Rediscovery of Liolaemus Rabinoi (Iguania: Liolaemidae) After 35 Years: Redescription, Biological and Phylogenetic Information, and Conservation Challenges

Total Page:16

File Type:pdf, Size:1020Kb

Rediscovery of Liolaemus Rabinoi (Iguania: Liolaemidae) After 35 Years: Redescription, Biological and Phylogenetic Information, and Conservation Challenges SALAMANDRA 53(1) 114–125 15 FebruaryCristian 2017 SimónISSN Abdala0036–3375 et al. Rediscovery of Liolaemus rabinoi (Iguania: Liolaemidae) after 35 years: redescription, biological and phylogenetic information, and conservation challenges Cristian Simón Abdala1, Romina Valeria Semhan1, Alejandro Laspiur2 & José Luis Acosta3 1) Unidad Ejecutora Lillo (CONICET-Fundación Miguel Lillo)– Facultad de Ciencias Naturales e Instituto Miguel Lillo (IML), Universidad Nacional de Tucumán. Miguel Lillo 251, 4000 Tucumán, Argentina 2) Departamento de Biología & Centro de Investigaciones de la Geósfera y Biósfera (CIGEOBIO-CONICET), Facultad de Ciencias Exactas y Naturales. Universidad Nacional de San Juan. Av. José I. de la Roza 590, 5400 San Juan, Argentina 3) Laboratorio De Herpetología, Facultad de Ciencias Exactas y Naturales y Agrimensura. Universidad Nacional del Nordeste. 25 de Mayo 868, 3400. Corrientes, Argentina Corresponding author: Alejandro Laspiur, e-mail: [email protected] Manuscript received: 31 October 2015 Accepted: 30 December 2015 by Jörn Köhler Abstract. Liolaemus is one of the most diverse genera of vertebrates, currently comprising 267 species classified into sev- eral monophyletic groups. Among them is the Liolaemus wiegmannii clade, including obligate sand-dwelling lizards with particular morphological traits and behavioural patterns associated with their habitat. One member of this group is Lio­ laemus rabinoi, a species from Argentina that has formerly been considered extinct. It was first found in 1972 on the mar- gins of the El Nihuil dam in San Rafael, Mendoza, Argentina. Four additional specimens of L. rabinoi were recorded in 1974–75, but subsequent searches were unsuccessful and resulted in the inclusion of this species in red conservation lists. In November 2010, new specimens of lizards assignable to L. rabinoi were found in an area of large sand dunes, 10 km from where it had been searched for in vain for years. We present a new diagnosis and redescription based on nine of these specimens (four males and five females) and provide biological, current distribution, and phylogenetic relationship data within the genus Liolaemus. We also analyse the particular human-induced effects on the environments where L. rabinoi occurs and discuss possible conservation measures to mitigate habitat loss. Key words. Squamata, Sauria, Liolaemus rabinoi, redescription, phylogeny, taxonomy, biology, conservation, Mendoza, Argentina. Introduction The significance and extent of extinction may vary ac- cording to the context; such is the case of a species that is Over the last years, human intervention has caused an ac- considered extinct when none of its representatives can be celerated increase in extinction rates worldwide (Primack found alive. However, a species can be extinct in the wild et al. 2001, Ceballos et al. 2010, 2015, Dirzo et al. 2014). but survive in captivity with “ex situ” plans, or it may be Human-induced ecosystem degradation and destruction “locally extinct” when it is no longer present in a region processes (mainly transformation and fragmentation) are where it used to occur, but still lives in other natural re- known as some of the main causes of the current envi- gions (Clark & Rosenzweig 1994, Moilanen 1999). The ronmental crisis and biodiversity loss (Turner 1996, Pri- latter definition might apply toLiolaemus rabinoi, a species mack et al. 2001, Bennet 2004, Pimm et al. 2006). Accord- that was considered extinct for several years, until 