.4 http://zoobank.org/urn:lsid:zoobank.org:pub:0066DBF2-80C4-4AF9-A0FE-7DD6D1E5097D A new species of Homonota (Reptilia: Squamata: Gekkota: Phyllodactylidae) endemic to the hills of Paraje Tres Cerros, Corrientes Province, Argentina RODRIGO CAJADE1*, EDUARDO GABRIEL ETCHEPARE1, CAMILA FALCIONE1, DIEGO ANDRÉS BARRASSO2 & BLANCA BEATRIZ ALVAREZ1 1Laboratorio de Herpetología, Departamento de Biología, Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste (FACENA-UNNE) Av. Libertad 5470, Corrientes, Argentina 2Centro Nacional Patagónico (CENPAT-CONICET). Blvd. Brown 2915 (U9120ACD), Puerto Madryn, Chubut, Argentina *Corresponding author. E-mail: [email protected] Abstract The genus Homonota comprises nine South American species of terrestrial and nocturnal lizards. Homonota lizards lack the femoral pores typical of other South American Phyllodactylidae, and their infradigital lamellas are not expanded. We here describe a new species, Homonota taragui sp. nov., exclusively found on a small group of three hills up to 179 meters above sea level in central eastern Corrientes Province, Argentina. The new species differs from other Homonota species by a combination of characters, including: a well-marked dorsal, reticulate, dark pattern contrasting with a lighter colored background; small, star-shaped chromatophores on the abdomen; the post-orbital region of the head covered by granular scales; the dorsal and anterior regions of the thighs covered by keeled scales interspersed with cycloid scales; and the internasal scale in contact with rostral scales.
    [Show full text]
  • Redalyc.Comparative Studies of Supraocular Lepidosis in Squamata
    Multequina ISSN: 0327-9375 [email protected] Instituto Argentino de Investigaciones de las Zonas Áridas Argentina Cei, José M. Comparative studies of supraocular lepidosis in squamata (reptilia) and its relationships with an evolutionary taxonomy Multequina, núm. 16, 2007, pp. 1-52 Instituto Argentino de Investigaciones de las Zonas Áridas Mendoza, Argentina Disponible en: http://www.redalyc.org/articulo.oa?id=42801601 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto ISSN 0327-9375 COMPARATIVE STUDIES OF SUPRAOCULAR LEPIDOSIS IN SQUAMATA (REPTILIA) AND ITS RELATIONSHIPS WITH AN EVOLUTIONARY TAXONOMY ESTUDIOS COMPARATIVOS DE LA LEPIDOSIS SUPRA-OCULAR EN SQUAMATA (REPTILIA) Y SU RELACIÓN CON LA TAXONOMÍA EVOLUCIONARIA JOSÉ M. CEI † las subfamilias Leiosaurinae y RESUMEN Enyaliinae. Siempre en Iguania Observaciones morfológicas Pleurodonta se evidencian ejemplos previas sobre un gran número de como los inconfundibles patrones de especies permiten establecer una escamas supraoculares de correspondencia entre la Opluridae, Leucocephalidae, peculiaridad de los patrones Polychrotidae, Tropiduridae. A nivel sistemáticos de las escamas específico la interdependencia en supraoculares de Squamata y la Iguanidae de los géneros Iguana, posición evolutiva de cada taxón Cercosaura, Brachylophus,
    [Show full text]
  • Rediscovery of Liolaemus Rabinoi (Iguania: Liolaemidae) After 35 Years: Redescription, Biological and Phylogenetic Information, and Conservation Challenges
    SALAMANDRA 53(1) 114–125 15 FebruaryCristian 2017 SimónISSN Abdala0036–3375 et al. Rediscovery of Liolaemus rabinoi (Iguania: Liolaemidae) after 35 years: redescription, biological and phylogenetic information, and conservation challenges Cristian Simón Abdala1, Romina Valeria Semhan1, Alejandro Laspiur2 & José Luis Acosta3 1) Unidad Ejecutora Lillo (CONICET-Fundación Miguel Lillo)– Facultad de Ciencias Naturales e Instituto Miguel Lillo (IML), Universidad Nacional de Tucumán. Miguel Lillo 251, 4000 Tucumán, Argentina 2) Departamento de Biología & Centro de Investigaciones de la Geósfera y Biósfera (CIGEOBIO-CONICET), Facultad de Ciencias Exactas y Naturales. Universidad Nacional de San Juan. Av. José I. de la Roza 590, 5400 San Juan, Argentina 3) Laboratorio De Herpetología, Facultad de Ciencias Exactas y Naturales y Agrimensura. Universidad Nacional del Nordeste. 