Recent Environmental Changes on the Antarctic Peninsula As Recorded in an Ice Core from the Bruce Plateau

Total Page:16

File Type:pdf, Size:1020Kb

Recent Environmental Changes on the Antarctic Peninsula As Recorded in an Ice Core from the Bruce Plateau Recent Environmental Changes on the Antarctic Peninsula as Recorded in an Ice Core from the Bruce Plateau DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Bradley Patrick Goodwin Graduate Program in Atmospheric Science The Ohio State University 2013 Dissertation Committee: Professor Ellen Mosley-Thompson, Advisor Professor David Bromwich Professor Jay Hobgood Professor Lonnie Thompson Copyrighted by Bradley Patrick Goodwin 2013 Abstract Dramatic changes in net accumulation and temperature on the Antarctic Peninsula have been observed over the last century. Ice core-derived proxies provide histories of these variables extending beyond the relatively short instrumental records available for this region. Histories of net annual accumulation and 18O from an ice core drilled to bedrock on the Bruce Plateau in the Antarctic Peninsula provide an additional multi-century record of climate variability in this region. Time series for the period 1750-2009 CE are generated, evaluated for changes over time and compared to other relevant environmental data. Comparisons to satellite and station data are conducted over the relatively short duration of these records. Large scale atmospheric oscillations, such as the Southern Annular Mode and El Niño-Southern Oscillation, are investigated as potential drivers of the observed changes from 1900-2009 CE. Ice core records from other locations are analyzed to provide a larger spatial context for the changes observed on the Antarctic Peninsula from 1750 to 2009 CE. Sulfate in ice cores can originate from sea salt, oceanic biological productivity, volcanic activity, and anthropogenic influences. Different methods are used to distinguish the sulfate contributed by each of these sources and thereby to generate source specific sulfate histories. ii Dedication to my parents Tom and Janet Goodwin and my brother Matthew Goodwin iii Acknowledgments I would like to thank my advisor, Dr. Ellen Mosley-Thompson, for her support and encouragement throughout my time at Ohio State. I thank the members of my dissertation committee, Dr. David Bromwich, Dr. Jay Hobgood, and Dr. Lonnie Thompson for their review of my research and recommendations for improvement. Dr. M. Roxana Sierra-Hernandez and Don Kenny provided exceptional support in the cutting, analysis, and interpretation of the Bruce Plateau ice core. I would also like to thank Dr. Mary Davis for the training and guidance she provided in the analysis of ice cores. I am very thankful for support and encouragement from the other graduate students in the Geography Department and at Byrd Polar Research Center. Special thanks to Katelyn Johnson, Julien Nicolas, Stacy Porter and Aaron Wilson. I am thankful for the various funding sources which made my time at Ohio State possible, the Distinguished University Fellowship for funding my first year and my final year, the NSF funded LARISSA project and the Geography Department for funding my second year as a research assistant and teaching assistant. iv Vita 1999........................................Hilliard Darby High School 2003........................................B.S. Applied Science (Chemical Engineering), Washington University 2005........................................M.S. Environmental Engineering, Washington University 2005........................................Staff Engineer I, MACTEC 2006-2010 ..............................Research Scientist, Battelle Memorial Institute 2010 to present ......................Distinguished University Fellow, Atmospheric Sciences Program, The Ohio State University Publications Thomas Kelly, Bradley Goodwin, Amy Dindal, and John McKernan, EnviroScan Inc. Ozone Detector Card, Environmental Technology Verification Program final report, prepared by Battelle, Columbus, Ohio, April, 2011 (available at http://www.epa.gov/nrmrl/std/etv/vt-ams.html#oic). Bradley Goodwin et al., Applikon MARGA Semi-Continuous Ambient Air Monitoring System, Environmental Technology Verification Program final report, prepared by Battelle, Columbus, Ohio, September, 2009 (available at http://www.epa.gov/nrmrl/std/etv/vt-ams.html#fpic). v Bradley Goodwin and Thomas Kelly, Summary of Critical Review of Literature for Effects of NOy/NHx/SOx on Man-Made Structures and Materials, chapter for inclusion in U.S. EPA’s Science Assessment Support Document, for review of the Secondary National Ambient Air Quality Standards for Nitrogen Dioxide and Sulfur Dioxide, prepared under U.S. EPA contract EP-C-04-027, Battelle, Columbus, Ohio, January, 2008. Ken Cowen et al., (2009), Extractive Sampling and Optical Remote Sensing of F100 Aircraft Engine Emissions, J. Air Waste Manage., 59, 531-539. (BG was the 2nd of 10 authors.) Jeffrey D. Myers, Chester W. Spicer, and Bradley P. Goodwin. (2009), Design and Results of a Study to Measure Environmental Factors in Airliner Cabins and to Assess the Health and Comfort of Passengers and Crew Using Surveys, J. ASTM Int., 6, Issue 2. Chester W. Spicer et al. (2009), Rapid Measurement of Emissions from Military Aircraft Turbine Engines by Downstream Extractive Sampling of Aircraft on the Ground: Results for C-130 and F-15 Aircraft, Atmos. Environ., 43, 2612-2622. (BG was the 6th of 13 authors.) Fields of Study Major Field: Atmospheric Sciences vi Table of Contents Abstract ............................................................................................................................... ii Dedication .......................................................................................................................... iii Acknowledgments.............................................................................................................. iv Vita ...................................................................................................................................... v List of Tables ................................................................................................................... xiii List of Figures ................................................................................................................... xv Chapter 1: Introduction ................................................................................................... 