2755.Full.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

2755.Full.Pdf (CANCER RESEARCH 49, 2755-2760, May 15, 1989] Corticotropin-releasing Factor and Vasopressin Production in the Rat Pituitary Tumor 7315a: Biochemical and Immunohistochemical Studies1 MaríaInésMoranoand Fernando E. Estivariz2 Centro de Estudios Endocrinos, Facultad de Ciencias Medicas, Universidad Nacional de La Plata, Casilla de Correo 455, 1900 La Plata, Argentina ABSTRACT (16). We have found it interesting to study the production and secretion of hypothalamic factors by this tumor, principally In order to investigate the production and secretion of hypothalamic those involved in the control of POMC peptides secretion. In factors by the prolactin and proopiomelanocortin (POMC)-derived, pep- tide-producing, transplanta blu rat pituitary tumor 7315a, we determined the present report, we determined the tumor content and in the concentrations of corticotropin-releasing factor (CRF)- and vasopres- vitro secretion of CRF and AVP, compared with the production sin (AVP)-like immunoreactivities (IR) in the tumor extracts [14.0 ±1.6 of rat prolactin and POMC peptides in the 7315a tumor. In (SE) and 4.2 ±0.9 pmol/g, respectively] and incubation media (0.26 ± addition, we have investigated the Chromatographie character 0.01 and 0.07 ±0.01pmol/107 cells/h, respectively). Total peptide content istics of the CRF- and AVP-like immunoreactivities, and fi correlated well with tumor weight. Moreover, there is a very good nally, we have explored the possibility of distinct populations correlation between the CRF and AVP IR, but not as good between CRF of tumor cells producing the different hormones. or AVP IR and POMC peptide IR tumor contents. Tumor extracts were chromatographed on Sephadex G-75 and compared with chromatograms of stalk median eminence (SME) extracts from normal Buffalo rats. CRF MATERIALS AND METHODS IR in tumor chromatograms gave an unusual pattern of peaks. About 31% of the total CRF IR was eluted in the high molecular weight region. Materials. All reagents used were of analytical grade. Collagenase The major portion of CRF IR was located in a wide region of lower Type IV, deoxyribonuclease I type DM-100, BSA (RIA grade), molec molecular weight. The AVP radioimmunoassay revealed a similar pattern ular weight markers for gel filtration chromatography, PMSF, 3,3'- of peaks in tumor and SME chromatograms. A propressophysin-like diaminobenzidine, Polypep, and dextran (M, 70,000) were provided by peak and a smaller peak coeluting with synthetic AVP were detected. Sigma, St. Louis, MO. Sephadex G-75 Superfine and chromatography Immunohistochemical staining of consecutive sections of the tumor indi columns were from Pharmacia, Uppsala, Sweden. PAP was from Dako cated that AVP and CRF are often found in the same cell, but the CRF Corporation, Santa Barbara, CA. Norit-A-activated charcoal and and AVP-producing cells are clearly distinct from the POMC peptide- polyethylene glycol (M, 6,000) were purchased from Pablo Zubizarreta producing cells. Ward, Buenos Aires, Argentina. Vycor glass was from Corning Glass Works, New York, NY. Penicillin and streptomycin were supplied by Lepetit Laboratories, Buenos Aires, Argentina. Eagle I lei.a medium INTRODUCTION was from Difco, Detroit, MI. Radioiodine (125I isotope) was from The presence of POMC3-derived peptides has been demon Amersham International Pic., Bucks. Radioiodinated LH-RH was from New England Nuclear, Boston, MA. Synthetic human ACTH (1-39) strated in human pituitary and ectopie ACTH-secreting tumors which may give rise to Cushing's syndrome (1-5). Moreover, [hACTH (1-39)], ACTH (1-24), ACTH (17-39), and a-MSH were supplied by Drs. P. A. Desaulles and W. Rittel, Ciba-Geigy, Basle, since the first demonstration of CRF-like activity in two types Switzerland. Synthetic JV-terminal POMC (1-48) [N-POMC (1-48)] of ectopie ACTH-producing tumors (pancreatic tumor and lung was a gift from Dr. J. Ramachandran, Genentech Inc., San Francisco, oat cell carcinoma) by Upton and Amatruda (6), considerable CA. Human N-POMC (1-76) [hN-POMC (1-76)] and h/3-LPH were evidence has been accumulating on ectopie production of both purified at St. Bartholomew's Hospital, London and kindly donated by ACTH and CRF in various human tumors (7-11). In the rat, Dr. P. J. Lowry, Department of Physiology and Biochemistry, Univer there is some information about CRF-like activity in the ACTH, sity of Reading, England. 