2010. ingly, habitat loss can directly result in animal mortality Liolaemus rabinoi is a small lizard (60 mm in snout– and have subsequent indirect long-term effects on surviv- vent length), belonging to a small exclusive group of sand- al and reproduction (Vitt & Caldwell 2014, Ceballos dwelling Liolaemus species that exhibit a very particular et al. 2015). This means that surviving individuals become morphology and behaviour (Etheridge 2000, Abdala demographically unstable, resulting in a reduced genetic 2005). It was described by Cei (1974) based upon two adult variability and increased susceptibility to stochastic events, specimens found in December of 1972 on the shores of the potentially reducing populations to extinction levels (Pri- El Nihuil dam, near the Club de Pescadores, San Rafael mack et al. 2001, Rocha & Gasca 2007). Department, Mendoza Province, Argentina (J.M. Cei pers. © 2017 Deutsche Gesellschaft für Herpetologie und Terrarienkunde e.V. (DGHT), Mannheim, Germany Available114 at http://www.salamandra-journal.com Redescription and systematics of Liolaemus rabinoi comm. 15 January 2002). Later, in 1974, Mr. Rabino (J. M. dune system about 10–15 km from the type locality in De- Cei’s chauffeur) found an additional specimen and final- cember of 2010 (Fig. 1). ly, during the course of 1975, Cei, Videla, and Tuzi (IBA While pinpointing the causes that have led to the ex- UNC-1203) found three more specimens, in both cases in tinction of the L. rabinoi population from the type local- areas adjacent to the El Nihuil dam. Several herpetolo- ity and surrounding areas can be a complex task, strategies gists and naturalists continued visiting the area in search of may and should be applied to conserve this current popu- L. rabinoi individuals; however, despite their search efforts lation found in dunes with scarce psammophilous vegeta- and planning, no other individuals were found until 2010. tion. Unfortunately, this region is used by off-road vehi- Those thirty-five years of unsuccessful searching eventu- cles for recreation and competition purposes, including the ally saw L. rabinoi being included in red conservation lists “Dakar Rally” challenge, which have left permanent scars (Avila et al. 2000, Chébez & Kacoliris 2008, IUCN in the area and certainly caused an important degradation 2013), and several authors considered it extinct (Berto- to the population structure of L. rabinoi. natti 1994, Halloy et al. 1998, Etheridge 2000, 2001, Biological, ethological, and morphological data of Avila et al. 2000, 2009). Nonetheless, despite the disheart- L. rabinoi used to be very scarce or null because the origi- ening results and 16 field surveys over 11 years of ceaseless nal description of this species (Cei 1974) is brief and very searching by the authors of the present work conducted at simple, and it was not possible to conduct a detailed a pos- the type locality and in surrounding areas, including the teriori study because the species had disappeared from the near-shore islands of El Nihuil dam (relicts of sand dunes type locality and adjacent areas. Thus, Etheridge (2000) that had never been covered by water before) and areas contributed further morphological data, but these were surrounding the dam by up to 40 km, an isolated popula- based on the material previously collected and studied by tion of L. rabinoi was eventually discovered in a large sand Cei (1974, 1986). Figure 1. Known distribution of L. rabinoi in El Nihuil, Department of San Rafael, Mendoza, Argentina. Blue circle: locations docu- mented by J. M. Cei and collaborators in 1974 and 1975 (now apparently extinct at these localities). Red circle: new population of Liolaemus rabinoi (35°05’08.0’’ S, 68°37’21.7’’ W). The arrow indicates the type locality. Yellow square: Liolaemus riojanus. Green square: Liolaemus cuyumuhue. 