1 Chapter 2: Literature Review.......................................................................................... 5 2.1 Antarctic Ice Core Drilling History .......................................................................... 7 2.2 Antarctic Peninsula Climate Records ..................................................................... 12 2.2.1 Antarctic Peninsula Ice Core Records .............................................................. 13 2.2.2 Antarctic Peninsula Instrumental Records ....................................................... 16 2.3 Large Scale Atmospheric Oscillations ................................................................... 19 Chapter 3: Data and Methods ....................................................................................... 26 3.1 Bruce Plateau Ice Core Data .................................................................................. 26 vii 3.1.1 Sample Handling ............................................................................................. 27 3.1.2 Dust Data ......................................................................................................... 28 3.1.3 Major Ion Chemistry Data ............................................................................... 29 3.1.4 Stable Isotope Data .......................................................................................... 29 3.1.5 Beta Radioactivity Data ................................................................................... 30 3.2 Other Ice Core Data................................................................................................ 31 3.2.1 Dyer Plateau Ice Core ....................................................................................... 31 3.2.2 Siple Station Ice Core ....................................................................................... 32 3.2.3 Other Antarctic Peninsula Ice Core Data ......................................................... 33 3.3 Atmospheric Oscillation Index Data ...................................................................... 33 3.4 Antarctic Peninsula Station Data............................................................................ 35 3.5 Depth-Density Relationship .................................................................................... 35 3.6 Time Scale Development ........................................................................................ 40 3.7 Sub-Annual Resolution ........................................................................................... 50 3.7.1 Summer-Winter Resolution .............................................................................. 51 3.7.2 Seasonal Resolution .......................................................................................... 52 Chapter 4: Accumulation Rate Reconstruction ............................................................ 53 4.1 Annual Layer Thinning ........................................................................................... 53 4.2 Strain Rate Based Models ....................................................................................... 55 viii 4.3 Empirical Models ...................................................................................................
Recommended publications
  • 'Landscapes of Exploration' Education Pack
    Landscapes of Exploration February 11 – 31 March 2012 Peninsula Arts Gallery Education Pack Cover image courtesy of British Antarctic Survey Cover image: Launch of a radiosonde meteorological balloon by a scientist/meteorologist at Halley Research Station. Atmospheric scientists at Rothera and Halley Research Stations collect data about the atmosphere above Antarctica this is done by launching radiosonde meteorological balloons which have small sensors and a transmitter attached to them. The balloons are filled with helium and so rise high into the Antarctic atmosphere sampling the air and transmitting the data back to the station far below. A radiosonde meteorological balloon holds an impressive 2,000 litres of helium, giving it enough lift to climb for up to two hours. Helium is lighter than air and so causes the balloon to rise rapidly through the atmosphere, while the instruments beneath it sample all the required data and transmit the information back to the surface. - Permissions for information on radiosonde meteorological balloons kindly provided by British Antarctic Survey. For a full activity sheet on how scientists collect data from the air in Antarctica please visit the Discovering Antarctica website www.discoveringantarctica.org.uk and select resources www.discoveringantarctica.org.uk has been developed jointly by the Royal Geographical Society, with IBG0 and the British Antarctic Survey, with funding from the Foreign and Commonwealth Office. The Royal Geographical Society (with IBG) supports geography in universities and schools, through expeditions and fieldwork and with the public and policy makers. Full details about the Society’s work, and how you can become a member, is available on www.rgs.org All activities in this handbook that are from www.discoveringantarctica.org.uk will be clearly identified.