73-MSH was a gift from Dr. P. Owens, growth hormone and prolactin-producing pituitary tumor MtT/ University of Newcastle, New South Wales, Australia, and MT was donated by Dr. M. Manning, Medical College of Ohio, OH. Human ß- F4 (12). On the other hand, it has been suggested that tumors endorphin, (Phe2,Nle4) ACTH (1-24), rat and ovine CRF (rCRF and can produce factors which resemble other hypothalamic hor oCRF), Tyr°-rCRF(rCRF with a tyrosine in position 0), sauvagine, mones and affect pituitary hormone secretion (13-15). (Arg')-AVP, (Arg')-AVT, LH-RH, and human angiotensins II and III The 7315a tumor is a Irimethyl-aniline induced trunspkmta (hA II and hA III) were purchased from Peninsula Laboratories, Bel- ble rat pituitary tumor that secretes prolactin and POMC- mont, CA. OT (Syntocinon) was from Sandoz Laboratories, Buenos derived peptides. In this respect, our previous studies have Aires, Argentina. Desacetyl a-MSH and C-terminal a-MSH antiserum analyzed the entire spectrum of POMC peptides produced by were kindly provided by Dr. A. Eberle, Institute of Molecular Biology the 7315a tumor, as a first step towards explaining the effects and Biophysics, Zurich, Switzerland. Rabbit anti-0-endorphin E-286, exerted by the tumor on the hypothalamo-pituitary-adrenal axis anti-rCRF 11 and anti-A II E-44 sera were donated by Dr. E. Spinedi, CRRIE, La Plata, Argentina. The anti-AVP/AVT sera AVPR and AVP4 Received 8/12/88; revised 1/18/89; accepted 1/23/89. were a gift from Dr. S. Blähser,Justus Liebig Universität, Giesen, The costs of publication of this article were defrayed in part by the payment Germany, and rabbit anti-oCRF serum was donated by Dr. G. Gillies, of page charges. This article must therefore be hereby marked advertisement in St. Bartholomew's Hospital, London, England. The anti-N-POMC (1- accordance with 18 U.S.C. Section 1734 solely to indicate this fact. ' Work supported by Grant PID-3-901102 from the National Research Council 76) sera C4 and D4, anti-ACTH serum AC 1-7 and goat anti-rabbit 7- of Argentina (CONICET). globulin were produced in our laboratory. Rat prolactin RIA materials 2 Present address: Neuroendocrinology Unit, Department of Neurobiology, were supplied by the NIADDK Rat Pituitary Hormone Distribution 1MBICE, Casilla de Correo 403, 1900 La Plata, Argentina. To whom requests for reprints should be addressed. Program. 3The abbreviations used are: POMC, proopiomelanocortin; A, angiotensin; Biological Specimens. The 7315a pituitary tumor was kindly provided ACTH, adrenocorticotropin; AVP, vasopressin; AVT, vasotocin; BSA, bovine by Dr. R. M. MacLeod from the Department of Medicine, University serum albumin; CRF, corticotropin-releasing factor; IR, immunoreactivity; LH- of Virginia, School of Medicine, Charlottesville, VA, in 1981 and RH, luteinizing hormone-releasing hormone; /5-LPH, /3-lipotropin; MSH. mela- notropin; MT, mesotocin; OT, oxitocin; PAP, peroxidase-antiperoxidase com maintained in our laboratory since then by successive transfer in Buffalo plex; PMSF, phenylmethylsulphonyl fluoride; N-POMC, N-terminal POMC; rats originally obtained from Simonsen Labs, Gilroy, CA, and subse RIA, radioimmunoassay; SME, stalk median eminence. quently bred in our laboratory. Transplants were performed as described 2755 Downloaded from cancerres.aacrjournals.org on September 30, 2021. © 1989 American Association for Cancer Research. CRF AND AVP IN 7315a TUMOR previously (16) by s.c. inoculation of tumor pieces or dispersed tumor Ojeda, and McCann (22), using an antiserum provided by Dr. A. cells (approximately IO7) suspended in Eagle's HeLa medium, in the Arimura (Tulane University). The detection limit of the assay was 4 suprascapular region of inbred adult Buffalo rats. Animals were kept pg/tube. The rat prolactin RIA was performed using the NIADDK RIA at 21 ±2°Cin a 12-h light/12-h darkness cycle with water and food kit. The intra- and interassay coefficients were less than 8 and 12%, available ad libitum. Since the discovery of CRF and AVP in our tumor respectively, in all the RIA systems employed. line, we have tested and found these peptides in another sample of the Immunohistochemical Methods. One portion of each