Microorganisms Overwinter Within the Ice Column of a Coastal Antarctic Lake
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(12) Patent Application Publication (10) Pub. No.: US 2012/0277127 A1 Hendrickson Et Al
US 20120277127A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0277127 A1 Hendrickson et al. (43) Pub. Date: Nov. 1, 2012 (54) METHODS, STRAINS, AND COMPOSITIONS Publication Classification USEFUL FOR MICROBALLY ENHANCED Int. C. OIL RECOVERY ARCOBACTER CLADE 1 (51) C09K 8/582 (2006.01) (75) Inventors: Edwin R. Hendrickson, Hockessin, CI2N L/20 (2006.01) DE (US); Scott Christopher Jackson, Wilmington, DE (US); Abigail K. Luckring, (US) (52) U.S. Cl. ...................................... 507/201:435/252.1 (73) Assignee: E. DUPONT DE NEMOURS AND COMPANY, Wilmington, DE (US) (57) ABSTRACT Appl. No.: Methods, microorganisms, and compositions are provided (21) 13/280,972 wherein oil reservoirs are inoculated with microorganisms (22) Filed: Oct. 25, 2011 belonging to Arcobacter clade 1 and medium including an electron acceptor. The Arcobacter strains grow in the oil Related U.S. Application Data reservoir to form plugging biofilms that reduce permeability (60) Provisional application No. 61/408,739, filed on Nov. in areas of Subterranean formations thereby increasing Sweep 1, 2010. efficiency, and thereby enhancing oil recovery. Patent Application Publication Nov. 1, 2012 Sheet 1 of 12 US 2012/0277127 A1 - - - - - - - us is us r u u ulu - ul |eunôl Patent Application Publication Nov. 1, 2012 Sheet 2 of 12 US 2012/0277127 A1 Patent Application Publication Nov. 1, 2012 Sheet 3 of 12 US 2012/0277127 A1 veenfil Patent Application Publication Nov. 1, 2012 Sheet 7 of 12 US 2012/0277127 A1 #7ºInfil Patent Application Publication Nov. 1, 2012 Sheet 8 of 12 US 2012/0277127 A1 G3Infil Patent Application Publication Nov. -
~©L%~Bulletin No
The International Council for Science ~©L%~bulletin No. 150 July 2003 Measures, Decisions and Resolutions adopted at the Twenty-fifth Antarctic Treaty Consultative Meeting Warsaw, Poland, 10-20 September 2002 p 1 = Published by the SCIENTIFIC COMMITTEE ON ANTARCTIC RESEARCH at the Scott Polar Research Institute, Cambridge, United Kingdom THE INTERNATIONAL COUNCIL FOR SCIENCE SCIENTIFIC COMMITTEE ON ANTARCTIC RESEARCH SCAR BULLETIN No 150, July 2003 Twenty-fifth Antarctic Treaty Consultative Meeting Warsaw, Poland, 10-20 September 2002 Decisions, Resolutions and Measures MEASURE 1 (2002) Antarctic Protected Area System: Management Plans Antarctic Specially Protected Area No 124, Cape for Antarctic Specially Protected Areas Crozier, Ross Island; The Representatives, Antarctic Specially Protected Area No 126, Byers Recalling Resolution 1 (1998) allocating responsibility Peninsula, Livingston Island; among Consultative Parties for the revision of Management Antarctic Specially Protected Area No 130, "Tram Plans for Protected areas; way Ridge", Mount Erebus, Ross Island; Noting that the draft Management Plans appended to this • Antarctic Specially Protected Area No 137, North Measure have been endorsed by the Committee for west White Island, McMurdo Sound; Environmentqal Protection and the Scientific Committee • Antarctic Specially Protected Area No 147, Abla on Antarctic Research (SCAR); tion Point - Ganymede Heights; Recognizing that these Areas support outstanding natural Antarctic Specially Protected Area No 148, Mount features and biota of scientific interest; Flora, Hope Bay; Recommend to their Governments the following Measure Antarctic Specially Protected Area No 157, Back for approval in accordance with paragraph 1 of Article 6 of door Bay, Cape Royds, Ross Island. Annex V to the Protocol on Environmental Protection to and which are annexed to this Measure, be adopted. -
Bordetella Trematum Infection: Case Report and Review of Previous Cases