115 Cristian Simón Abdala et al. Table 1. Comparison of morphological characters among species of the L. wiegmannii clade. For quantitative characters, the range of values and, in parentheses, the average value are provided. SAM – number of scales around the body; DS – number of dorsal body scales; VS – number of ventral body scales; GS – number of gular scales; NS – number of scales on the neck; PPM – number of pre- cloacal pores in males; PPH – number of precloacal pores in females; Max SVL – maximum snout–vent length (in mm). Source: all species this study, except L. arambarensis (Verrastro et al. 2003). Species / Character SAM DS VS GS NS PPM PPH Max. SVL Liolaemus rabinoi 70–80 (74.1) 82–94 (88.6) 84–89 (87.3) 31–37 (33.4) 33–46 (41.3) 5–8 (6.5) 0 55.9 Liolaemus arambarensis 60–66 (62.3) 57–64 (60.1) 51–60 (55.3) –– –– 4–7 (5.2) 3–4 (3.6) 60 Liolaemus azarai 35–44 (41.5) 39–42 (40.5). 72–79 (75.5) 20–29 (23.7) 35–47 (40.5) 5–6 (5.6) 0 51.4 Liolaemus cuyumhue 63–71 (66.7) 76–83 (79.1) 88–103 (93.1) 30–33 (31.7) 36–37 (36.3) 7–9 (8.0) 0 56.5 Liolaemus lutzae 56–64 (60.7) 62–73 (67.1) 92–104 (96.0) 31–45 (37.8) 36–50 (44.6) 5–6 (5.5) 0 60.1 Liolaemus multimaculatus 68–81 (73.7) 73–85 (80.1) 85–96 (90.1) 30–34 (31.8) 45–55 (50.9) 6–9 (7.7) 0 67.4 Liolaemus occipitalis 65–75 (69.8) 73–80 (77.0) 89–97 (92.6) 35–42 (38.8) 46–58 (52.4) 8–11 (9.6) 0 66.9 Liolaemus riojanus 63–72 (68.1) 77–89 (83.1) 82–97 (89.0) 33–42 (36.1) 43–49 (45.7) 8–9 (8.3) 0–3 57.5 Liolaemus salinicola 60–70 (64.4) 71–82 (75.7) 87–106 (96.3) 35–46 (41.5) 49–56 (52.6) 7–9 (7.4) 0–5 76.6 Liolaemus scapularis 54–66 (58.7) 60–68 (63.1) 79–86 (82.9) 30–41 (36.3) 43–54 (47.7) 7–9 (8.0) 0–5 73.6 Liolaemus wiegmannii 48–56 (51.8) 49–57 (53.6) 72–87 (81.7) 26–36 (28.6) 41–49 (46.1) 5–7 (5.9) 0–4 54.5 Within the framework of our findings, we here rede- in the last five years to observe behaviour and study the mi- scribe L. rabinoi, provide for the first time biological and crohabitat and state of conservation of the place.
Recommended publications
  • Endemic to the Hills of Paraje Tres Cerros, Corrientes Province, Argentina
    Zootaxa 3709 (2): 162–176 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3709.2.4 http://zoobank.org/urn:lsid:zoobank.org:pub:0066DBF2-80C4-4AF9-A0FE-7DD6D1E5097D A new species of Homonota (Reptilia: Squamata: Gekkota: Phyllodactylidae) endemic to the hills of Paraje Tres Cerros, Corrientes Province, Argentina RODRIGO CAJADE1*, EDUARDO GABRIEL ETCHEPARE1, CAMILA FALCIONE1, DIEGO ANDRÉS BARRASSO2 & BLANCA BEATRIZ ALVAREZ1 1Laboratorio de Herpetología, Departamento de Biología, Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste (FACENA-UNNE) Av. Libertad 5470, Corrientes, Argentina 2Centro Nacional Patagónico (CENPAT-CONICET). Blvd. Brown 2915 (U9120ACD), Puerto Madryn, Chubut, Argentina *Corresponding author. E-mail: [email protected] Abstract The genus Homonota comprises nine South American species of terrestrial and nocturnal lizards. Homonota lizards lack the femoral pores typical of other South American Phyllodactylidae, and their infradigital lamellas are not expanded. We here describe a new species, Homonota taragui sp. nov., exclusively found on a small group of three hills up to 179 meters above sea level in central eastern Corrientes Province, Argentina. The new species differs from other Homonota species by a combination of characters, including: a well-marked dorsal, reticulate, dark pattern contrasting with a lighter colored background; small, star-shaped chromatophores on the abdomen; the post-orbital region of the head covered by granular scales; the dorsal and anterior regions of the thighs covered by keeled scales interspersed with cycloid scales; and the internasal scale in contact with rostral scales.
    [Show full text]
  • Literature Cited in Lizards Natural History Database
    Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica.