    [Show full text]
  • A NEWS BULLETIN Published Quarterly by the NEW ZEALAND ANTARCTIC SOCIETY (INC)
    A NEWS BULLETIN published quarterly by the NEW ZEALAND ANTARCTIC SOCIETY (INC) An English-born Post Office technician, Robin Hodgson, wearing a borrowed kilt, plays his pipes to huskies on the sea ice below Scott Base. So far he has had a cool response to his music from his New Zealand colleagues, and a noisy reception f r o m a l l 2 0 h u s k i e s . , „ _ . Antarctic Division photo Registered at Post Ollice Headquarters. Wellington. New Zealand, as a magazine. II '1.7 ^ I -!^I*"JTr -.*><\\>! »7^7 mm SOUTH GEORGIA, SOUTH SANDWICH Is- . C I R C L E / SOUTH ORKNEY Is x \ /o Orcadas arg Sanae s a Noydiazarevskaya ussr FALKLAND Is /6Signyl.uK , .60"W / SOUTH AMERICA tf Borga / S A A - S O U T H « A WEDDELL SHETLAND^fU / I s / Halley Bav3 MINING MAU0 LAN0 ENOERBY J /SEA uk'/COATS Ld / LAND T> ANTARCTIC ••?l\W Dr^hnaya^^General Belgrano arg / V ^ M a w s o n \ MAC ROBERTSON LAND\ '■ aust \ /PENINSULA' *\4- (see map betowi jrV^ Sobldl ARG 90-w {■ — Siple USA j. Amundsen-Scott / queen MARY LAND {Mirny ELLSWORTH" LAND 1, 1 1 °Vostok ussr MARIE BYRD L LAND WILKES LAND ouiiiv_. , ROSS|NZJ Y/lnda^Z / SEA I#V/VICTORIA .TERRE , **•»./ LAND \ /"AOELIE-V Leningradskaya .V USSR,-'' \ --- — -"'BALLENYIj ANTARCTIC PENINSULA 1 Tenitnte Matianzo arg 2 Esptrarua arg 3 Almirarrta Brown arc 4PttrtlAHG 5 Otcipcion arg 6 Vtcecomodoro Marambio arg * ANTARCTICA 7 Arturo Prat chile 8 Bernardo O'Higgins chile 1000 Miles 9 Prasid«fTtB Frei chile s 1000 Kilometres 10 Stonington I.
    [Show full text]
  • Plan Anual Antártico Del Programa Antártico Argentino 2018-2019
    Programa Antártico Argentino Plan Anual Antártico 2018-2019 INTRODUCCIÓN La Argentina reivindica soberanía sobre el Sector Antártico Argentino, comprendido entre los meridianos 25° y 74° de longitud Oeste al sur del paralelo de 60° de latitud Sur, con fundamento en títulos históricos, geográficos, geológicos y jurídicos. La Argentina tiene presencia permanente e ininterrumpida en la Antártida desde el 22 de febrero de 1904, en que se estableciera la primera estación científica (Base Orcadas) en la Isla Laurie, Archipiélago de las Islas Orcadas del Sur. La Argentina, por tanto, tiene la presencia continua más antigua en la Antártida. La Argentina tiene seis bases permanentes (Carlini, Orcadas, Esperanza, Marambio, San Martín y Belgrano II) y siete bases temporarias (Brown, Primavera, Decepción, Melchior, Matienzo, Cámara y Petrel). Todas están situadas en el Sector Antártico Argentino. La Dirección Nacional del Antártico administra dos de ellas (las Bases Carlini y Brown) y el Ministerio de Defensa, a través del Comando Conjunto Antártico, administra las otras once. La Argentina es uno de los doce países que participaron en la Conferencia de Washington sobre la Antártida de 1959, y eso la llevó a ser uno de los doce signatarios originarios del Tratado Antártico. El Tratado establece que la Antártida se utilizará exclusivamente para fines pacíficos y erige a la ciencia en el centro de la actividad antártica. El artículo IV del Tratado resguarda adecuadamente las reivindicaciones de soberanía en la Antártida. Por tanto, uno de los ejes de la política exterior argentina es continuo fortalecimiento del conjunto de normas surgidas a partir del Tratado Antártico. Los lineamientos de la Política Antártica Nacional (PAN) están definidos por el Decreto 2316/90, cuyo objetivo principal es el P á g i n a 2 | 265 Programa Antártico Argentino Plan Anual Antártico 2018-2019 afianzamiento de los derechos argentinos de soberanía en la Antártida.
