Translational Genomics, Transcriptomics and Metabolomics Analyses of the Metabolic Effects of Chronic Hepatitis C Infection and Their Clinical Implications

Total Page:16

File Type:pdf, Size:1020Kb

Translational Genomics, Transcriptomics and Metabolomics Analyses of the Metabolic Effects of Chronic Hepatitis C Infection and Their Clinical Implications Translational genomics, transcriptomics and metabolomics analyses of the metabolic effects of chronic hepatitis C infection and their clinical implications. Dr Paul J Clark MBBS (Hons I), MPH&TM, FRACP A thesis in fulfilment of the requirements for the degree of Doctor of Philosophy Kirby Institute for Infection and Immunity in Society Faculty of Medicine The University of New South Wales, Sydney, Australia August 2012 THE UNIVERSITY OF NEW SOUTH WALES Thesis/Dissertation Sheet Surname or Family name: CLARK First name: Paul Other name/s: James Abbreviation for degree as given in the University calendar: PhD School: The Kirby Institute Faculty: Medicine Title: Translational genomics, transcriptomics and metabolomics analyses of the metabolic effects of chronic hepatitis C infection and their clinical implications. Abstract 350 words maximum: (PLEASE TYPE) Background: The hepatitis C virus (HCV) relies on host lipid pathways for its life cycle, leading to metabolic consequences including hypocholesterolemia, insulin resistance and hepatic steatosis. These sequelae have varying clinical implications, including poorer sustained viral response (SVR) to pegylated interferon/ribavirin (PEG/RBV) therapy, increased risk of hepatic fibrosis and residual risk of liver disease (eg fibrosis, steatosis) and complications (eg hepatocellular carcinoma), even after SVR. Aims: To define host genomic and metabolomic profiles associated with hypocholesterolemia, hepatic steatosis, hepatic fibrosis and hepatic inflammation in chronic HCV infection, and to assess their clinical impacts. Methods: Genome wide association studies, candidate gene studies, microarray based mRNA transcription profiling, liquid chromatography/mass spectrometry metabolomic assays, multivariable regression models (MVR). Results: In HCV genotype 1 (G1), IL28B genotype is the only common variant associated with LDL-C levels. LDL-C levels remain significant predictors of SVR. Host IL28B and PNPLA3 polymorphism are significant host determinants of susceptibility to hepatic steatosis in chronic HCV G1 infection. Lower PNPLA3 genotype frequency in African American (AA) patients may explain their lower frequency of hepatic steatosis relative to Caucasian Americans, despite greater metabolic risk factors in AA patients. PNPLA3 was associated with Mallory bodies and lobular inflammation (a pattern seen in non-alcoholic fatty liver disease) but not fibrosis. Gene expression enrichment associated with PNPLA3 genotype and varied phenotypes of histopathological injury include a number of novel genetic associations as well as transcripts previously identified which warrant further investigation. HCV perturbs the distal cholesterol synthesis pathway in a HCV genotype-specific manner but the levels of the proximal sterol lanosterol, which has important cholesterol regulation effects, is preserved. Conclusions: Taken together, these translational genomics and metabolics studies provide insights into the nature of host-virus metabolic interactions in chronic HCV and their clinical sequelae. Declaration relating to disposition of project thesis/dissertation I hereby grant to the University of New South Wales or its agents the right to archive and to make available my thesis or dissertation in whole or in part in the University libraries in all forms of media, now or here after known, subject to the provisions of the Copyright Act 1968. I retain all property rights, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation. I also authorise University Microfilms to use the 350 word abstract of my thesis in Dissertation Abstracts International (this is applicable to doctoral theses only). 17 August 2012 ……………………………………… ……….……………………...