tumor was 7315a tumor from Dr. MacLeod, recently provided by him. routinely fixed in Elftman's fluid (23), embedded in paraffin, and Peptide Extraction and Chromatography. Tumor tissue was removed sectioned at 3-^m thickness. The presence of POMC peptides, CRF from donor rats between Days 15 and 50 after inoculation. Segments and AVP were immunohistochemically demonstrated as published of nonnecrotic tumor tissue were rapidly homogenized in either 200 elsewhere (24). Adjacent sections were immunostained by the peroxi- mM HC1 or acetic acid (1 M) with PMSF (l IHM)(l g tumor/2.5 ml dase-antiperoxidase (PAP) unlabeled antibody enzyme technique, using acid mixture) with or without brief boiling to inactivate proteolytic as the oxygen acceptor 3,3'-diaminobenzidine. For comparison, pitui- enzymes. Tumor homogenates were immediately centrifuged at 12,000 taries and SME from normal adult Buffalo rats were fixed and treated x g at 0°Cfor60 min. SME (consisting of the hypothalamic-hypophy- in the same way. As negative controls, the first antisera were replaced sial stalk, with a small portion of basal hypothalamic tissue attached to by rabbit normal serum or absorbed against their corresponding anti it) was dissected from normal adult Buffalo rats according to Linton gens. The antibodies employed were identical to those described in "Radioimmunoassays." and Lowry (17), and processed in conditions similar to those for the tumor tissue.
Recommended publications
  • Corticotropin-Releasing Hormone Physiology
    European Journal of Endocrinology (2006) 155 S71–S76 ISSN 0804-4643 Corticotropin-releasing hormone physiology Joseph A Majzoub Division of Endocrinology, Children’s Hospital Boston, Thomas Morgan Rotch Professor of Pediatrics, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, USA (Correspondence should be addressed to J A Majzoub; Email: [email protected]) Abstract Corticotropin-releasing hormone (CRH), also known as corticotropin-releasing factor, is a highly conserved peptide hormone comprising 41 amino acid residues. Its name derives from its role in the anterior pituitary, where it mediates the release of corticotropin (ACTH) leading to the release of adrenocortical steroids. CRH is the major hypothalamic activator of the hypothalamic–pituitary– adrenal (HPA)axis. Major functions of the HPAinclude: (i) influencing fetal development of major organ systems including lung, liver, and gut, (ii) metabolic functions, including the maintenance of normal blood glucose levels during the fasting state via glycogenolysis and gluconeogenesis, (iii) modulation of immune function, and (iv) maintenance of cardiovascular tone. In addition, CRH, acting both directly and via the HPA, has a role in regulating several neuroendocrine functions including behavior, food intake, reproduction, growth, immune function, and autonomic function. CRH has been localized to the paraventricular nucleus (PVN) of the hypothalamus, which projects to the median eminence and other hypothalamic and midbrain targets. The CRH gene is composed of two exons. The CRH promoter contains a cAMP-response element, and the intron contains a restrictive element-1/neuron restrictive silencing element (RE-1/NRSE) sequence. Recently, a family of CRH-related peptides, termed the urocortins, has been identified.
    [Show full text]
  • G Protein-Coupled Receptors
    S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2015/16: G protein-coupled receptors. British Journal of Pharmacology (2015) 172, 5744–5869 THE CONCISE GUIDE TO PHARMACOLOGY 2015/16: G protein-coupled receptors Stephen PH Alexander1, Anthony P Davenport2, Eamonn Kelly3, Neil Marrion3, John A Peters4, Helen E Benson5, Elena Faccenda5, Adam J Pawson5, Joanna L Sharman5, Christopher Southan5, Jamie A Davies5 and CGTP Collaborators 1School of Biomedical Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK, 2Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK, 3School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, UK, 4Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK, 5Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/ 10.1111/bph.13348/full. G protein-coupled receptors are one of the eight major pharmacological targets into which the Guide is divided, with the others being: ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading.