    [Show full text]
  • Borehole Temperatures Reveal Peninsula Warming
    Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | The Cryosphere Discuss., 5, 3053–3084, 2011 www.the-cryosphere-discuss.net/5/3053/2011/ The Cryosphere doi:10.5194/tcd-5-3053-2011 Discussions TCD © Author(s) 2011. CC Attribution 3.0 License. 5, 3053–3084, 2011 This discussion paper is/has been under review for the journal The Cryosphere (TC). Borehole Please refer to the corresponding final paper in TC if available. temperatures reveal Peninsula warming Borehole temperatures reveal details of V. Zagorodnov et al. 20th century warming at Bruce Plateau, Antarctic Peninsula Title Page Abstract Introduction V. Zagorodnov1, O. Nagornov2, T. A. Scambos3, A. Muto3,*, E. Mosley-Thompson1, E. C. Pettit4, and S. Tyuflin2 Conclusions References 1Byrd Polar Research Center, The Ohio State University, Columbus OH 43210, USA Tables Figures 2Moscow Engineering Physics Institute, Kashirskoe Shosse 31, Moscow 115409, Russia 3 National Snow and Ice Data Center, CIRES, University of Colorado at Boulder, J I Boulder CO 80309, USA 4Department of Geology and Geophysics, University of Alaska Fairbanks, Fairbanks, J I AK 99775, USA Back Close *now at: Dept. of Geosciences, Pennsylvania State University, State College, PA 16802, USA Received: 15 September 2011 – Accepted: 17 October 2011 – Published: 2 November 2011 Full Screen / Esc Correspondence to: V. Zagorodnov ([email protected]) Printer-friendly Version Published by Copernicus Publications on behalf of the European Geosciences Union. Interactive Discussion 3053 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract TCD Two ice core boreholes of 143.74 m and 447.65 m (bedrock) were drilled during the 2009–2010 austral summer on the Bruce Plateau at a location named LARISSA Site 5, 3053–3084, 2011 Beta (66◦020 S, 64◦040 W, 1975.5 m a.s.l.).
    [Show full text]
  • Glaciological Studies at Siple Station (Antarctica): Potential Ice-Core Paleoclimatic Record
    Journal of Glaciology, Vol. 37, No. 125, 1991 Glaciological studies at Siple Station (Antarctica): potential ice-core paleoclimatic record E. MOSLEY-THOMPSON, J. DAI, L. G. THOMPSON, Byrd Polar Research Center, The Ohio State University, Columbus, Ohio 43210-1308, U.S.A. P. M . GROOTES, Q_uat~rnary Isotope Laboratory, University of Washington, Seattle, Washington 98195, U.S.A. JAMES K. ARBOGAST AND j. F. PASKIEVITCH Byrd Polar Research Center, The Ohio State University, Columbus, Ohio 43210-1308, U.S.A. ABSTRACT. The quality and utility of the records of oxygen-isotopic abundances, dust concentrations and anionic concentrations preserved in the ice at Siple Station (75°55' S, 84°15' W) are assessed from four shallow (20m) cores. The combination of high accumu lation (0.56 m a- 1 w.e. ) and low mean annual temperature (-24°C) preserves the prominent seasonal variations in 818 0 which are very spatially coherent. Sulfate concentrations vary seasonall y and, in conjunction with 818 0, will allow accurate dating of deeper cores from Siple Station. The concentrations of insoluble dust are the lowest measured in Antarctica, making Siple Station an excellent location to examine large increases in atmospheric tubidity. The seasonal variations and annual fluxes of the anions are examined for the last two decades (AD 1966-85) with regard to probable sources. An unusually high sulfate flux in 1976 may reflect the February 1975 eruption of Mount Ngauruhoe, New Zealand. No annual signal in nitrate concentration is confirmed and no unusually high nitrate fluxes support the suggestion of nitrate production by large solar flares.