… Signature Witness Date The University recognises that there may be exceptional circumstances requiring restrictions on copying or conditions on use. Requests for restriction for a period of up to 2 years must be made in writing. Requests for a longer period of restriction may be considered in exceptional circumstances and require the approval of the Dean of Graduate Research. FOR OFFICE USE ONLY Date of completion of requirements for Award: THIS SHEET IS TO BE GLUED TO THE INSIDE FRONT COVER OF THE THESIS ii Originality Statement ‘I hereby declare that this submission is my own work and to the best of my knowledge it contains no materials previously published or written by another person, or substantial proportions of material which have been accepted for the award of any other degree or diploma at UNSW or any other educational institution, except where due acknowledgment is made in the thesis. Any contribution made to the research by others, with whom I have worked at UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project’s design and conception or in style, presentation and linguistic expression is acknowledged.’ Signed ... ...................................................... Date 22nd August 2012 iii (a) Copyright Statement ‘I hereby grant to the University of New South Wales or its agents the right to archive and to make available my thesis or dissertation in whole or part in the University libraries in all forms of media, now or hereafter known, subject to the provisions of the Copyright Act 1968. I retain all proprietary rights, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation. I also authorise University Microfilms to use the abstract of my thesis in Dissertations Abstract International (this is applicable to doctoral theses only). I have either used no substantial portions of copyright material in my thesis or I have obtained permission to use copyright material; where permission has not been granted I have applied/will apply for a partial restriction of the digital copy of my thesis or dissertation.’ Signed ............................................................ 20th August 2012 Date ............................................................ (b) Authenticity Statement ‘I certify that the Library deposit digital copy is a direct equivalent of the final officially approved version of my thesis. No emendation of content has occurred and if there are any minor variations in formatting, they are the result of the conversion to digital format.’ Signed ............................................................ 20th August 2012 Date ............................................................ iv Contents Thesis Abstract xiv Acknowledgements xvii i Abbreviations xxi Publications arising from PhD xxii Additional PhD-related publications xxii i Chapter 1. Hepatitis C virus dependency on host lipid metabolism and its clinical implications. 1.1 Introduction 1 1.2 HCV biology and dependency on host lipid metabolism 3 1.2.1 Entry 3 1.2.2 Replication 4 1.2.3 Assembly 4 1.2.4 Secretion and egress 6 1.3 Chronic Hepatitis C therapy and the clinical implications of host- HCV metabolic interaction 7 1.3.1 HCV treatment regimens, definitions of sustained viral response (SVR), and the need for pre-treatment prediction of SVR. 7 1.3.2 Current pre-treatment viral predictors of interferon sensitivity and SVR to PEG/RBV. 8 1.3.3 Current pre-treatment host clinical and metabolic predictors of response. 8 1.4 Summary 11 1.5 References 12 v Contents (continued) Chapter 2. Overview of translational methodological approaches to assess clinical phenotypes and a review of host genomics applied to chronic HCV infection and HCV treatment response. 2.1 Background: Human Genetic Variation and Clinical Associations 19 2.1.1 Genome-wide association studies and candidate gene 19 approaches 2.1.2 Transcriptomics/Gene Expression Studies 21 2.1.3 Metabolomics 23 2.2 Genomic Variation in IL28B and Hepatitis C 24 2.2.1 Sustained viral response (SVR) 24 2.2.2 Ethnicity, IL28B and SVR 26 2.2.3 IL28B and Biological Mechanisms 26 2.3 Genomic Variation PNPLA3 and Hepatitis C infection 28 2.4 Summary 29 2.5 References 31 Chapter 3. A genome-wide association study of host cholesterol and triglyceride levels in genotype-1 chronic hepatitis C virus (HCV) infection and relationships to HCV treatment response. 3.1 Summary 36 3.2 Introduction 37 3.3 Methods 37 3.3.1 Patients 37 3.3.2 Genetic analysis 39 3.3.3 Clinical phenotypes 40 3.3.4 Statistical analyses 40 3.4 Results 41 3.4.1 Serum lipid and triglyceride genome-wide association studies 41 3.4.2 Defining the role of LDL-C and IL28B in predicting SVR 44 3.5 Discussion 48 vi Contents (continued) 3.6 Conclusions 51 3.7 References 52 3.8 Supplementary Materials 55 Chapter 4. A candidate-gene study of interleukin-28B (IL28B) and patatin-like phospholipase domain-containing 3 (PNPLA3) polymorphisms in association with hepatic steatosis in genotype 1 chronic Hepatitis C infection. 4.1 Summary 69 4.2 Introduction 70 4.3 Methods 72 4.3.1 Patients 72 4.3.2 Genetic analysis 73 4.3.3 Phenotype definition of hepatic steatosis 73 4.4 Results 74 4.4.1 IL28B and PNPLA3 variants are associated with genotype- 1 HCV-induced hepatic steatosis prevalence and steatosis severity. 74 4.4.2 Host metabolic risk factors are the major determinants of hepatic steatosis 79 4.4.3. IL28B attenuates the impact of hepatic steatosis on SVR but PNPLA3 has no significant association with SVR directly, or indirectly through steatosis. 80 4.5 Discussion