    [Show full text]
  • Redalyc.Comparative Studies of Supraocular Lepidosis in Squamata
    Multequina ISSN: 0327-9375 [email protected] Instituto Argentino de Investigaciones de las Zonas Áridas Argentina Cei, José M. Comparative studies of supraocular lepidosis in squamata (reptilia) and its relationships with an evolutionary taxonomy Multequina, núm. 16, 2007, pp. 1-52 Instituto Argentino de Investigaciones de las Zonas Áridas Mendoza, Argentina Disponible en: http://www.redalyc.org/articulo.oa?id=42801601 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto ISSN 0327-9375 COMPARATIVE STUDIES OF SUPRAOCULAR LEPIDOSIS IN SQUAMATA (REPTILIA) AND ITS RELATIONSHIPS WITH AN EVOLUTIONARY TAXONOMY ESTUDIOS COMPARATIVOS DE LA LEPIDOSIS SUPRA-OCULAR EN SQUAMATA (REPTILIA) Y SU RELACIÓN CON LA TAXONOMÍA EVOLUCIONARIA JOSÉ M. CEI † las subfamilias Leiosaurinae y RESUMEN Enyaliinae. Siempre en Iguania Observaciones morfológicas Pleurodonta se evidencian ejemplos previas sobre un gran número de como los inconfundibles patrones de especies permiten establecer una escamas supraoculares de correspondencia entre la Opluridae, Leucocephalidae, peculiaridad de los patrones Polychrotidae, Tropiduridae. A nivel sistemáticos de las escamas específico la interdependencia en supraoculares de Squamata y la Iguanidae de los géneros Iguana, posición evolutiva de cada taxón Cercosaura, Brachylophus,
    [Show full text]
  • The Ecology of Lizard Reproductive Output
    Global Ecology and Biogeography, (Global Ecol. Biogeogr.) (2011) ••, ••–•• RESEARCH The ecology of lizard reproductive PAPER outputgeb_700 1..11 Shai Meiri1*, James H. Brown2 and Richard M. Sibly3 1Department of Zoology, Tel Aviv University, ABSTRACT 69978 Tel Aviv, Israel, 2Department of Biology, Aim We provide a new quantitative analysis of lizard reproductive ecology. Com- University of New Mexico, Albuquerque, NM 87131, USA and Santa Fe Institute, 1399 Hyde parative studies of lizard reproduction to date have usually considered life-history Park Road, Santa Fe, NM 87501, USA, 3School components separately. Instead, we examine the rate of production (productivity of Biological Sciences, University of Reading, hereafter) calculated as the total mass of offspring produced in a year. We test ReadingRG6 6AS, UK whether productivity is influenced by proxies of adult mortality rates such as insularity and fossorial habits, by measures of temperature such as environmental and body temperatures, mode of reproduction and activity times, and by environ- mental productivity and diet. We further examine whether low productivity is linked to high extinction risk. Location World-wide. Methods We assembled a database containing 551 lizard species, their phyloge- netic relationships and multiple life history and ecological variables from the lit- erature. We use phylogenetically informed statistical models to estimate the factors related to lizard productivity. Results Some, but not all, predictions of metabolic and life-history theories are supported. When analysed separately, clutch size, relative clutch mass and brood frequency are poorly correlated with body mass, but their product – productivity – is well correlated with mass. The allometry of productivity scales similarly to metabolic rate, suggesting that a constant fraction of assimilated energy is allocated to production irrespective of body size.
    [Show full text]
  • Diet of the Lizard Liolaemus Occipitalis in the Coastal Sand Dunes of Southern Brazil (Squamata-Liolaemidae)
    http://dx.doi.org/10.1590/1519-6984.11013 Original Article Diet of the lizard Liolaemus occipitalis in the coastal sand dunes of southern Brazil (Squamata-Liolaemidae) Verrastro, L.a* and Ely, I.a aPrograma de Pós-Graduação em Biologia Animal, Departamento de Zoologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul – UFRGS, Av. Bento Gonçalves, 9500, prédio 43435, Bairro Agronômia, CEP 91501-970, Porto Alegre, RS, Brazil *e-mail: [email protected] Received: July 4, 2013 – Accepted: December 5, 2013 – Distributed: May 31, 2015 (With 1 figure) Abstract Knowledge of a species’ diet provides important information on adaptation and the relationship between the organism and its environment. The genus Liolaemus occurs in the southern region of South America and is an excellent model to investigate the adaptive processes of vertebrate ecology in ecosystems of this region of the world. Liolaemus occipitalis is an endangered species that inhabits the coastal sand dunes of southern Brazil. This species is the most abundant vertebrate in this environment, and it presents unique adaptation characteristics to the restinga environment. The present study analyzed this lizard’s diet to verify similarities or differences between this species and other species of the same genus. Specimens were collected monthly from January 1996 to December 1997. The number of items, frequency of occurrence and volume of each prey taxon were determined. Arthropods were identified to the order level, and plant material was identified as flower, fruit, seed and leaves. Variations in the diet of males and females, adults and juveniles and seasons were also analyzed. The data indicate that Liolaemus occipitalis is a generalist, “sit-and-wait” or ambush predator as well as omnivorous, feeding on both arthropods and plant material.