y Castro et al. BMC Infectious Diseases (2019) 19:485 https://doi.org/10.1186/s12879-019-4046-8 CASEREPORT Open Access Bordetella trematum infection: case report and review of previous cases Thaís Regina y Castro1, Roberta Cristina Ruedas Martins2, Nara Lúcia Frasson Dal Forno3, Luciana Santana4, Flávia Rossi4, Alexandre Vargas Schwarzbold1, Silvia Figueiredo Costa2 and Priscila de Arruda Trindade1,5* Abstract Background: Bordetella trematum is an infrequent Gram-negative coccobacillus, with a reservoir, pathogenesis, a life cycle and a virulence level which has been poorly elucidated and understood. Related information is scarce due to the low frequency of isolates, so it is important to add data to the literature about this microorganism. Case presentation: We report a case of a 74-year-old female, who was referred to the hospital, presenting with ulcer and necrosis in both legs. Therapy with piperacillin-tazobactam was started and peripheral artery revascularization was performed. During the surgery, a tissue fragment was collected, where Bordetella trematum, Stenotrophomonas maltophilia, and Enterococcus faecalis were isolated. After surgery, the intubated patient was transferred to the intensive care unit (ICU), using vasoactive drugs through a central venous catheter. Piperacillin- tazobactam was replaced by meropenem, with vancomycin prescribed for 14 days. Four days later, levofloxacin was added for 24 days, aiming at the isolation of S. maltophilia from the ulcer tissue. The necrotic ulcers evolved without further complications, and the patient’s clinical condition improved, leading to temporary withdrawal of vasoactive drugs and extubation. Ultimately, however, the patient’s general condition worsened, and she died 58 days after hospital admission. -
Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341 -
The Antarctic Sun, January 16, 2005
Published during the austral summer at McMurdo Station, Antarctica, for the United States Antarctic Program January 16, 2005 Bye plane Russians retrieve their plane By Kristan Hutchison Sun staff Russia sent a big plane to pick up the little one this week. Artur Chilingarov, Deputy chairman of the Russian State Duma, returned to Antarctica to retrieve the biplane he had left there three years ago. He came with a group of mechanics and media on an Ilyushin 76 cargo plane, under the auspices of the Russian polar program. “We were sorry we couldn’t return the same year,” Chilingarov said through an interpreter. Chilingarov had been aboard the Antonov 3T biplane when it originally flew from Patriot Hills to South Pole in January 2002. After landing at the Pole, the biplane had a problem when the pilot tried to restart it and had to be left behind. Chilingarov was waiting at Pegasus ice runway when the biplane landed Tuesday after its 6 1/2 hour flight from the Pole. A strong tailwind helped the plane during the flight, allowing it to complete the journey without refueling. The Antonov 3T biplane landed at McMurdo the same way it originally had at the South Pole, show- ing off first by circling the runway and tipping its wings Photo by Kristan Hutchison / The Antarctic Sun at the small cluster of watchers below. Politician and polar explorer Artur Chilingarov, center, welcomes the pilot of the After celebratory hugs and photos, the Russian Antonov 3T biplane after its flight from South Pole to McMurdo Station while Michael See Biplane on page 10 Orkin, from the independent Russian station NTV, films the moment. -
United States Antarctic Program S Nm 5 Helicopter Landing Facilities 22 2010-11 Ms 180 N Manuela (! USAP Helo Sites (! ANZ Helo Sites This Page: 1