Recommended publications
  • Current Therapies for Chronic Hepatitis C
    Southern Illinois University Edwardsville SPARK Pharmacy Faculty Research, Scholarship, and Creative Activity School of Pharmacy 1-2011 Current Therapies for Chronic Hepatitis C McKenzie C. Ferguson Southern Illinois University Edwardsville, [email protected] Follow this and additional works at: https://spark.siue.edu/pharmacy_fac Part of the Pharmacy and Pharmaceutical Sciences Commons Recommended Citation Ferguson, McKenzie C., "Current Therapies for Chronic Hepatitis C" (2011). Pharmacy Faculty Research, Scholarship, and Creative Activity. 4. https://spark.siue.edu/pharmacy_fac/4 This Article is brought to you for free and open access by the School of Pharmacy at SPARK. It has been accepted for inclusion in Pharmacy Faculty Research, Scholarship, and Creative Activity by an authorized administrator of SPARK. For more information, please contact [email protected],[email protected]. Chronic Hepatitis C & Current Therapies 1 Review of Chronic Hepatitis C & Current Therapies Reviews of Therapeutics Pharmacotherapy McKenzie C. Ferguson, Pharm.D., BCPS From the School of Pharmacy, Southern Illinois University Edwardsville, Department of Pharmacy Practice, Edwardsville, Illinois. Address for reprint requests : Southern Illinois University Edwardsville School of Pharmacy 220 University Park Drive, Ste 1037 Edwardsville, IL 62026-2000 Email: [email protected] Keywords : hepatitis C, HCV, ribavirin, interferon, peginterferon alfa-2a, peginterferon alfa-2b, albinterferon, taribavirin, telaprevir, therapeutic efficacy, safety The author received no sources of support in the form of grants, equipment, or drugs. Chronic Hepatitis C & Current Therapies 2 ABSTRACT Hepatitis C virus affects more than 180 million people worldwide and as many as 4 million people in the United States. Given that most patients are asymptomatic until late in disease progression, diagnostic screening and evaluation of patients that display high-risk behaviors associated with acquisition of hepatitis C should be performed.
    [Show full text]
  • Interferon-Based Biopharmaceuticals: Overview on the Production, Purification, and Formulation
    Review Interferon-Based Biopharmaceuticals: Overview on the Production, Purification, and Formulation Leonor S. Castro 1,†, Guilherme S. Lobo 1,†, Patrícia Pereira 2 , Mara G. Freire 1 ,Márcia C. Neves 1,* and Augusto Q. Pedro 1,* 1 CICECO–Aveiro Institute of Materials, Chemistry Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; [email protected] (L.S.C.); [email protected] (G.S.L.); [email protected] (M.G.F.) 2 Centre for Mechanical Engineering, Materials and Processes, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Polo II, 3030-790 Coimbra, Portugal; [email protected] * Correspondence: [email protected] (M.C.N.); [email protected] (A.Q.P.) † These authors contributed equally to this work. Abstract: The advent of biopharmaceuticals in modern medicine brought enormous benefits to the treatment of numerous human diseases and improved the well-being of many people worldwide. First introduced in the market in the early 1980s, the number of approved biopharmaceutical products has been steadily increasing, with therapeutic proteins, antibodies, and their derivatives accounting for most of the generated revenues. The success of pharmaceutical biotechnology is closely linked with remarkable developments in DNA recombinant technology, which has enabled the production of proteins with high specificity. Among promising biopharmaceuticals are interferons, first described by Isaacs and Lindenmann in 1957 and approved for clinical use in humans nearly thirty years later. Interferons are secreted autocrine and paracrine proteins, which by regulating several biochemical Citation: Castro, L.S.; Lobo, G.S.; pathways have a spectrum of clinical effectiveness against viral infections, malignant diseases, Pereira, P.; Freire, M.G.; Neves, M.C.; and multiple sclerosis.