    [Show full text]
  • Neuropeptide-Induced Contraction and Relaxation of the Mouse
    Proc. Natl. Acad. Sci. USA Vol. 81, pp. 625-629, January 1984 Physiological Sciences Neuropeptide-induced contraction and relaxation of the mouse anococcygeus muscle (neurohypophysial peptides/neurotensin/thyrotropin-releasing hormone/urotensin i/vasoactive intestinal polypeptide) ALAN GIBSON*, HOWARD A. BERNtt, MICHAEL GINSBURG*, AND JACK H. BOTTING* *Department of Pharmacology, Chelsea College, University of London, Manresa Road, London SW3 6LX, United Kingdom; and tDepartment of Zoology and Cancer Research Laboratory, University of California, Berkeley, CA 94720 Contributed by Howard A. Bern, September 26, 1983 ABSTRACT Isometric tension responses to neuropeptides fects of a wide range of neuropeptides on tone of the mouse were recorded from anococcygeus muscles isolated from male anococcygeus in vitro. mice. This smooth muscle tissue is innervated by inhibitory nonadrenergic, noncholinergic nerves that resemble, ultra- MATERIALS AND METHODS structurally, the peptidergic neurons of the gastrointestinal Male mice (LACA strain from A. Tuck & Son, Battles- tract; the physiological function of the anococcygeus is not bridge, Essex, U.K.; 25-35 g) were stunned and bled. Both known. Slow sustained contractions were produced by oxyto- anococcygeus muscles were dissected from the animal and cin (0.2-20 nM), [Arg8]vasopressin (0.4-200 nM), and [Arg]- set up in series, joined at the point of unification on the ven- vasotocin (0.4-100 nM); the mouse anococcygeus is, therefore, tral rectum, in 1-ml glass organ baths that contained Krebs one of the few examples of nonvascular smooth muscle from bicarbonate solution (mM: NaCl, 118.1; KCI, 4.7; MgSO4, male mammals to respond to low concentrations of oxytocin 1.0; KH2PO4, 1.2; CaCl2, 2.5; NaHCO3, 25.0; glucose, 11.1).
    [Show full text]
  • Urocortin 2 Autocrine/Paracrine and Pharmacologic Effects to Activate AMP-Activated Protein Kinase in the Heart
    Urocortin 2 autocrine/paracrine and pharmacologic effects to activate AMP-activated protein kinase in the heart Ji Lia, Dake Qib, Haiying Chengc, Xiaoyue Hub, Edward J. Millerd, Xiaohong Wub, Kerry S. Russellb, Nicole Mikushb, Jiasheng Zhangb, Lei Xiaoe, Robert S. Sherwinc, and Lawrence H. Youngb,1 aDepartment of Pharmacology and Toxicology, University at Buffalo, The State University of New York, Buffalo, NY 14214; bSection of Cardiovascular Medicine and cSection of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520; dDepartment of Medicine, Boston University, Boston, MA 02118; and eUniversity of Florida Shands Cancer Center, Department of Anatomy and Cell Biology, College of Medicine, Gainesville, FL 32610 Edited* by Gerald I. Shulman, Howard Hughes Medical Institute and Yale University, New Haven, CT, and approved August 9, 2013 (received for review July 11, 2013) Urocortin 2 (Ucn2), a peptide of the corticotropin-releasing factor Ucn2 (5). Signaling pathways have substantial cross-talk, and (CRF) family, binds with high affinity to type 2 CRF receptors pharmacologic inhibitor studies suggest a possible association (CRFR2) on cardiomyocytes and confers protection against ische- between activation of PKCe and the energy-stress kinase AMP- mia/reperfusion. The mechanisms by which the Ucn2-CRFR2 axis activated protein kinase (AMPK) (10). AMPK is activated by mitigates against ischemia/reperfusion injury remain incompletely changes in cellular energetics, but its activity is also modulated
    [Show full text]
  • Neuropeptide Regulation of Signaling and Behavior in the BNST
    Mol. Cells 2015; 38(1): 1-13 http://dx.doi.org/10.14348/molcells.2015.2261 Molecules and Cells http://molcells.org Established in 1990G Neuropeptide Regulation of Signaling and Behavior in the BNST Thomas L. Kash*, Kristen E. Pleil, Catherine A. Marcinkiewcz, Emily G. Lowery-Gionta, Nicole Crowley, Christopher Mazzone, Jonathan Sugam, J. Andrew Hardaway, and Zoe A. McElligott Recent technical developments have transformed how neu- aversion related behaviors, however there is also evidence that roscientists can probe brain function. What was once it can regulate appetitive responses. Numerous pharmacologi- thought to be difficult and perhaps impossible, stimulating a cal studies targeting different peptide systems as well as single set of long range inputs among many, is now relative- monoaminergic systems have found that the BNST plays a key ly straight-forward using optogenetic approaches. This has role in anxiety. For example, the Davis group has found that provided an avalanche of data demonstrating causal roles CRF in the BNST can