Outperforming Sub-2-µm Totally Porous Particles using Fused-Core Technology Robert E. Moran, Stephanie A. Schuster, Barry E. Boyes, William L. Miles

Advanced Materials Technology Inc., Wilmington, DE 19810 Presented at EAS 2014

Abstract Comparing van Deemter Plots (h) Ballistic Separation of Anticoagulants Steroids Separation : HALO vs. TPP Explosive Separation : HALO vs. TPP Reduced Plate Height vs. Mobile Phase Velocity Plots Column : 2.1 x 100 mm Flow rate : 0.4 mL/min Sample : Column : 2.1 x 50 mm PFP Temperature : 30 °C Sample : Hydrocortisone 1. HMX Columns: 50 x 2.1 mm; Instrument: Shimadzu Nexera; Solute: naphthalene Column : 2.1 x 30 mm HALO 2 C18, 2µm, 90 Å Flow rate : 1.1 mL/min Peak Identities : Predisolone Mobile Phase : 72/28 H2O/MeOH Temperature : 42 °C Detection : 240 nm 2. RDX Mobile phase: Halo - 50/50 ACN/water, k = 6.3; o 1. Uracil Mobile Phase : 57% H2O/ 43% MeOH Cortisone Fused-core particles have shown distinct advantages over comparable Mobile phase A : 20 mM formic acid Temperature : 45 C Instrument : Shimadzu Nexera Detection : 254 nm 3. 1,3,5-Trinitrobenzene 1.6 m SPP - 48.5/51.5 ACN/water, k = 6.3; 1.7 m SPP - 47/53 ACN/water, k = 6.2 2. 6,7-dihydroxycoumarin Flow rate : 0.3 mL/min Injection volume : 1.0 µL Prednisone o Mobile phase B : 50/50 ACN/MeOH Detection : 254 nm Injection volume : 1.0 µL 4. 1,3-Dinitrobenzene 1.7 m TPP - 48.5/51.5 ACN/water, k=6.3; Temperature: 35 C; Injection volume: 0.2 L 3. 4-hydroxycoumarin Dexamethasone 4 totally porous particles (TPP) for separating molecules of all sizes and Gradient : Time %B Injection : 0.2 µL 250 5. Nitrobenzene 4. Coumarin 3 HALO 2 C18, 2µm, 90 Å 6. Tetryl 0 – 0.06 20 Max Pressure : 430 bar 78 5. 6-chloro-4-hydroxycoumarin 200 Pressure: 550 bar 7. 2,4,6-Trinitrotoluene characteristics. The introduction of a new 2.0 µm particle size to the 7.0 HALO 2 PFP, 2µm, 90 Å 0.06 – 1.06 20 – 75% 6. Warfarin 68 1 8. 2-Amino-4,6-Dinitrotoluene 7. Coumatetralyl Pressure: 281 bar Pw = 0.071 9. 4-amino-2,6-dinitrotoluene 58 150 2 Pw = 0.103 6.5 SPP Halo 2.0 m 5 10. 2,4-Dinitrotoluene Fused-core product line continues to advance high speed, high efficiency 35 8. Coumachlor SPP Halo 2.7 m 48 7 10 11. 2,6-Dinitrotoluene 100 6 8 6.0 SPP 1.6 m 3 Plates = 7800 12. 2-Nitrotoluene 7 38 9 separations into the future. These 2.0 µm Fused-core particles permit SPP, 1.7 m 30 11 Pw = 0.168 13. 4-Nitrotoluene 5.5 TPP, 1.7 m 4 28 50 12 14 14. 3-Nitrotoluene