    [Show full text]
  • 7 Engineering of Therapeutic Proteins
    Engineering of 7 Therapeutic Proteins Fei Wen, Sheryl B. Rubin-Pitel, and Huimin Zhao CONTENTS Protein Therapeutics versus Small Molecule Drugs .............................................. 154 Sources of Protein Therapeutics ................................................................... 155 Targets of Protein Therapeutics and Modes of Action .................................. 155 Engineering Effective Protein Therapeutics .......................................................... 156 Challenges in Pharmaceutical Translation of New Therapeutic Proteins ..... 156 Strategies for Designing Effective Protein Therapeutics .............................. 156 Strategies for Improving Pharmacokinetics ...................................... 157 Strategies for Reducing Immunogenicity ......................................... 158 Genetic Engineering ......................................................................... 159 Examples of Protein Therapeutics ......................................................................... 160 Monoclonal Antibody Therapeutics.............................................................. 161 Enzyme Therapeutics Acting on Extracellular Targets ................................. 161 Protein Therapeutics as Replacements for Defective or Deficient Proteins .....162 Protein Hormones ............................................................................. 162 Coagulation Factors .......................................................................... 163 Enzyme Replacement Therapy ........................................................
    [Show full text]
  • Part One General Information
    1 Part One General Information 3 1 Half - Life Modulating Strategies – An Introduction Roland E. Kontermann 1.1 Therapeutic Proteins With roughly 200 biologics approved for therapeutic applications and more than 600 under clinical development [1] , biotechnology products cover an increased proportion of all therapeutic drugs. Besides monoclonal antibodies and vaccines, which account for more than two - thirds of these produces, hormones, growth factors, cytokines, fusion proteins, coagulation factors, enzymes and other pro- teins are listed. An overview of the different classes of currently approved protein therapeutics is shown in Table 1.1 . Except for antibodies and Fc fusion proteins, many of these proteins possess a molecular mass below 50 kDa and a rather short terminal half - life in the range of minutes to hours. In order to maintain a thera- peutically effective concentration over a prolonged period of time, infusions or frequent administrations are performed, or the drug is applied loco - regional or subcutaneously utilizing a slow adsorption into the blood stream. These limita- tions of small size protein drugs has led to the development and implementation of half - life extension strategies to prolong circulation of these recombinant anti- bodies in the blood and thus improve administration and pharmacokinetic as well as pharmacodynamic properties. 1.2 Renal Clearance and F c R n - Mediated Recycling The effi cacy of protein therapeutics is strongly determined by their pharmacoki- netic properties, including their plasma half - lives, which infl uence distribution and excretion. Although a small size facilitates tissue penetration, these molecules are often rapidly cleared from circulation. Thus, they have to be administered as infusion or repeated intravenous ( i.v.
    [Show full text]
  • Interferon in Inflammatory Diseases
    Meeting report Lupus Sci Med: first published as 10.1136/lupus-2018-000276 on 15 June 2018. Downloaded from Report of the inaugural Interferon Research Summit: interferon in inflammatory diseases Mary K Crow,1 Lars Rönnblom2 To cite: Crow MK, ABSTRACT responses to distinct classes of therapeutic Rönnblom L. Report of An international summit agents. the inaugural Interferon on interferon (IFN) in inflammatory diseases, held in The inaugural International Summit on Research Summit: interferon Gaithersburg, Maryland, USA (4–5 May 2017), united 22 in inflammatory diseases. IFN in Inflammatory Diseases united 22 inter- internationally renowned clinicians and scientists with Lupus Science & Medicine nationally renowned clinicians and scientists backgrounds in basic science, translational science and 2018;5:e000276. doi:10.1136/ with backgrounds in basic science, transla- lupus-2018-000276 clinical medicine. The objectives of the summit were to assess the current knowledge of the role of type I IFN in tional science and clinical medicine. Goals inflammatory diseases and other conditions, discuss the of the summit included assessing the current ► Additional material is available clinical trial data of anti-IFN therapeutic agents knowledge of the role type I IFN plays in published online only. To view and identify key clinical and therapeutic knowledge gaps inflammatory diseases and other conditions, please visit the journal online (http:// dx. doi. org/ 10. 1136/ 10. and future directions to advance the treatment landscape discussing available clinical data examining 1136/ lupus- 2018- 000276) of diseases involving the type I IFN pathway. A discussion- anti-IFN therapies and identifying current key based consensus process was used to assess three main clinical and therapeutic knowledge gaps.