    [Show full text]
  • VLF Wave Injection Into the Magnetosphere from Siple Station
    VOL. 79, NO. 16 JOURNAL OF GEOPHYSICAL RESEARCH JUNE I, 1974 VLF Wave Injection Into the MagnetosphereFrom Siple Station, Antarctica R. A. HELLIWELL AND J.P. KATSUFRAKIS RadioscienceLaboratory, Stanford University,Stanford, California 94305 Radio signalsin the 1.5- to 16-kHz range transmittedfrom Siple Station, Antarctica (L = 4), are used to control wave-particleinteractions in the magnetosphere.Observations at the conjugatepoint show signalgrowth and triggeredemissions including risers, failers, and hooks. Growth ratesof the order of 100 dB/s and total gainsup to 30 dB are observed.Triggered emissions may be cut off or havetheir fre- quencyrate of changealtered by Siplepulses. Similar effectsoccur in associationwith harmonicsfrom the Canadianpower system. The observedtemporal growth is predictedby a recentlyproposed feedback model of cyclotroninteraction. Plasma instability theories predicting only spatialgrowth are not in ac- cord with these observations.Possible applications include study of nonlinear plasma instability phenomena,diagnostic measurements of energeticparticles trapped in the magnetosphere,modification of the ionosphere through control of precipitation, and VLF communication through the magnetosphere. This is a report of the first resultsof a new experimentto plasma instability. To obtain further experimental data, a control wave-particleinteractions in the magnetosphere,us- transmitter was neededthat could operate at lower frequen- ing VLF waves.Coherent whistlermode signalswere injected cies and whose power, pulse length, and frequency could into the magnetospherein the 1.5- to 16.0-kHz range from a easily be varied. 100-kW transmitter located at Siple Station, Antarctica. The The next step was constructionof a 33.6-km-long horizon- output signalswere observedat the Sipleconjugate point near tal dipole at Byrd Station (L = 7.25) in 1965 [Guy, 1966].
    [Show full text]
  • Hnjtflrcilild
    HNjTflRCililD A NEWS BULLETIN published quarterly by the NEW ZEALAND ANTARCTIC SOCIETY (INC) Drillers on the Ross Ice Shelf last season used a new hot water system to penetrate fc. 416m of ice and gain access to the waters of the Ross Sea. Here the rig is at work on an access hole for a Norwegian science rproject. ' U . S . N a v y p h o t o Registered ol Post Office Headquarters, Vol. 8, No. 9. Wellington. New Zealand, as a magazine. SOUTH GEORGIA. •.. SOUTH SANDWICH Is' ,,r circle / SOUTH ORKNEY Is' \ $&?-""" "~~~^ / "^x AFAtKtANOis /^SiJS?UK*"0.V" ^Tl~ N^olazarevskayauss« SOUTH AMERICA / /\ ,f Borg°a ~7^1£^ ^.T, \60'E, /? cnirru „ / \ if sa / anT^^^Mo odezhnaya V/ x> SOUTH 9 .» /WEDDELL \ .'/ ' 0,X vr\uss.aT/>\ & SHETtAND-iSfV, / / Halley Bay*! DRONNING MAUD LAND ^im ^ >^ \ - / l s * S Y 2 < 'SEA/ S Euk A J COATSu k V ' tdC O A T S t d / L A N D ! > / \ Dfu^naya^^eneral Belgrano^RG y\ \ Mawson ANTARCTIC SrV MAC ROBERTSON LAND\ \ aust /PENINSULA'^ (see map below) Sobral arg / t Davis aust K- Siple ■■ [ U S A Amundsen-Scott / queen MARY LAND <JMirny AJELLSWORTH Vets') LAND °Vostok ussr MARIE BYRDNs? vice ShelA^ WIIKES tAND , ? O S S ^ . X V a n d a N z / SEA I JpY/VICTORIA .TERRE ,? ^ P o V t A N D V ^ / A D H J E j / V G E O R G E V L d , , _ / £ ^ . / ,^5s=:»iv-'s«,,y\ ^--Dumont d Urville france Leningradskaya \' / USSB_,^'' \ / -""*BALLENYIs\ / ANTARCTIC PENINSULA 1 Teniente Matienzo arg 2 Esperanza arg 3 Almirante Brown arg 4 Petrel arg 5 Decepcion arg.