    [Show full text]
  • ANZSCPB Proceedings, Volume 22
    ANZSCPB Proceedings, Volume 22 Australian and New Zealand Society for Comparative Physiology and Biochemistry 22nd Annual Conference 9-11 December 2005 University of Otago and the Otago Museum Dunedin, New Zealand Organising Committee at the University of Otago: Alison Cree (Department of Zoology, Chair) Peter Dearden (Department of Biochemistry) Paul Donohoe (Department of Physiology, Treasurer) Mark Lokman (Department of Zoology) Craig Marshall (Department of Biochemistry) David Wharton (Department of Zoology) ANZSCPB Proceedings 22nd Annual Meeting, 9-11 December 2005 University of Otago and the Otago Museum, Dunedin, New Zealand Organised by A. Cree, P.K. Dearden, P.H. Donohoe, P.M. Lokman, C.J. Marshall and D.A. Wharton ISBN 0-473-10719-8 2 Contents Page Acknowledgements 4 Information for presenters 5 Other useful information 5 Programme overview 6 Order of presentations 9 Abstracts 19 Registrants 61 3 Acknowledgements We thank the following organizations and individuals for their generous support of the 22nd annual conference. For financial assistance and/or donations Croxley Stationary Ltd, Peregrine Wines, Progressive Enterprises Ltd. For student prizes Best oral presentation by a postgraduate student: A one-year on-line subscription to Journal of Experimental Biology, donated by the Company of Biologists Ltd, plus a $100 book voucher donated by the University Book Shop, Dunedin. Best use of statistics and/or graphics in an oral presentation: A one-year subscription to Journal of Comparative Physiology – B, donated by Springer-Verlag, plus a copy of the statistics programme statistiXL, donated by Phil Withers, University of Western Australia (for a trial version, go to http://www.statistixl.com/).
    [Show full text]
  • Breitman M.F.-1.Pdf (11.47Mb)
    This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Molecular Phylogenetics and Evolution 59 (2011) 364–376 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Lizards from the end of the world: Phylogenetic relationships of the Liolaemus lineomaculatus section (Squamata: Iguania: Liolaemini) ⇑ M. Florencia Breitman a, Luciano J. Avila a, Jack W. Sites Jr. b, Mariana Morando a, a Centro Nacional Patagónico – Consejo Nacional de Investigaciones Científicas y Técnicas, Boulevard Almirante Brown 2915, ZC: U9120ACF, Puerto Madryn, Chubut, Argentina b Department of Biology and M.L. Bean Life Science Museum, 401 WIDB, Brigham Young University, ZC: 84602, Provo, UT, USA article info abstract Article history: The Liolaemus lineomaculatus section is a geographically widely distributed group of lizards from the Pat- Received 24 August 2010 agonian region of southern South America, and includes 18 described species representing the most Revised 2 February 2011 southerly distributed Liolaemus taxa (the genus includes 228 species and extends from Tierra del Fuego Accepted 3 February 2011 north to south-central Peru).