    [Show full text]
  • (INN) for Biological and Biotechnological Substances
    WHO/EMP/RHT/TSN/2019.1 International Nonproprietary Names (INN) for biological and biotechnological substances (a review) 2019 WHO/EMP/RHT/TSN/2019.1 International Nonproprietary Names (INN) for biological and biotechnological substances (a review) 2019 International Nonproprietary Names (INN) Programme Technologies Standards and Norms (TSN) Regulation of Medicines and other Health Technologies (RHT) Essential Medicines and Health Products (EMP) International Nonproprietary Names (INN) for biological and biotechnological substances (a review) FORMER DOCUMENT NUMBER: INN Working Document 05.179 © World Health Organization 2019 All rights reserved. Publications of the World Health Organization are available on the WHO website (www.who.int) or can be purchased from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications –whether for sale or for non-commercial distribution– should be addressed to WHO Press through the WHO website (www.who.int/about/licensing/copyright_form/en/index.html). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted and dashed lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned.
    [Show full text]
  • A Potent in Vivo Antitumor Efficacy of Novel Recombinant Type I Interferon
    Published OnlineFirst September 28, 2016; DOI: 10.1158/1078-0432.CCR-16-1386 Cancer Therapy: Preclinical Clinical Cancer Research A Potent In Vivo Antitumor Efficacy of Novel Recombinant Type I Interferon Kang-Jian Zhang1,2,3, Xiao-Fei Yin1, Yuan-Qin Yang1,4, Hui-Ling Li1, Yan-Ni Xu1, Lie-Yang Chen1, Xi-Jun Liu1, Su-Jing Yuan1, Xian-Long Fang1, Jing Xiao1, Shuai Wu1, Hai-Neng Xu1,5, Liang Chu1, Kanstantsin V. Katlinski2, Yuliya V. Katlinskaya2, Rong-Bing Guo3, Guang-Wen Wei3, Da-Cheng Wang6, Xin-Yuan Liu1,4, and Serge Y.Fuchs2 Abstract Purpose: Antiproliferative, antiviral, and immunomodulatory Results: sIFN-I displayed greater affinity for IFNAR1 (over activities of endogenous type I IFNs (IFN1) prompt the design of IFNAR2) chain of the IFN1 receptor and elicited a greater recombinant IFN1 for therapeutic purposes. However, most of the extent of IFN1 signaling and expression of IFN-inducible designed IFNs exhibited suboptimal therapeutic efficacies against genes in human cells. Unlike IFNa-2b, sIFN-I induced solid tumors. Here, we report evaluation of the in vitro and in vivo JAK–STAT signaling in mouse cells and exhibited an extend- antitumorigenic activities of a novel recombinant IFN termed sIFN-I. ed half-life in mice. Treatment with sIFN-I inhibited intra- þ Experimental Design: We compared primary and tertiary tumoral angiogenesis, increased CD8 T-cell infiltration, and structures of sIFN-I with its parental human IFNa-2b, as well as robustly suppressed growth of transplantable and genetically affinities of these ligands for IFN1 receptor chains and pharma- engineered tumors in immunodeficient and immunocompe- cokinetics.