    [Show full text]
  • The Antarctican Society 905 North Jacksonville Street Arlington, Virginia 22205
    THE ANTARCTICAN SOCIETY 905 NORTH JACKSONVILLE STREET ARLINGTON, VIRGINIA 22205 __________________________________________________________ Vol. 87-88 September No. 1 Welcome to the Society's 28th year and to its 133rd lecture! Presidents: Dr. Carl R. Eklund, 1959-61 Dr. Paul A. Siple, 1961-62 Mr. Gordon D. Cartwright, 1962-63 SOUTH POLE STATION 30 YEARS AGO by RADM David M. Tyree (Ret.), 1963-64 Mr. George R. Toney, 1964-65 Dr. Robert F. Benson Mr. Morton J. Rubin, 1965-66 Dr. Albert P. Crary, 1966-68 Space Scientist Dr. Henry M. Dater, 1968-70 Laboratory for Extraterrestrial Physics Mr. George A. Doumani, 1970-71 Dr. William J. L. Sladen, 1971- 73 NASA's Goddard Space Flight Center Mr. Peter F. Bermel, 1973-75 Greenbelt, Maryland Dr. Kenneth J. Bertrand, 1975-7 7 Mrs. Paul A. Siple, 1977-78 Dr. Paul C. Dalrymple, 1978-80 on Dr. Meredith F. Burrill, 1980-82 Dr. Mori D. Turner, 1982-84 Tuesday evening, 27 October 1987 Dr. Edward P. Todd, 1984-86 Mr. Robert H. T. Dodson, 1986-88 Honorary Members: 8 PM Ambassador Paul C. Daniels Dr. Laurence McKinlcy Gould Count Emilio Pucci National Science Foundation Sir Charles S. Wright 18th and G Streets N.W. Mr. Hugh Blackwell Evans Dr. Henry M. Dater Mr. August Howard ROOM 543 Paul C. Daniels Memorial Lecturers: - Light Refreshments - Dr. William J. L. Sladen, 1964 RADM David M. Tyree (Ret.), 1 965 Dr. Roger Tory Peterson, 1966 Dr. J. Campbell Craddock, 1967 Mr. James Pranke, 1968 Dr. Henry M. Dater, 1970 Bob Benson, ionospheric physicist at Amundsen-Scott in 1957, is Sir Peter M.
    [Show full text]
  • Waba Directory 2003
    DIAMOND DX CLUB www.ddxc.net WABA DIRECTORY 2003 1 January 2003 DIAMOND DX CLUB WABA DIRECTORY 2003 ARGENTINA LU-01 Alférez de Navió José María Sobral Base (Army)1 Filchner Ice Shelf 81°04 S 40°31 W AN-016 LU-02 Almirante Brown Station (IAA)2 Coughtrey Peninsula, Paradise Harbour, 64°53 S 62°53 W AN-016 Danco Coast, Graham Land (West), Antarctic Peninsula LU-19 Byers Camp (IAA) Byers Peninsula, Livingston Island, South 62°39 S 61°00 W AN-010 Shetland Islands LU-04 Decepción Detachment (Navy)3 Primero de Mayo Bay, Port Foster, 62°59 S 60°43 W AN-010 Deception Island, South Shetland Islands LU-07 Ellsworth Station4 Filchner Ice Shelf 77°38 S 41°08 W AN-016 LU-06 Esperanza Base (Army)5 Seal Point, Hope Bay, Trinity Peninsula 63°24 S 56°59 W AN-016 (Antarctic Peninsula) LU- Francisco de Gurruchaga Refuge (Navy)6 Harmony Cove, Nelson Island, South 62°18 S 59°13 W AN-010 Shetland Islands LU-10 General Manuel Belgrano Base (Army)7 Filchner Ice Shelf 77°46 S 38°11 W AN-016 LU-08 General Manuel Belgrano II Base (Army)8 Bertrab Nunatak, Vahsel Bay, Luitpold 77°52 S 34°37 W AN-016 Coast, Coats Land LU-09 General Manuel Belgrano III Base (Army)9 Berkner Island, Filchner-Ronne Ice 77°34 S 45°59 W AN-014 Shelves LU-11 General San Martín Base (Army)10 Barry Island in Marguerite Bay, along 68°07 S 67°06 W AN-016 Fallières Coast of Graham Land (West), Antarctic Peninsula LU-21 Groussac Refuge (Navy)11 Petermann Island, off Graham Coast of 65°11 S 64°10 W AN-006 Graham Land (West); Antarctic Peninsula LU-05 Melchior Detachment (Navy)12 Isla Observatorio
    [Show full text]
  • Wilderness and Aesthetic Values of Antarctica
    Wilderness and Aesthetic Values of Antarctica Abstract Antarctica is the least inhabited region in the world and has therefore had the least influence from human activities and, unlike the majority of the Earth’s continents and oceans, can still be considered as mostly wilderness. As every visitor to Antarctica knows, its landscapes are exceptionally beautiful. It was the recognition of the importance of these characteristics that resulted in their protection being included in the Madrid Protocol. Both wilderness and aesthetic values can be impaired by human activities in a variety of ways with the severity varying from negligible to severe, according to the type Protocol on Environmental Protec tion to the Antarctic Trea ty - of activity and its duration, spatial