potently enhance anxiety (Walker et al., for circuits in a variety of behaviors. However, despite the 2009b) and the Hammack group has found that PACAP signal- critical role that neuropeptide signaling plays in the regula- ing can alter stress responses (Kocho-Schellenberg et al., tion of behavior and physiology of the brain, there have 2014; Lezak et al., 2014a; 2014b). In support of this, recent been remarkably few studies demonstrating how peptide findings from several groups using optogenetic approaches release is causally linked to behaviors. This is likely due to have shown the BNST plays a role in anxiety (Jennings et al., both the different time scale by which peptides act on and 2013a; Kim et al., 2013), however these manuscripts also the modulatory nature of their actions.
    [Show full text]
  • Coordinated Changes in Energy Intake and Expenditure Following Hypothalamic Administration of Neuropeptides Involved in Energy Balance
    Europe PMC Funders Group Author Manuscript Int J Obes (Lond). Author manuscript; available in PMC 2010 January 01. Published in final edited form as: Int J Obes (Lond). 2009 July ; 33(7): 775–785. doi:10.1038/ijo.2009.96. Europe PMC Funders Author Manuscripts Coordinated changes in energy intake and expenditure following hypothalamic administration of neuropeptides involved in energy balance Nina M Semjonous*, Kirsty L Smith*, James RC Parkinson, David JL Gunner, Yong-Ling Liu, Kevin G Murphy, Mohammad A Ghatei, Stephen R Bloom, and Caroline J Small Department of Investigative Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK Abstract Objective—The hypothalamic control of energy balance is regulated by a complex network of neuropeptide-releasing neurons. Whilst the effect of these neuropeptides on individual aspects of energy homeostasis has been studied, the coordinated response of these effects has not been comprehensively investigated. We have simultaneously monitored a number of metabolic parameters following ICV administration of 1nmol and 3nmol of neuropeptides with established roles in the regulation of feeding, activity and metabolism. Ad libitum fed rats received the orexigenic neuropeptides neuropeptide Y (NPY), agouti-related protein (AgRP), melanin- concentrating hormone (MCH) or orexin-A. Overnight food deprived rats received an ICV injection of the anorectic peptides α-MSH, corticotrophin releasing factor (CRF) or neuromedin U (NMU). Results—Our results reveal the temporal sequence of the effects of these neuropeptides on both Europe PMC Funders Author Manuscripts energy intake and expenditure, highlighting key differences in their function as mediators of energy balance. NPY and AgRP increased feeding and decreased oxygen consumption, with the effects of AgRP being more prolonged.
    [Show full text]
  • The Role of Corticotropin-Releasing Hormone at Peripheral Nociceptors: Implications for Pain Modulation
    biomedicines Review The Role of Corticotropin-Releasing Hormone at Peripheral Nociceptors: Implications for Pain Modulation Haiyan Zheng 1, Ji Yeon Lim 1, Jae Young Seong 1 and Sun Wook Hwang 1,2,* 1 Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea; [email protected] (H.Z.); [email protected] (J.Y.L.); [email protected] (J.Y.S.) 2 Department of Physiology, College of Medicine, Korea University, Seoul 02841, Korea * Correspondence: [email protected]; Tel.: +82-2-2286-1204; Fax: +82-2-925-5492 Received: 12 November 2020; Accepted: 15 December 2020; Published: 17 December 2020 Abstract: Peripheral nociceptors and their synaptic partners utilize neuropeptides for signal transmission. Such communication tunes the excitatory and inhibitory function of nociceptor-based circuits, eventually contributing to pain modulation. Corticotropin-releasing hormone (CRH) is the initiator hormone for the conventional hypothalamic-pituitary-adrenal axis, preparing our body for stress insults. Although knowledge of the expression and functional profiles of CRH and its receptors and the outcomes of their interactions has been actively accumulating for many brain regions, those for nociceptors are still under gradual investigation. Currently, based on the evidence of their expressions in nociceptors and their neighboring components, several hypotheses for possible pain modulations are emerging. Here we overview the historical attention to CRH and its receptors on the peripheral nociception and the recent increases in information regarding their roles in tuning pain signals. We also briefly contemplate the possibility that the stress-response paradigm can be locally intrapolated into intercellular communication that is driven by nociceptor neurons.