    [Show full text]
  • Randomized Trial of Albinterferon Alfa2b Every 4Weeks for Chronic
    Journal of Viral Hepatitis, 2012, 19, 623–634 doi:10.1111/j.1365-2893.2012.01586.x Randomized trial of albinterferon alfa-2b every 4 weeks for chronic hepatitis C virus genotype 2/3 S. Pianko,1 S. Zeuzem,2 W.-L. Chuang,3 G. R. Foster,4 S. K. Sarin,5 R. Flisiak,6 C.-M. Lee,7 P. Andreone,8 T. Piratvisuth,9 S. Shah,10 A. Sood,11 J. George,12 M. Gould,13 P. Komolmit,14 S. Thongsawat,15 T. Tanwandee,16 J. Rasenack,17 Y. Li,18 M. Pang,19 Y. Yin,19 G. Feutren20 21 and I. M. Jacobson for the B2202 Study Team 1Monash Medical Centre and Monash University, Melbourne, Vic., Australia; 2J.W. Goethe University Hospital, Frankfurt, Germany; 3Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; 4Queen MaryÕs University of London, Blizard Institute of Cell and Molecular Science, London, UK; 5Department of Hepatology, Institute of Liver and Biliary Sciences, G B Pant Hospital, Delhi, India; 6Medical University of Bialystok, Bialystok, Poland; 7Chang Gung Memorial Hospital–Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan; 8Department of General Surgery and Organ Transplantation, Alma Mater Studiorum–Universita` di Bologna, Azienda Ospedaliero–Universitaria Policlinico S. Orsola–Malpighi, Bologna, Italy; 9Department of Internal Medicine, NKC Institute of Gastroenterology and Hepatology, Songklanagarind Hospital, Prince of Songkla University, Hat Yai, Thailand; 10Jaslok Hospital and Research Centre, Mumbai, India; 11Department of Gastroenterology, Dayanand Medical College & Hospital,
    [Show full text]
  • International Nonproprietary Names (INN) for Biological and Biotechnological Substances
    WHO/EMP/RHT/TSN/2014.1 International Nonproprietary Names (INN) for biological and biotechnological substances (a review) WHO/EMP/RHT/TSN/2014.1 International Nonproprietary Names (INN) for biological and biotechnological substances (a review) International Nonproprietary Names (INN) Programme Technologies Standards and Norms (TSN) Regulation of Medicines and other Health Technologies (RHT) Essential Medicines and Health Products (EMP) International Nonproprietary Names (INN) for biological and biotechnological substances (a review) FORMER DOCUMENT NUMBER: INN Working Document 05.179 © World Health Organization 2014 All rights reserved. Publications of the World Health Organization are available on the WHO website (www.who.int ) or can be purchased from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected] ). Requests for permission to reproduce or translate WHO publications –whether for sale or for non- commercial distribution– should be addressed to WHO Press through the WHO website (www.who.int/about/licensing/copyright_form/en/index.html ). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted and dashed lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned.
    [Show full text]
  • Statistical Analysis Plan P15-698
    HCV RWE PMOS Statistical Analysis Plan P15-698 NCT02807402 Version 1.0 STATISTICAL ANALYSIS PLAN STUDY P15-698 Version 1.0 28 July 2017 RWE_SAP_RO_2017-07-28_V1-0.docx Page 1 of 50 HCV RWE PMOS Statistical Analysis Plan P15-698 Version 1.0 General Information Protocol Real World Evidence of the Effectiveness of Paritaprevir/r – Ombitasvir, + Dasabuvir, ± Ribavirin in Patients with Chronic Hepatitis C - An Observational Study in Romania P15-698 Document Statistical Analysis Plan (SAP) – Version 1.0. definition 28 July 2017 Related Study Protocol, dated 16 March 2016 Documents Document IST GmbH, owner RWE_SAP_RO_2017-07-28_V1-0.docx Page 2 of 50 HCV RWE PMOS Statistical Analysis Plan P15-698 Version 1.0 TABLE OF CONTENTS Page 1. INTRODUCTION .........................................................................................................................8 2. STUDY OBJECTIVES ....................................................................................................................8 3. STUDY DESIGN ...........................................................................................................................9 3.1 Overview of Study Design and Dosing Regimen ....................................................9 3.2 Sample Size Calculation ...................................................................................... 10 4. STATISTICAL CONSIDERATIONS AND ANALYTICAL PLAN ........................................................ 11 4.1 Primary and Secondary Parameters ..................................................................