160°E 165°E ALL170°E FACILITIES Terra Nova Bay s United States Antarctic Program nm 5 22 Helicopter Landing Facilities ms 180 n Manuela 2010-11 (! (! This page: USAP Helo Sites ANZ Helo Sites 75°S 1. All facilities 75°S 2. Ross Island Maps by Brad Herried Facilities provided by 3. Koettlitz Glacier Area ANTARCTIC GEOSPATIAL INFORMATION CENTER United States Antarctic Program Next page: 4. Dry Valleys August 2010 Basemap data from ADD / LIMA ROSS ISLAND Peak Brimstone P Cape Bird (ASPA 116) (! (! Mt Bird Franklin Is 76°S Island 76°S 90 nms Lewis Bay (A ! ay (ASPA 156) Mt Erebus (Fang Camp)(! ( (! Tripp Island Fang Glacier ror vasse Lower Erebus Hut Ter rth Cre (!(! Mt No Hoopers Shoulder (!M (! (! (! (! Pony Lake (! Mt Erebus (!(! Cape Cape Royds Cones (AWS Site 114) Crozier (ASPA 124) o y Convoy Range Beaufort Island (AS Battleship Promontory C SPA 105) Granite Harbour Cape Roberts Mt Seuss (! Cotton Glacier Cape Evans rk 77°S T s ad (! Turks Head ! (!(! ( 77°S AWS 101 - Tent Island Big Razorback Island CH Surv ey Site 4 McMurdo Station CH Su (! (! rvey Sit s CH te 3 Survey (! Scott Base m y Site 2 n McMurdo Station CH W Wint - ules Island ! 5 5 t 3 Ju ( er Stora AWS 113 - J l AWS 108 3 ge - Biesia Site (! da Crevasse 1 F AWS Ferrell (! 108 - Bies (! (! siada Cr (! revasse Cape Chocolate (! AWS 113 - Jules Island 78°S AWS 109 Hobbs Glacier 9 - White Is la 78°S nd Salmon Valley L (! Lorne AWS AWS 111 - Cape s (! Spencer Range m Garwood Valley (main camp) Bratina I Warren n (! (!na Island 45 Marshall Vall (! Valley Ross I Miers Valley (main -
(ASPA) No. 121 CAPE ROYDS, ROSS ISLAND
Measure 2 (2014) Annex Management Plan for Antarctic Specially Protected Area (ASPA) No. 121 CAPE ROYDS, ROSS ISLAND Introduction Cape Royds lies at the western extremity of Ross Island, McMurdo Sound, at 166°09'56"E, 77°33'20"S. Approximate area: 0.66 km2. The primary reasons for designation are on the grounds that the Area supports the most southerly established Adélie penguin (Pygoscelis adeliae) colony known, for which there exists a long time series of population data that is of unique and outstanding scientific value. In addition, the Area has important terrestrial and freshwater ecological values, including the most southerly observation of snow algae, the type locality for original descriptions of a number of species of algae, and the unusual presence of a form of Dissolved Organic Matter that is almost entirely microbially-derived. The Area was originally designated as Site of Special Scientific Interest (SSSI) No. 1 in Recommendation VIII-4 (1975) after a proposal by the United States of America. The SSSI designation was extended through Recommendation X-6 (1979), Recommendation XII-5 (1983), Resolution 7 (1995) and Measure 2 (2000). A revision was adopted through Recommendation XIII-9 (1985). The site was renamed and renumbered as Antarctic Specially Protected Area (ASPA) No 121 by Decision 1 (2002). A revised management plan was adopted through Measure 1 (2002), and then through Measure 5 (2009) when the size of the marine component was reduced. The Area is situated within Environment P – Ross and Ronne-Filchner based on the Environmental Domains Analysis for Antarctica and within Region 9 - South Victoria Land based on the Antarctic Conservation Biogeographic Regions. -
Tripartite ATP-Independent Periplasmic (TRAP) Transporters and Tripartite Tricarboxylate Transporters (TTT): from Uptake to Pathogenicity
This is a repository copy of Tripartite ATP-independent periplasmic (TRAP) transporters and tripartite tricarboxylate transporters (TTT): From uptake to pathogenicity. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/127518/ Version: Published Version Article: Rosa, Leonardo T., Bianconi, Matheus E., Thomas, Gavin Hugh orcid.org/0000-0002- 9763-1313 et al. (1 more author) (2018) Tripartite ATP-independent periplasmic (TRAP) transporters and tripartite tricarboxylate transporters (TTT): From uptake to pathogenicity. Frontiers in Microbiology. 33. ISSN 1664-302X https://doi.org/10.3389/fcimb.2018.00033 Reuse This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ REVIEW published: 12 February 2018 doi: 10.3389/fcimb.2018.00033 Tripartite ATP-Independent Periplasmic (TRAP) Transporters and Tripartite Tricarboxylate Transporters (TTT): From Uptake to Pathogenicity Leonardo T. Rosa 1, Matheus E. Bianconi 2, Gavin H. Thomas 3 and David J. Kelly 1* 1 Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom, 2 Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom, 3 Department of Biology, University of York, York, United Kingdom The ability to efficiently scavenge nutrients in the host is essential for the viability of any pathogen. -