    [Show full text]
  • Urocortins: Emerging Metabolic and Energy Homeostasis Perspectives
    Review Urocortins: emerging metabolic and energy homeostasis perspectives Yael Kuperman and Alon Chen Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel The effects of stress on energy balance and the through the expression of neuropeptide Y and agouti-related pep- involvement of the neuropeptide corticotropin releasing tide. The Arc is accessible to circulating signals of energy balance, factor in modulating the anorexia of stress and sympath- through the underlying median eminence, because this region of the etic nervous system tone are well recognized. Currently, brain is not protected by the blood–brain barrier. Thus, the Arc serves as an integrative center responsible for information processing and studies centered on the roles of the more recently coordinating appropriate output [58]. described members of this family of ligands, the urocor- Bed nucleus of the stria terminalis (BNST): the BNST is located within tins, and their preferred receptor, the corticotropin the basal forebrain and is considered to be the extended amygdala. It releasing factor type 2 receptor, suggest that they are seems to be involved in a number of complex functions, including important modulators of centrally controlled metabolic sexual behavior, autonomic function, anxiety and aversiveness of opiate withdrawal [58]. functions. In addition, urocortins also regulate fuel util- Dorsal raphe nucleus (DRN): the raphe nuclei are located in the ization in the periphery by acting locally within key midbrain and provide the major ascending serotonergic projection metabolic tissues through autocrine and/or paracrine to the forebrain. The raphe projects to the striatum, amygdala, mechanisms. Recent findings have demonstrated that caudate putamen, hippocampus, substantia nigra and locus coeru- urocortin 2 and urocortin 3, by acting through their leus.
    [Show full text]
  • Outperforming Sub-2 Um Totally Porous Particles Using Fused-Core Technology
    Outperforming Sub-2-µm Totally Porous Particles using Fused-Core Technology Robert E. Moran, Stephanie A. Schuster, Barry E. Boyes, William L. Miles Advanced Materials Technology Inc., Wilmington, DE 19810 Presented at EAS 2014 Abstract Comparing van Deemter Plots (h) Ballistic Separation of Anticoagulants Steroids Separation : HALO vs. TPP Explosive Separation : HALO vs. TPP Reduced Plate Height vs. Mobile Phase Velocity Plots Column : 2.1 x 100 mm Flow rate : 0.4 mL/min Sample : Column : 2.1 x 50 mm PFP Temperature : 30 °C Sample : Hydrocortisone Columns: 50 x 2.1 mm; Instrument: Shimadzu Nexera; Solute: naphthalene Peak Identities : Mobile Phase : 72/28 H2O/MeOH Temperature : 42 °C 1. HMX Column : 2.1 x 30 mm HALO 2 C18, 2µm, 90 Å Flow rate : 1.1 mL/min Detection : 240 nm Predisolone 2. RDX Mobile phase: Halo - 50/50 ACN/water, k = 6.3; o 1. Uracil Mobile Phase : 57% H2O/ 43% MeOH Cortisone Fused-core particles have shown distinct advantages over comparable Mobile phase A : 20 mM formic acid Temperature : 45 C Instrument : Shimadzu Nexera Detection : 254 nm 3. 1,3,5-Trinitrobenzene 1.6 m SPP - 48.5/51.5 ACN/water, k = 6.3; 1.7 m SPP - 47/53 ACN/water, k = 6.2 2. 6,7-dihydroxycoumarin Flow rate : 0.3 mL/min Injection volume : 1.0 µL Prednisone o Mobile phase B : 50/50 ACN/MeOH Detection : 254 nm Injection volume : 1.0 µL 4. 1,3-Dinitrobenzene 1.7 m TPP - 48.5/51.5 ACN/water, k=6.3; Temperature: 35 C; Injection volume: 0.2 L 3.