25 de Mayo 868, 3400. Corrientes, Argentina Corresponding author: Alejandro Laspiur, e-mail: [email protected] Manuscript received: 31 October 2015 Accepted: 30 December 2015 by Jörn Köhler Abstract. Liolaemus is one of the most diverse genera of vertebrates, currently comprising 267 species classified into sev- eral monophyletic groups. Among them is the Liolaemus wiegmannii clade, including obligate sand-dwelling lizards with particular morphological traits and behavioural patterns associated with their habitat. One member of this group is Lio­ laemus rabinoi, a species from Argentina that has formerly been considered extinct. It was first found in 1972 on the mar- gins of the El Nihuil dam in San Rafael, Mendoza, Argentina. Four additional specimens of L. rabinoi were recorded in 1974–75, but subsequent searches were unsuccessful and resulted in the inclusion of this species in red conservation lists. In November 2010, new specimens of lizards assignable to L.
    [Show full text]
  • The Ecology of Lizard Reproductive Output
    Global Ecology and Biogeography, (Global Ecol. Biogeogr.) (2011) ••, ••–•• RESEARCH The ecology of lizard reproductive PAPER outputgeb_700 1..11 Shai Meiri1*, James H. Brown2 and Richard M. Sibly3 1Department of Zoology, Tel Aviv University, ABSTRACT 69978 Tel Aviv, Israel, 2Department of Biology, Aim We provide a new quantitative analysis of lizard reproductive ecology. Com- University of New Mexico, Albuquerque, NM 87131, USA and Santa Fe Institute, 1399 Hyde parative studies of lizard reproduction to date have usually considered life-history Park Road, Santa Fe, NM 87501, USA, 3School components separately. Instead, we examine the rate of production (productivity of Biological Sciences, University of Reading, hereafter) calculated as the total mass of offspring produced in a year. We test ReadingRG6 6AS, UK whether productivity is influenced by proxies of adult mortality rates such as insularity and fossorial habits, by measures of temperature such as environmental and body temperatures, mode of reproduction and activity times, and by environ- mental productivity and diet. We further examine whether low productivity is linked to high extinction risk. Location World-wide. Methods We assembled a database containing 551 lizard species, their phyloge- netic relationships and multiple life history and ecological variables from the lit- erature. We use phylogenetically informed statistical models to estimate the factors related to lizard productivity. Results Some, but not all, predictions of metabolic and life-history theories are supported. When analysed separately, clutch size, relative clutch mass and brood frequency are poorly correlated with body mass, but their product – productivity – is well correlated with mass. The allometry of productivity scales similarly to metabolic rate, suggesting that a constant fraction of assimilated energy is allocated to production irrespective of body size.
    [Show full text]
  • Breitman M.F.-1.Pdf (11.47Mb)
    This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Molecular Phylogenetics and Evolution 59 (2011) 364–376 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Lizards from the end of the world: Phylogenetic relationships of the Liolaemus lineomaculatus section (Squamata: Iguania: Liolaemini) ⇑ M. Florencia Breitman a, Luciano J. Avila a, Jack W. Sites Jr. b, Mariana Morando a, a Centro Nacional Patagónico – Consejo Nacional de Investigaciones Científicas y Técnicas, Boulevard Almirante Brown 2915, ZC: U9120ACF, Puerto Madryn, Chubut, Argentina b Department of Biology and M.L. Bean Life Science Museum, 401 WIDB, Brigham Young University, ZC: 84602, Provo, UT, USA article info abstract Article history: The Liolaemus lineomaculatus section is a geographically widely distributed group of lizards from the Pat- Received 24 August 2010 agonian region of southern South America, and includes 18 described species representing the most Revised 2 February 2011 southerly distributed Liolaemus taxa (the genus includes 228 species and extends from Tierra del Fuego Accepted 3 February 2011 north to south-central Peru).