Specific PCR Detection Of
1491 Journal of Food Protection, Vol. 72, No. 7, 2009, Pages 1491–1495 Copyright ᮊ, International Association for Food Protection Research Note Specific PCR Detection of Arcobacter butzleri, Arcobacter cryaerophilus, Arcobacter skirrowii, and Arcobacter cibarius in Chicken Meat DANIELA PENTIMALLI,1 NICOLETTE PEGELS,2 TERESA GARCI´A,2 ROSARIO MARTI´N,2 Downloaded from http://meridian.allenpress.com/jfp/article-pdf/72/7/1491/1680203/0362-028x-72_7_1491.pdf by guest on 28 September 2021 AND ISABEL GONZA´ LEZ2* 1Dipartimento di Sanita` Pubblica, Facolta` di Agraria, Universita` degli studi di Parma, Parma, Italy; and 2Departamento de Nutricio´n, Bromatologı´a y Tecnologı´a de los Alimentos, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain MS 08-536: Received 23 October 2008/Accepted 28 December 2008 ABSTRACT An enrichment PCR assay using species-specific primers was developed for the detection of Arcobacter butzleri, Arco- bacter cryaerophilus, Arcobacter skirrowii, and Arcobacter cibarius in chicken meat. Primers for A. cryaerophilus, A. skirrowii, and A. cibarius were designed based on the gyrA gene to amplify nucleic acid fragments of 212, 257, and 145 bp, respectively. The A. butzleri–specific primers were designed flanking a 203-bp DNA fragment in the 16S rRNA gene. The specificity of the four primer pairs was assessed by PCR analysis of DNA from a panel of Arcobacter species, related Campylobacter, Helicobacter species, and other food bacteria. The applicability of the method was then validated by testing 42 fresh retail- purchased chicken samples in the PCR assay. An 18-h selective preenrichment step followed by PCR amplification with the four Arcobacter primer sets revealed the presence of Arcobacter spp. -
Cape Royds, Ross Island
Measure 5 (2009) – Annex Management Plan for Antarctic Specially Protected Area (ASPA) No. 121 CAPE ROYDS, ROSS ISLAND Introduction Cape Royds lies at the western extremity of Ross Island, McMurdo Sound, at 166°09'56"E, 77°33'20"S. Approximate area: 0.62km2. Designation on the grounds that the Area supports the most southerly established Adélie penguin (Pygoscelis adeliae) colony known, and which has a long time series of population data that is of unique and outstanding scientific value. In addition, the Area has important terrestrial and freshwater ecological values, including the most southerly observation of snow algae, the type locality for original descriptions of a number of species of algae, and the unusual presence of a form of Dissolved Organic Matter (DOM) that is almost entirely microbially-derived. Proposed by the United States of America: adopted through Recommendation VIII-1 (1975, SPA No. 17); renamed and renumbered by Decision 1 (2002); revised management plan adopted through Measure 1 (2002). 1. Description of values to be protected 2 An area of about 300m at Cape Royds was originally designated in Recommendation VIII-4 (1975, SSSI No. 1) after a proposal by the United States of America on the grounds that it supports the most southerly established Adélie penguin (Pygoscelis adeliae) colony known. The Adélie penguin population at Cape Royds had declined from 1956 as a consequence of human interference during a period when heavy sea ice cover made the colony particularly susceptible to reduced recruitment. In 1963 United States and New Zealand authorities agreed to restrict activities and develop a management plan for the area in order to protect the scientific values related to penguin research. -