    [Show full text]
  • An Accumulation of Bone Remains of Two Liolaemus Species (Iguanidae) in an Holocene Archaeological Site of the Argentine Puna
    An accumulation of bone remains of two Liolaemus species (Iguanidae) in an Holocene archaeological site of the Argentine Puna Adriana M. Albino1, Débora M. Kligmann2 Abstract. An accumulation of iguanian bone remains was found inside a rodent burrow in an Holocene archaeological site of the Argentine southern Puna. Characters of the preserved bones suggest that a minimum of two species of the Liolaemus genus is represented. One of them is undoubtedly attributed to the montanus group, probably L. poecilochromus or L. andinus.The finding of Liolaemus bone remains in the Argentine Puna Region represents the first record of this genus in an archaeological site of South America and suggests that specimens of at least two Liolaemus species exploited the same refuge simultaneously, including both adult and juvenile individuals. Reptile remains found in archaeological sites layer where the microvertebrates were found are relevant for understanding the relation- (Kligmann et al., 1999). These remains, that ac- ship between indigenous groups and their en- cording to the number of preserved right den- vironment as well as to interpret the taphon- taries belong to at least 71 individuals (Klig- omy of microvertebrate fossil assemblages. The mann et al., 1999), were concentrated in a sur- findings of small iguanids in South American face smaller than 1 m2 on the SW sector of archaeological sites are still scarce. For Ar- the excavation. A rodent burrow, probably cor- gentina, Van Devender (1977) describes an iso- responding to Ctenomys, was observed in the lated dentary belonging to the iguanid Leiosau- same area. rus belli (Gruta del Indio cave, eastern slopes Kligmann et al.
    [Show full text]
  • Does Body Size Affect the Diet Composition of a Sand Dune Lizard? Insights from Liolaemus Occipitalis Boulenger, 1885
    Herpetology Notes, volume 12: 1211-1213 (2019) (published online on 12 December 2019) Does body size affect the diet composition of a sand dune lizard? Insights from Liolaemus occipitalis Boulenger, 1885 Alexandro M. Tozetti1,* and Laís S. Martins2 Data about the process of food acquisition and prey 1999). Its diet is based on insects and eventually other selection represent an elementary contribution to small arthropods (Bujes and Verrastro, 2006; Verrastro understand the ecological traits of any animal species and Ely, 2015). Our hypothesis is that, due to their (Sih and Christensen, 2001). The analysis of the low ability in capturing, subduing and ingesting larger relationships between prey consumption and the body prey, smaller individuals will exhibit a less diverse size of a predator is one example of the ecological composition of consumed prey than larger ones. We consequences of feeding ecology (MacArthur and conducted the study in a wide coastal sand dune system Pianka, 1966; Charnov, 1976). Some studies pointed sparsely covered by grasses at Cassino beach (Oliveira et out that larger predators are able to capture, handle al., 2013), in the municipality of Rio Grande in southern and consume both large and small prey (Peters, 1983; Brazil (between coordinates -32.2 to 32.25S and -52.17 Costa, 2008; Sales et al., 2012). On the other hand, to -52.23W). The local climate is classified as sub- larger predators could be inefficient in dealing with tropical humid, with an average annual temperature of small prey, despite being able to do that. Considering 18.1ºC (Maluf, 2000). Lizard captures were performed this, larger predators would try to maximize their energy during the summer, spring and autumn from 2014 intake by capturing preferentially larger prey, which is to 2015.
    [Show full text]
  • Iguania: Liolaemidae) in the Central Andes of Argentina
    Turkish Journal of Zoology Turk J Zool (2019) 43: 277-286 http://journals.tubitak.gov.tr/zoology/ © TÜBİTAK Research Article doi:10.3906/zoo-1812-33 Trophic analysis and parasitological aspects of Liolaemus parvus (Iguania: Liolaemidae) in the Central Andes of Argentina 1,2,3, 1,2 1,2 Gabriel Natalio CASTILLO *, Juan Carlos ACOSTA , Graciela Mirta BLANCO 1 Department of Biology, Faculty of Exact, Physical, and Natural Sciences, National University of San Juan, San Juan, Argentina 2 Research Unit for the Diversity and Biology of Vertebrates of Arid Regions (DIBIOVA), National University of San Juan, San Juan, Argentina 3 National Council of Scientific and Technical Research (CONICET), San Juan, Argentina Received: 30.12.2018 Accepted/Published Online: 19.04.2019 Final Version: 06.05.2019 Abstract: The objective of this study was to describe temporal variations in the diet and parasitological aspects in Liolaemus parvus. In order to examine the diet, we determined the volume, numerousness, and frequency of occurrence for each prey item and calculated the relative importance index. We removed nematodes from the stomach and estimated parasitic indicators. Liolaemus parvus presents an active searching mode. It is a predominantly insectivorous species with low intake of plant material and a specialist in feeding on prey items of the family Formicidae, although it also feeds on other arthropods like coleopterans, hemipterans, and spiders. We found temporal variations in its diet. The first record of Parapharyngodon riojensis nematodes is reported herein. Males showed higher nematode prevalence than females. We have expanded the number of host species and the distribution range of Parapharyngodon riojensis.