Absorbance (mAU) Absorbance 13 separation speeds and resolution improvements greater than sub-2-µm 18 5.0 25 2 5 0 8 totally porous particles, but with about 20% lower column back pressure. 4.5 6 -50 20 ‐2 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 012345678910 4.0 8 Based on chromatographic theory, the trend of using smaller particle sizes 58 250 15 1 TPP C18, 1.7µm, 130 Å 3.5 TPP PFP, 1.8µm, 120 Å has been accepted as a way to increase efficiency. This report describes 48 200 Pressure: 640 bar 10 Pressure: 430 bar Absorbance (mAU) Absorbance Reduced Plate Height 3.0 4 Narrower and 38 Plates = 4300 150 3 the effect of these new particles on multiple factors of separation 1 P = 0.140 2.5 w taller peaks at 5 28 2 100 Pw = 0.094 9,10 15% lower performance, including reduced plate height, column efficiency, back 5 2.0 18 7 8 Industry 6 Pw = 0.213 0 50 11 pressure 12 1.5 Data fitted using van Deemter equation leading 13 14 Absorbance (mAU)Absorbance (mAU) Absorbance pressure, and resolution. 8 (mAU) Absorbance 0 0.2 0.4 0.6 0.8 1 1.2 1.4 Engineered ‐5 0 1.0 efficiency for high Time (min) ‐2 0123456789101112 over broad 012345678910 -50 Faster separation 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 performance Linear Mobile Phase Velocity, mm/sec Time (min) range of flow with high Time (min) rates efficiency Pressure vs. Flow Rate Carbonyl-DNPH High Resolution Separation Separation : HALO comparison Protein Separation : HALO vs. TPP Mobile Phase/Column Pressure Plots Column : 2.1 x 150 mm, HALO 2 C18, 2µm, 90 Å Flow rate : 0.5 mL/min Sample : DNPH Derivatized Columns : 3.0 x 50 mm Mobile Phase A : 90/10 H2O/ACN/0.1% TFA Sample: Gly-Tyr Columns : 4.6 x 100 mm Flow rate : 3 mL/min Peak Identities: Columns: 50 x 2.1 mm, C18: Instrument: Shimadzu Nexera; Solute: naphthalene Carbonyl Compounds – Val-Tyr-Val 1. Ribonuclease A 13.7 kDa Mobile Phase A : H2O Temperature : 30 °C Instrument : Agilent 1100 Mobile Phase B : 30/70 H2O/ACN/0.1% TFA Instrument : Agilent 1200 SL* Mobile Phase A : water/0.1% TFA 2. Cytochrome c 12.4 kDa Mobile phase: Halo, 50/50 ACN/water, k=6.3; SPP 1.6 m, 48.5/51.5 ACN/water, k=6.3 Mix of Options #1 and #2 Met-Enkephalin Injection Volume : 5 µL Mobile Phase B : acetonitrile/0.1% TFA o Mobile Phase B : 80/20 ACN/THF Detection : 360 nm Injection Volume : 2 µL Gradient : 0-55% B in 10 min. Angiotensin II 3. Lysozyme 14.3 kDa SPP 1.7 m, 47/53 ACN/water, k=6.2; Temperature: 35 C; Injection volume: 0.2 L (19 out of 20 major Gradient : Time %B Injection volume : 1.0 µL components resolved) Detection : 220 nm Flow rate : 0.6 mL/min Leu-Enkephalin Detection : 215 nm Gradient : 23-85% B in 1 min 4. α-Lactalbumin 14.2 kDa o 5. Catalase 250 kDa total; 0 – 5 min 45 Temperature : 30 °C Ribonuclease A Temperature : 60 C *3 + 6 µL heat exchangers 900 tetramer of ~60 kDa each 85 345 5 – 20 min 45 – 90 VWD1 A, Wavelength=220 nm (1034-1\QA_0-55_000112.D) 0.0065 mAU 9.079 75 HALO Protein ES-C18, 3.4 µm, 400 Å 0.0071 800 Halo 2.0 m 300 HALO 2 Peptide ES-C18 1.6 µm 65 Halo 2.7 m 250 Pressure: 234 bar 295 2 µm, 160 Å Pw = 0.0419 SPP 1.6 m 200 Pw = 0.0328 55 7.904

700 0.693 Pressure: 208 bar 0.0065 SPP 1.7 m Peak Capacity : 180 Columns for 150 45 100 0.0069 6.330 6.548 1.7 µm 5.450

245 Max Pressure : 281 bar 3.016 0.0082 50 35 600 every 9.207 0 0.452 25 2.0 µm instrument 0 1 2 3 4 5 6 7 8 9 min 15 195 VWD1 A, Wavelength=220 nm (1034-1\HALO27_55_00104.D)

500 (mAU) Absorbance mAU 5 9.076 300 HALO Peptide ES-C18 ‐5 145 250 400 2.7 µm, 160 Å P = 0.0413 P = 0.0570 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 200 w w 0.661 Pressure: 111 bar 150 7.918 85 100 6.435

95 6.120

300 5.205

50 2.668 75 9.201 Column Pressure, bar 2.7µm Totally Porous C18, 3 µm, 300 Å 0.437 0.0102 0 65 Pressure: 244 bar 0.0114 200 45 0 1 2 3 4 5 6 7 8 9 min VWD1 A, Wavelength=220 nm (1034-1\HALO5_55_000105.D) 55 mAU

Absorbance (mAU) Absorbance 45 0.0104 300 8.777 100 ‐5 HALO-5 Peptide ES-C18 35 0.0107 250 P = 0.0457 Pw = 0.0595 0 2 4 6 8 10 12 14 16 18 w 0.0150 200 5 µm, 160 Å 25

Time (min) 0.645 0 150 Pressure: 47 bar 7.672 15 Peak Identities : Formaldehyde-2,4-DNPH, Acetaldehyde-2,4-DNPH, Acetone-2,4-DNPH, Acrolein-2,4-DNPH, Propionaldehyde-2,4-DNPH, 100 Absorbance (mAU) Absorbance 6.227 5.983 5.119 Crotonaldehyde-2,4-DNPH, Butyraldehyde-2,4-DNPH, Benzaldehyde-2,4-DNPH, Cyclohexanone-2,4-DNPH, Isovaleraldehyde-2,4-DNPH, 50 2.761 5 8.905