    [Show full text]
  • G Protein‐Coupled Receptors
    S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: G protein-coupled receptors. British Journal of Pharmacology (2019) 176, S21–S141 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: G protein-coupled receptors Stephen PH Alexander1 , Arthur Christopoulos2 , Anthony P Davenport3 , Eamonn Kelly4, Alistair Mathie5 , John A Peters6 , Emma L Veale5 ,JaneFArmstrong7 , Elena Faccenda7 ,SimonDHarding7 ,AdamJPawson7 , Joanna L Sharman7 , Christopher Southan7 , Jamie A Davies7 and CGTP Collaborators 1School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK 2Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria 3052, Australia 3Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK 4School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK 5Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK 6Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK 7Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide represents approximately 400 pages, the material presented is substantially reduced compared to information and links presented on the website.
    [Show full text]
  • Adrenomedullin Inhibits Connective Tissue Growth Factor Expression
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector original article http://www.kidney-international.org & 2008 International Society of Nephrology Adrenomedullin inhibits connective tissue growth factor expression, extracellular signal-regulated kinase activation and renal fibrosis T Nagae1, K Mori1, M Mukoyama1, M Kasahara1, H Yokoi1, T Suganami1, K Sawai1, T Yoshioka1, M Koshikawa1, Y Saito1, Y Ogawa1, T Kuwabara1, I Tanaka1, A Sugawara1, T Kuwahara2 and K Nakao1 1Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan and 2Department of Nephrology, Osaka Saiseikai Nakatsu Hospital, Osaka, Japan Systemic administration of the potent vasodilating peptide Tubulointerstitial fibrosis is a common feature of progressive adrenomedullin reduces cardiac and renal fibrosis in renal injury and predicts the long-term outcome of renal hypertensive animals. Here, we investigated the effects function.1 Among proposed mechanisms by which interstitial of kidney-specific adrenomedullin gene delivery in fibrosis progresses, transforming growth factor-b (TGFB1) normotensive rats after unilateral ureteral obstruction, plays a central role in the pathogenesis.2–4 TGFB1 promotes an established model of renal tubulointerstitial fibrosis. the accumulation of extracellular matrix, through the enhan- Overexpression of exogenous adrenomedullin in the renal ced synthesis of extracellular matrix proteins, such as fibro- interstitium following ureteral
    [Show full text]
  • Urocortin Is the Principal Ligand for the Corticotrophin- Releasing Factor Binding Protein in the Ovine Brain with No Evidence for a Sauvagine-Like Peptide
    53 Urocortin is the principal ligand for the corticotrophin- releasing factor binding protein in the ovine brain with no evidence for a sauvagine-like peptide S M Baigent and P J Lowry School of Animal and Microbial Sciences, University of Reading, Reading, Berkshire RG6 6AJ, UK (Requests for offprints should be addressed to S M Baigent; Email: [email protected]) ABSTRACT To purify novel ligands for the corticotrophin- Additionally, a 300 bp cDNA fragment sharing 83% releasing factor binding protein (CRF-BP) from homology with the rat urocortin gene was cloned ovine brain, whole brain was homogenised in from ovine brain, the product of which was methanol and the supernatant extracted on Sep-pak predicted to have an identical amino acid sequence C18 cartridges followed by a preliminary HPLC to that of rat urocortin. These pieces of information step. Three peaks of ovine CRF-BP ligand activity confirmed the identity of the human CRF-BP were detected in the HPLC fractions, the first two ligand as an ovine urocortin. The specially of which were also detected by a specific developed CRF-BP ligand assays showed that corticotrophin-releasing factor two-site immuno- the rank orders of affinity of the CRF family radiometric assay, the third peak being detected by members for human CRF-BP were: carp urotensin- a human CRF-BP ligand assay, which will not 1>>human CRF=rat/ovine urocortin>human detect ovine CRF. Human CRF-BP ligand- urocortin>>frog sauvagine>>ovine CRF, and those containing fractions were further purified by affinity for the ovine CRF-BP were: carp urotensin-1> chromatography on a human recombinant CRF-BP human CRF=rat/ovine urocortin>human urocortin> column with two additional HPLC steps.
    [Show full text]