Diversity of Mat-Forming Sulfide-Oxidizing Bacteria at Continental Margins
Diversity of Mat-forming Sulfide-oxidizing Bacteria at Continental Margins Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften - Dr. rer. nat. - dem Fachbereich Biologie/Chemie der Universität Bremen vorgelegt von Stefanie Grünke Bremen, April 2010 Die vorliegende Doktorarbeit wurde in der Zeit von Juni 2006 bis April 2010 am Max- Planck-Institut für Marine Mikrobiologie und am Alfred-Wegener-Institut für Polar- und Meeresforschung angefertigt. 1. Gutachterin: Prof. Dr. Antje Boetius 2. Gutachter: Prof. Dr. Rudolf Amann Tag des Promotionskolloquiums: 4. Juni 2010 Diese Arbeit ist all denjenigen gewidmet, die ihre Segel setzen, um neue Welten gu erkunden. Seien sie sich gewiss, dass auf Sturm immer ruhiges Wasserfolgt. Wertrauen sie auf ihr größtes Gut — ihre Freunde und Familie. Nutgen sie ihre Schwächen, um neue Stärken gu finden. Soll Zuversicht ihr Kompass sein! Summary In the oceans, microbial mats formed by chemosynthetic sulfide-oxidizing bacteria are mostly found in so-called ‘reduced habitats’ that are characterized by chemoclines where energy-rich, reduced substances, like hydrogen sulfide, are transported into oxic or suboxic zones. There, these organisms often thrive in narrow zones or gradients of their electron donor (sulfide) and their electron acceptor (mostly oxygen or nitrate). Through the build up of large biomasses, mat-forming sulfide oxidizers may significantly contribute to primary production in their habitats and dense mats represent efficient benthic filters against the toxic gas hydrogen sulfide. As gradient organisms, these mat-forming sulfide oxidizers seem to be adapted to very defined ecological niches with respect to oxygen (or nitrate) and sulfide gradients. However, many aspects regarding their diversity as well as their geological drivers in marine sulfidic habitats required further investigation. -
GPS Support to the National Science Foundation Office of Polar Programs Antarctic Program
GPS Support to the National Science Foundation Office of Polar Programs Antarctic Program 2004-2005 Season Report GPS Support to the National Science Foundation Office of Polar Programs Antarctic Program 2004-2005 Season Report May 16, 2005 Beth Bartel Jim Greenberg Bjorn Johns UNAVCO, Inc. 6350 Nautilus Dr. Boulder, CO 80301 (303) 381-7470 www.unavco.org Support funded by the National Science Foundation Office of Polar Programs Supplement to EAR-0321760 - Support of UNAVCO Community and Facility Activities Cover photo: UNAVCO engineer Jim Greenberg works in -30° Celsius to upgrade the CONZ continuous GPS site from a Trimble 5700 to a Trimble NetRS receiver. 1 UNAVCO 2004-2005 Report Table of Contents: Summary.....................................................................................................................................................3 Table 1 – 2004-2005 Antarctic Support Provided.................................................................................4 Science Support .........................................................................................................................................5 Training ....................................................................................................................................................5 Field Support ...........................................................................................................................................5 Data Processing......................................................................................................................................5