    [Show full text]
  • Download PDF (Inglês)
    Iheringia Série Zoologia e-ISSN 1678-4766 www.scielo.br/isz Museu de Ciências Naturais Article The lizard that never sleeps: activity of the pampa marked gecko Homonota uruguayensis Renata C. Vieira , Laura Verrastro , Márcio Borges-Martins & Jéssica F. Felappi Departamento de Zoologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, prédio 43435, sala 101, Agronomia, 91501-970 Porto Alegre, RS, Brazil. Received 12 April 2019 Accepted 24 April 2020 Published 05 June 2020 DOI 10.1590/1678-4766e2020011 ABSTRACT. It is generally assumed that lizards are active whenever climatic conditions are favorable. Homonota uruguayensis (Vaz-Ferreira & Sierra de Soriano, 1961) is the only native gecko – and nocturnal lizard – living in the northern Pampa biome, and its ecology is poorly known. This study aimed at describing this species’ pattern of daily and annual activity and its relation with environmental temperatures. The study was conducted in the extreme south of Brazil (Rosário do Sul, State of Rio Grande do Sul), between May 2010 and January 2011 at a rocky outcrop located in the Pampa biome. The study was carried out in a total of four seasonal field trips, totalizing 1185 hours of field work. The data were collected, both during the day and the night in 6-hour shifts (duration of the sampling period). The area was randomly covered at each shift to record activity and microhabitat use by the lizards. In total 1541 specimens were recorded throughout the study. Homonota uruguayensis showed diurnal and nocturnal activity in the four seasons, with periods of daily activity varying significantly between all seasons in a cyclic and multimodal pattern, with no significant relation with environmental temperatures.
    [Show full text]
  • First Record of Albinism in the Taragüi Gecko Homonota Taragui (Squamata: Phyllodactylidae)
    Herpetology Notes, volume 8: 425-427 (published online on 12 August 2015) First record of albinism in the Taragüi Gecko Homonota taragui (Squamata: Phyllodactylidae) Azul Courtis1,*, Rodrigo Cajade1, 2, José Miguel Piñeiro1, 2, Alejandra Hernando1, 2 and Federico Marangoni1, 2 Albinism is a rare, congenital, genetically inherited - Rivera et al., 2001), Eublepharidae (Eublepharis condition characterized by a partial or complete lack of macularius - Gamble et al., 2006) and Phyllodactylidae melanin; the pigment that colors the skin, eyes and hair (Tarentola boettgeri bischoffi - Rocha and Rebelo, or feathers (López and Ghirardi, 2011). This condition 2010). Here, we report the first case of albinism in results from the expression of a recessive allele, which aspecies of the genus Homonota (Phyllodactylidae). causes tyrosinase inactivity, an enzyme involved in The South American genus Homonota includes ten melanin biosynthesis (Krecsák, 2008). There are two species of nocturnal and terrestrial lizards distributed in types of albinism, complete albinism, a condition Argentina, Bolivia, Brazil, Paraguay and Uruguay (Avila expressed phenotypically as the complete absence of et al., 2012; Cajade et al., 2013). The normal coloration melanin in the entire body; and partial albinism, when consists of irregular brown or black reticulation or melanin is reduced in the whole body or the absence regular brownish rectangles superimposed on either a is located in just one part of the body (Klug and yellowish brown or grayish black ground color; brown Cummings, 1999). or black bar on snout anterior to eye always present, in In reptiles, albinism is an uncommon phenomenon in some cases very obscure; ventral surfaces immaculate to nature, which may be due to certain factors such as high densely covered with chromatophores (Kluge, 1964).
    [Show full text]
  • A Phylogeny and Revised Classification of Squamata, Including 4161 Species of Lizards and Snakes
    BMC Evolutionary Biology This Provisional PDF corresponds to the article as it appeared upon acceptance. Fully formatted PDF and full text (HTML) versions will be made available soon. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes BMC Evolutionary Biology 2013, 13:93 doi:10.1186/1471-2148-13-93 Robert Alexander Pyron ([email protected]) Frank T Burbrink ([email protected]) John J Wiens ([email protected]) ISSN 1471-2148 Article type Research article Submission date 30 January 2013 Acceptance date 19 March 2013 Publication date 29 April 2013 Article URL http://www.biomedcentral.com/1471-2148/13/93 Like all articles in BMC journals, this peer-reviewed article can be downloaded, printed and distributed freely for any purposes (see copyright notice below). Articles in BMC journals are listed in PubMed and archived at PubMed Central. For information about publishing your research in BMC journals or any BioMed Central journal, go to http://www.biomedcentral.com/info/authors/ © 2013 Pyron et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes Robert Alexander Pyron 1* * Corresponding author Email: [email protected] Frank T Burbrink 2,3 Email: [email protected] John J Wiens 4 Email: [email protected] 1 Department of Biological Sciences, The George Washington University, 2023 G St.