0.0 0.2 0.4 0.6 0.8 1.0 1.2 0.425 Valeraldehyde-2,4-DNPH, o-Tolualdehyde-2,4-DNPH, m-Tolualdehyde-2,4-DNPH, p-Tolualdehyde-2,4-DNPH, Hexaldehyde-2,4-DNPH, 2,5- 0 ‐5 Dimethylbenzaldehyde-2,4-DNPH, Heptaldehyde-2,4-DNPH, Octyl aldehyde-2,4-DNPH, Nonanal-2,4-DNPH, Decyl aldehyde-2,4-DNPH Mobile Phase Flow Rate, mL/min 0 1 2 3 4 5 6 7 8 9 min 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Time (min) Incredible high High resolution pressure for protein separations Halo 2µm High Pressure Stability stability Plates per Bar Peptide Separation : Peak Capacity Peptide Peak Capacity : HALO vs. TTP Conclusions Column : 3.0 x 150 mm Penta-HILIC Mobile Phase : Plates per Pressure Required Columns : 4.6 x 150 mm Flow rate : 4.0 mL/min Peak Identities (in order) : Columns : 2.1 x 150 mm Peak Identities (in order) : Instrument : Shimadzu Nexera 88/12 ACN/ 0.1M Ammonium Formate pH:3 Flow rate : 0.5 mL/min 1. Asp-Phe • Fused-Core columns consistently provide sharper peaks, lower reduced plate Colum ns: 502 . 1x x0.21 5 0 mm C18; Instrum ent: Shimadzu Nexera; Solute: naphthalene 1. Asp-Phe Instrument : Agilent 1100 Mobile Phase A : H2O/0.1% TFA o Instrument : Agilent 1200 2. Tyr-Tyr-Tyr Injection Volume : 1.0 µL Pressure : 220 bar M obile phase: 50/50 - 47/53 ACN/water; Flow rate: 0.5 m L/min; Tem perature: 35 C Mobile Phase A : H2O + 0.1% TFA 2. Tyr-Tyr-Tyr Injection Volume : 5 µL Mobile Phase B : ACN/0.1% TFA Injection Volume : 2.5 µL 3. heights, and lower operating pressures when compared to totally porous Detection : 254 nm Sample : QCH+ Mobile Phase B : 80/20 ACN/H2O + 0.1% TFA 3. Angio 1-7 Amide 80 Detection : 215 nm Gradient : 5 – 60% B in 5 min 4. Angiotensin II 1. Acenaphthene Detection : 215 nm 4. Bradykinin o particles of equivalent particle size Temperature : 25°C 71.8 o Gradient : 5 – 70% B in 90 min Temperature : 40 C 5. 2. Adenosine Temperature : 60 C 5. Leu-Enk 6. β-endorphin • Sharper peaks result in increased peak capacity and sensitivity for all Flow Rate : 0.6 mL/min 6. Angiotensin II 3. Cytidine Pw = 0.015 7. Sauvagine 70 7. Neurotensin 70 separations HALO 2 Peptide ES-C18, 2µm, 160 Å HALO-5 Peptide ES-C18 2 8. Mellitin 8. β-endorphin 60 44 QC Test Before and After Multiple 1000 Bar Sample Injections 9. Sauvagine Pressure: 313 bar • 2µm Fused-Core columns deliver similar performance to sub-2µm columns at Peak Capacity : 453 4 Pw = 0.022 58.8 10. Mellitin 50 Peak capacity: 94 P = 0.022 Before 60 Max Pressure : 501 bar w 8 lower operating pressures 40 3 5 6 39 After 1 7 30 • Multiple particle sizes to fill the various objectives required in HPLC/UHPLC 2 *Halo 2 Peptide ES-C18 available June 2015* 1 20 separations 34 3 50 40.9 Outstanding 10  Small particles for high speed and high resolution R&D separations 38.1 18 (mAU) Absorbance 0 29 peak capacity  Larger particles for routine QA and QC separations 40 16 ‐10 0.00.51.01.52.02.53.03.54.04.55.0 • Various pore sizes to accommodate the broad range of analyte molecular 24 14 Time (min) Plates/bar 12 weights 30 70 TPP 5 µm C18 19 10 Pressure: 331 bar  90Å – small molecules 60 Pw = 0.028 8 (mAU) Peak capacity: 37 2  160Å – 20 50 P = 0.064 14 6 w Absorbance (mAU) Absorbance 4 Pw = 0.051 N= 47543 40 3 5 8  400Å – proteins 4 1 6 9 30 7 10 Absorbance 2 N= 48656 20 0 4 10 Acknowledgments Absorbance (mAU) ‐2 Peak capacity 0 0 0 102030405060 ‐1 2.5 times TPP Special thanks to Joseph DeStefano for expert knowledge and insight. Halo 2.0 µm Halo 2.7 µm SPP 1.6 µm SPP 1.7 µm Time (min) ‐10 012345 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 column Time (min) Column Type Time (min)