Control of Penicillium Digitatum on Orange Fruits with Calcium Chloride Dipping

Total Page:16

File Type:pdf, Size:1020Kb

Control of Penicillium Digitatum on Orange Fruits with Calcium Chloride Dipping Journal of Microbiology Research and Reviews Vol. 2(6): 54-61, September, 2014 ISSN: 2350-1510 www.resjournals.org/JMR Control of Penicillium Digitatum on Orange Fruits with Calcium Chloride Dipping Zahra Ibrahim El-Gali Department of Plant Protection, Faculty of Agriculture, Omer Al-Mukhtar University, El-Beida Libya. Email for Correspondence: [email protected] ABSTRACT Citrus is one of the most widely grown plants in the world; however, it is affected by many types of fruit rot diseases after harvesting. Green mold disease of orange, caused by Penicillium digitatum Sacc, can cause extensive postharvest losses. The goal of this research was to use postharvest calcium applications to reduce fruit rot disease by soaking in solutions of CaCl2 and to test the effect of calcium on mycelial growth. Application of calcium chloride at 0.2%, 0.5% and 1.0% concentrations significantly decreased mycelial growth. In vivo studies showed fruit treatment by calcium soaking at 2% , 4% and 6% concentrations significantly reduced rots incidence of fruits. The optimal conditions of fungal growth were 25ºC and 87% relative humidity. Keywords: Citrus, green mold, calcium chloride, post-harvest treatment, control. INTRODUCTION Citrus is the second largest fruit crop worldwide (Spiegel-Roy and Goldschmidt, 1996) and it is one of the foremost export fruit Crops in Libya and in the rest of the world. It is primarily valued for its fruit, which is either consumed (sour orange, sweet orange, tangerine, grapefruit, etc.) or used in processing industry. All species have traditional medicinal value. Citrus has many other uses including animal fodder and craft and fuel wood (Manner et al., 2006). In addition, their essential oils are used in the cosmetic and pharmaceutical industries (Frazier and Westhofe, 1978) and a highly fermentable energy source with sweet taste and aroma (Lawal et al., 2013). Postharvest diseases play a major role in reducing the quantity and quality of citrus. Postharvest fungal decay may cause significant losses to the citrus industry worldwide (Holmes and Bckertn, 1999; Barkai-Gohan, 2001; Plaza et al., 2003). Injuries on citrus fruit caused during harvest, provide entries to wound pathogens, including Penicillium digitatum Sacc. and P. italicum Wehmer, causal agents of green and blue mold respectively. The mold invades the fruit much more rapidly and predominates in mixed infections, causing approximately 60-80% of decay (Palou et al., 2001; Skaria et al., 2003; Plaza et al., 2004). The growers normally use chemical fungicides to reduce the problem (Eckert, 1990). Attempts to find alternatives to chemical control were still ongoing because many fungi have become resistant to commonly used fungicides, so there is in creasing concern in respect to chemical residues on fruit products regarding health and environmental issues. However, alternative measures are generally less effective than fungicides. Simultaneous application of several physical and chemical methods could provide more effective means of control and consistent results than that of one approach alone. Some physical treatments and exogenous substances, such as chitosan, amino acids, antibiotics, calcium salts, and carbohydrates have also been used to enhance bio control of antagonists against fungal pathogens (Conway et al., 1999; El-Ghouthet al., 2000). Some studies revealed that application of CaCl2 at postharvest stage was also successful in controlling fungal infection. Calcium (Ca) dip was effective in inhibiting spore germination, thus providing a good control of C. gloeosporiodes infection on papaya (Eryani-Raqeeb et al., 2009) and on red-flesh dragon fruit (Hylocereus polyrhizus) 55 (Awang et al., 2011). Similar effect of Ca was reported to inhibit the growth of Botryosphaeria dothidea (Biggs et al., 1997) Botrytis cinerea (El-Gali, 2008) on apple and Monilinia fructicola on peach (Biggs, 2004). As the pathogenic fungi use carbon from sugars and acids of the host for their growth and development (Kamilova et al., 2006), and at the same time secreting cell wall degrading enzymes (Prusky et al., 2001), the quality of fungal infected fruit is expected to be reduced. With the possible role of Ca in inhibiting the growth of the fungus, fruit containing high concentration of Ca may be less susceptible to the fungal infection (Naradisorn, 2013).This study was conducted to determine the effects of postharvest application of different concentrations of calcium chloride on the occurrence of green mold of orange fruits and on mycelial growth of P. digitatum. The effect of different temperature and relative humidity on fungal growth was also studied in this work. MATERIALS AND METHODS Fruit source and isolation, identification of fungi Orange (Citrus sinensis L.) fruit both fresh and those found with symptoms of fungal infection were purchased from different markets located in El-Beida city, Libya, and brought to the Microbiology laboratory at Agriculture college University, Omer, Al-Mukhtar, for further studies. A total of 90 randomly selected fungal infected fruits and 90 unblemished, healthy and clean looking fruits were purchased. They were washed with water, their surface were sterilized by exposing them in 1% sodium hypochlorite and then rinsed three times in sterile distilled water. Segments (3-5 mm) of tissues from the margins of the rotted areas were cut out with a sterile scalpel and placed on previously prepared potato dextrose agar (PDA) in Petri dishes and incubated at 25 ± 1oC for 5 days under 12 h photoperiod. The fungus was purified by single spore isolation technique (Ho and Ko, 1997) and the purified isolates were maintained on PDA slants for further studies. The pathogen that appeared was primarily identified up to species level using cultural and morphological features under the light microscopic(Pitt, 1991;Frisvad and Samson, 2004). Optimal growth conditions of fungus Effect of Temperature Petri plates (9cm) containing 20 ml of PDA medium were inoculated with 5mm mycelia disc from ten day old culture