extent and intensity. A map of infrastructure and major travel routes the "M adrid Protocol" in Antarctica will be the first step in visually representing where wilderness and aesthetic values Article 3[1] may be impacted. It is hoped that this will stimulate further discussion on how to describe, acknowledge, The protection of the Antarctic environment and dependent an d associated ecosystems and the intrinsic value of Antarctica, understand and further protect the wilderness and aesthetic values of Antarctica. including its wilderness and aesthetic values and its value as an area for the conduct of scientific research, in particular research essential to understanding the global environment, shall be fundamental considerations in the planning and condu ct of all activities
    [Show full text]
  • Newsletter #04 Nov. 2017
    International Coordination Office (ICO) Find more information at of the Polar Preditction Project www.polarprediction.net PolarPredictNews Newsletter #04 Nov. 2017 Oracadas Base on South Orkney Islands (see news item #07 this issue; photo: Gustavo Siles) Dear Colleagues! terms of observations. Feedback from the com- 01 munity on how to improve the YOPP Observations / It is my pleasure to welcome you to the fourth Layer would be much appreciated. 10 issue of PolarPredictNews. Among others, this latest issue provides you with a brief report from Finally, I would like to point out two important the first YOPP Online Conference. I thought that milestones in terms of user-engagement this event was important, given some interesting highlighted in this issue—namely the establish- and valuable discussion and suggestions from the ment of the platform “Polar Prediction Matters” participants. A link to the recording of this event and publication of the scoping document entitled is provided in this newsletter; and I would like to “Navigating Weather, Water, Ice and Climate”, invite you to join us on 1 December 2017 for the which is a high-level document discussing rese- second YOPP Online Conference. arch needs in relation to the use and provision of environmental forecast in the Arctic and Antarctic. Another important element, described in this issue of PolarPredictNews, is the development of Happy reading, the YOPP Observations Layer, which allows you to Thomas Jung check who will be doing what, when and where in The Year of Polar Prediction (YOPP) is a major international activity that has been initiated by World Mete- orological Organization’s World Weather Research Programme (WWRP) as a key component of the Polar Prediction Project (PPP).
    [Show full text]
  • Automatic Weather Stations, 1980-1981
    40 KTS 0 tgJ 120- le ioo WIND SPEED \ FIGURES SHOW SAMPLE ALTITUDE BC 80 2921 IN HUNDREDS OF FEET 0 60 Z REGRESSION: F 1 • 176.1-0.093 (03) 40 80 \ 0.91 50 2C $ n 27 SAMPLES / 1 \ 0 40 1300 I. 30 0. 20 ISO, W C Z 252 0 240 \ N •282 / o 252 \\25. 1220 h. 2011 52l 243 25i 222_ \ #-24 222 241 185 zp^ 45 50 55 60 65 70 75 80S 130 24.1 251, 45 ISO 155 160 165 170 175 Figure 3. Comparison of F-12 mixing ratios with ozone and wind F - Il ppt speed near the jet stream. Study conducted 12 November 1977 during McMurdo-to-Christchurch flight. PPT = parts per trillion (10 12 Figure 2. Anticorrelation of ozone and F-li for samples taken ); KTS = knots. October 1980 in the vicinity of the jet stream, New Zealand area (34°S to 60°S). PPT = parts per trillion (10_12); PPB = parts per billion helicopters made important contributions to the program (10-9). through their conscientious performance of the planned sci- ence flight plans. the antarctic C-130 studies. Figure 3 shows the results of a jet stream transit in November 1977. Note the inverse relationship between ozone and F-12. As shown by the wind record, this References intrusion of stratospheric air occurred on the pole side of the jet stream. Over Antarctica the changes in the tropopause Danielsen, E. F. 1968. Stratospheric-tropospheric exchange based on through the winter also may play a role in the chemistry of the radioactivity, ozone and potential vorticity.
    [Show full text]