    [Show full text]
  • SOUTH AMERICAN LIZARDS in the COLD Made and Many Lots Of
    59.81, 1 (8) 59.81, 1.07 (74.71) Article VII.-SOUTH AMERICAN LIZARDS IN THE COLD LECTION OF THE AMERICAN MUSEUM OF NATURAL HISTORY BY CHARLES E. BURT AND MAY DANHEIM BURT CONTENTS FIGURES 1 TO 15 PAGE INTRODUCTION............................................. ........... 227 SUMMARY OF TAXONOMIC ALTERATIONS...................................... 228 LIST OF THE SPECIES OF SOUTH AMERICAN LIZARDS IN THE COLLECTION OF THE AMERICAN MUSEUM OF NATURAL HISTORY.......................... 232 SYSTEMATIC DISCuSSION OF THE LIZARDS OF THE FAMILIES REPRESENTED IN THE COLLECTION................................................... 238 Amphisbaenidal ................................................ 238 Anguida ........................................................ 241 Gekkonida ................................................... 243 Iguanide ........................................................ 254 Scincidle....................................................... 299 Teiide.......................................................... 302 LITERATURE CITED................................................. 380 INDEX..... 387 INTRODUCTION In the past, particularly during the last twenty years, many mem- bers of the scientific staff of The American Museum of Natural History have maintained an active interest in the fauna of South America. As a consequence of this, numerous expeditions and exchanges have been made and many lots of amphibians and reptiles have accumulated. The importance of these specimens will be evident to those who study the papers based upon
    [Show full text]
  • Liolaemus Occipitalis
    CAROLINE MARIA DA SILVA FILOGEOGRAFIA DE TRÊS ESPÉCIES DE LIOLAEMUS DO GRUPO BOULENGERI, SUBGRUPO “WIEGMANNII”: L. OCCIPITALIS, L. ARAMBARENSIS E L. WIEGMANNII. Tese apresentada ao Programa de Pós-Graduação em Biologia Animal, Instituto de Biociências da Universidade Federal do Rio Grande do Sul, como requisito parcial à obtenção do título de Doutor em Biologia Animal. Área de Concentração: Biologia Comparada Orientador: Profa.Dra. Laura Verrastro Co-Orientador: Profa.Dra. Gabriela P. Fernández UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL PORTO ALEGRE 2013 FILOGEOGRAFIA DE TRÊS ESPÉCIES DE LIOLAEMUS DO GRUPO BOULENGERI, SUBGRUPO “WIEGMANNII”: L. OCCIPITALIS, L. ARAMBARENSIS E L. WIEGMANNII. CAROLINE MARIA DA SILVA Aprovada em ___ / ___ / _____ ___________________________ Dra. Larissa Rosa de Oliveira ___________________________ Dr. Márcio Borges Martins ___________________________ Dra. Mariana Morando UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL PORTO ALEGRE 2013 2 Agradecimentos Após quatro longos anos, eu não poderia deixar de agradecer a todas as pessoas e instituições que me apoiaram, incentivaram e colaboraram de diversas maneiras para que este trabalho fosse realizado. A ajuda de vocês é inestimável! À minha Orientadora Drª. Laura Verrastro pelos muitos anos de amizade, ensinamentos, apoio, confiança, suporte financeiro e estrutura física, sem os quais este trabalho seria inviável; À minha co-orientadora Dra. Gabriela Fernández por ter aceitado participar deste trabalho, pela amizade, pelos ensinamentos e pelas contribuições indispensáveis
    [Show full text]