    [Show full text]
  • Dysregulation of Innate Immunity in Hepatitis C Virus Genotype 1 IL28B-Unfavorable Genotype Patients: Impaired Viral Kinetics and Therapeutic Response
    Dysregulation of Innate Immunity in Hepatitis C Virus Genotype 1 IL28B-Unfavorable Genotype Patients: Impaired Viral Kinetics and Therapeutic Response Susanna Naggie,1* Anu Osinusi,2,3* Antonios Katsounas,3 Richard Lempicki,3 Eva Herrmann,4 Alexander J. Thompson,1 Paul J. Clark,1 Keyur Patel,1 Andrew J. Muir,1 John G. McHutchison,5 Joerg F. Schlaak,6 Martin Trippler,6 Bhavana Shivakumar,2 Henry Masur,7 Michael A. Polis,2 and Shyam Kottilil2 Recent studies have shown that a single-nucleotide polymorphism upstream of the interleukin- 28B (IL28B) gene plays a major role in predicting therapeutic response in hepatitis C virus (HCV)-infected patients treated with pegylated interferon (PEG-IFN)/ribavirin. We sought to investigate the mechanism of the IL28B polymorphism, specifically as it relates to early HCV viral kinetics, IFN pharmacokinetics, IFN pharmacodynamics, and gene expression profiles. Two prospective cohorts (human immunodeficiency virus [HIV]/HCV-coinfected and HCV-monoinfected) completing treatment with IFN/ribavirin were enrolled. Patients were gen- otyped at the polymorphic site rs12979860. In the HIV/HCV cohort, frequent serum sampling was completed for HCV RNA and IFN levels. DNA microarray of peripheral blood mononu- clear cells and individual expression of IFN-stimulated genes (ISGs) were quantified on IFN therapy. The IL28B-favorable (CC) genotype was associated with improved therapeutic response compared with unfavorable (CT or TT) genotypes. Patients with a favorable genotype had greater first- and second-phase viral kinetics (P 5 0.004 and P 5 0.036, respectively), IFN maximum antiviral efficiency (P 5 0.007) and infected cell death loss (P 5 0.009) compared with unfavorable genotypes.
    [Show full text]
  • Molecular Engineering of Therapeutic Cytokines
    Antibodies 2013, 2, 426-451; doi:10.3390/antib2030426 OPEN ACCESS antibodies ISSN 2073-4468 www.mdpi.com/journal/antibodies Review Molecular Engineering of Therapeutic Cytokines Rodrigo Vazquez-Lombardi *, Brendan Roome and Daniel Christ Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, New South Wales 2010, Australia * Author to whom correspondence should be addressed; E-Mail: [email protected]. Received: 9 May 2013; in revised form: 13 June 2013 / Accepted: 13 June 2013 / Published: 3 July 2013 Abstract: Over the past three decades, a large body of work has been directed at the development of therapeutic cytokines. Despite their central role in immune modulation, only a handful of cytokine therapeutics has achieved regulatory approval. One of the major challenges associated with the therapeutic use of cytokines relates to their short serum half-life and low bioavailability. High doses are required to overcome these problems, which often result in dose-limiting toxicities. Consequently, most cytokines require protein engineering approaches to reduce toxicity and increase half-life. For this purpose, PEGylation, fusion proteins, antibody complexes and mutagenesis have been utilized. Here, we summarize past, recent and emerging strategies in this area. Keywords: immunotherapy; cytokines; protein engineering; immunocytokines; fusion proteins 1. Introduction Cytokines are a large family of mainly soluble proteins and glycoproteins that function as key modulators of the immune system. They encompass interleukins (ILs), interferons (IFNs), growth factors, colony stimulating factors (CSFs), the tumour necrosis factor (TNF) family and chemokines (or chemotactic cytokines). These small signalling molecules (<30 kDa) are mostly secreted by leukocytes, but can also be produced by other cell types (e.g., endothelial cells, epithelial cells and fibroblasts).
    [Show full text]