    [Show full text]
  • I1,Afe'icanjuseum 1 Ox4rtates PUBLISHED by the AMERICAN MUSEUM of NATURAL HISTORY CENTRAL PARK WEST at 79TH STREET, NEW YORK 24, N.Y
    i1,AFe'icanJuseum 1 ox4rtates PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK 24, N.Y. NUMBER 2 I 93 SEPTEMBER IO, I964 A Revision of the South American Gekkonid Lizard Genus Homonota Gray BY ARNOLD G. KLUGE1 SYNOPSIS The relationships ofthe South American gekkonid lizard genus Homonota Gray cannot be determined with any degree of certainty on the basis of the external characters used in the present study. A distributional list and artificial key to all the New World gekkonoid genera are presented as possible aids to future intergeneric studies. The genus Homonota is rede- fined, and Cubina Gray and Wallsaurus Underwood are considered syno- nyms. A detailed description of each recognized species is presented, based on external meristic and measurable characters. A new species is described from San Juan Province, Argentina. The nine recognized species appear to form three natural groups on the basis of the arrange- ment and form of the scales that cover the dorsal body surfaces. INTRODUCTION The genus Homonota Gray (1845) occupies a unique position among gekkonoid lizards in that it ranges farther into the Southern Hemisphere than any other known group. The geographic range of the genus extends from Brazil, approximately latitude 150 S., in the north, to Argentina, latitude 48° S., in the south, and is represented by species both east and 'Department of Biological Sciences, University of Southern California, Los Angeles. 2 AMERICAN MUSEUM NOVITATES NO. 2193 west of the Andes. One species in fact, H. dorbignii, occurs on both east and west sides (fig.
    [Show full text]
  • Tapa 2012.Cdr
    CARREIRA et al. 9 DIVERSITY OF REPTILES OF URUGUAY: KNOWLEDGE AND INFORMATION GAPS Santiago Carreira1, Alejandro Brazeiro2, Arley Camargo3, Inés da Rosa4, Andrés Canavero5 & Raúl Maneyro1 1 Laboratorio de Sistemática e Historia Natural de Vertebrados, Instituto de Ecología y Ciencias Ambientales, Facultad de Ciencias, UdelaR, Iguá 4225, CP 11400, Montevideo - Uruguay. Corresponding author: [email protected] 2 Grupo Biodiversidad y Ecología de la Conservación, Instituto de Ecología y Ciencias Ambientales, Facultad de Ciencias, UdelaR, Iguá 4225, CP 11400, Montevideo - Uruguay. 3 Unidad de Diversidad, Sistemática y Evolución, Centro Nacional Patagónico, Boulevard Almirante Brown 2915, U9120ACD, Puerto Madryn, Chubut, Argentina. 4 Laboratório de Ecofisiologia, Departamento de Fisiologia. Instituto de Biociências, Universidade de São Paulo, Rua do Matão TR 14, No. 321, CEP 05508-090, São Paulo, SP, Brasil. 5 Center for Advanced Studies in Ecology & Biodiversity (CASEB), and Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, CP 6513677, Chile. Centro Universitario de Rivera, Universidad de la República, Uruguay. ABSTRACT The aim of this work is to summarize the scientific knowledge of Uruguayan reptiles. In this study we considered 61 species of reptiles based on 4700 records from the main scientific collections of the country. We derived geographic distributions from georeferenced records superimposed on a grid of 302 quadrants and we generated a cumulative curve of species. Based on estimates of species richness, we suggest that as many as seven additional species of continental reptiles could be present in Uruguay, which have not been found in the field but, if accounted for in future studies, they would eventually increase reptile richness to 68 species.
    [Show full text]