of fungal isolate. The inoculated plates were incubated at different temperature: 15, 20, 25, 30, 35 and 40°C. Three replications were maintained for each treatment. Seven days after inoculation, the radius of each growing colony was measured in two directions at right angles to each other and the percentage in fungal growth was calculated in relative to its plate radius as described earlier (Bracanto and Golding, 1953). Effect of Relative Humidity (RH) The effect of relative humidity (RH) on the growth of pathogen was studied following the method described by Dhingra and Sinclair (1985) using PDA medium.5mm discs from the actively growing ten day old culture of the pathogen were placed in the center of the Petri plates. The inoculated plates were placed in the upper chambers of the desiccators, to prepare the required relative humidity regimes. Then 250ml each of distilled water, Ammonium chloride, Potassium bromide, Sodium carbonate, and Potassium nitrate were placed in the lower chambers of the desiccators and allowed to stand for 4hours to attain the relative humidity regimes of 100%, 91%, 87%, 82% and 77.5% respectively. Desiccators were kept at 25ºC. Three replications were maintained for each treatment. The radial growth was measured as described above. Effect of CaCl2 on fungal growth To assess the influence of CaCl2on mycelium growth of P. digitatum. it was directly added to PDA medium. Different concentrations:0.02, 0.05, 0.2, 0.5 and 1.0% (gm/ml) were solubilized in the PDA medium. 20 ml of each of the mixture from liquid media and CaCl2 were poured into Petri-dishes, then inoculated with the test fungus. PDA plates free of salt were used as control treatment. Three replications were maintained for each treatment. All plates were incubated at 25±1°C and the mean of the fungal colonies was measured at the end of 3 and 7 days and the standard deviation of 56 Figure 1. (A) Green mold on orange, (B) Culture of P. digitatum and (C) Conidiophores and conidia of P. digitatum. mean was also calculated. Effect of CaCl2 on fruit decay Fruits Preparation A total of 40 fruits used in the study chosen in the same size , free from diseases, micro cracks and without wounds were obtained from local market commercial in El-Beida city, Libya. The fruits were washed using tap water, dried at 22°C and then soaked accordingly in five concentrations of CaCl2 solutions (0, 2, 4and 6%) for 30 min. After the treatment, the fruits were left overnight in an open shelf at room temperature (22°C). The fruits were then washed again with distilled water and then rinsed. Fruits inoculation The fruits surface were sterilized by exposing them in 1% sodium hypochlorite and artificially wounded (1 mm wide and 2 mm deep) with sterile needles in the middle of each fruit and inoculated with 20 µl of P. digitatum (106 spores mL- 1).Control treatment were inoculated with distilled water. The inoculated fruits were placed on tray packs in plastic boxes containing moistened filter paper, covered with cling-films, and stored at 25˚C with two replicates of 5 fruits for each treatment. After 5 days, theradii of rotted symptoms were measured from inoculation site on the fruits surface (Janisiewicz et al. 1992). Experimental design and statistical analysis. All experiments were conducted on the basis of completely randomized designs (CRD). Each treatment was replicated at least three times. For statistical analysis, data were subjected to the analysis of variance (ANOVA) using Co Stat Program. Angular transformed values were used for data analysis. Statistical comparisons among means were performed using Duncan’s multiple range test (DMRT). RESULTS AND DISCUSSION Isolation and identification of the pathogen Symptoms The initial symptom of green mold is the appearance of a soft, watery and slightly discolored spot from 1/4 to 1/2 inch (2.5 cm) in diameter. This spot enlarges to 1 to 2 inches in diameter after 1 to 1.5 days at 24±1ºC.
Recommended publications
  • FINAL RISK ASSESSMENT for Aspergillus Niger (February 1997)
    ATTACHMENT I--FINAL RISK ASSESSMENT FOR Aspergillus niger (February 1997) I. INTRODUCTION Aspergillus niger is a member of the genus Aspergillus which includes a set of fungi that are generally considered asexual, although perfect forms (forms that reproduce sexually) have been found. Aspergilli are ubiquitous in nature. They are geographically widely distributed, and have been observed in a broad range of habitats because they can colonize a wide variety of substrates. A. niger is commonly found as a saprophyte growing on dead leaves, stored grain, compost piles, and other decaying vegetation. The spores are widespread, and are often associated with organic materials and soil. History of Commercial Use and Products Subject to TSCA Jurisdiction The primary uses of A. niger are for the production of enzymes and organic acids by fermentation. While the foods, for which some of the enzymes may be used in preparation, are not subject to TSCA, these enzymes may have multiple uses, many of which are not regulated except under TSCA. Fermentations to produce these enzymes may be carried out in vessels as large as 100,000 liters (Finkelstein et al., 1989). A. niger is also used to produce organic acids such as citric acid and gluconic acid. The history of safe use for A. niger comes primarily from its use in the food industry for the production of many enzymes such as a-amylase, amyloglucosidase, cellulases, lactase, invertase, pectinases, and acid proteases (Bennett, 1985a; Ward, 1989). In addition, the annual production of citric acid by fermentation is now approximately 350,000 tons, using either A.
    [Show full text]
  • Deteriorative Changes in Oilseeds Due to Storage Fungi and Efficacy of Botanicals Rajendra B
    Curr. Bot. 2(1):17-22, 2011 REGULAR ARTICLE Deteriorative changes in oilseeds due to storage fungi and efficacy of botanicals Rajendra B. Kakde and Ashok M. Chavan Seed Pathology and Fungal Biotechnology Laboratory, Department of Botany, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad-431004 (M.S.) India K EYWORDS A BSTRACT Oilseeds, storage fungi, nutritional changes, Improper storage makes the oilseeds vulnerable to storage fungi which deteriorate the aqueous extract, fungitoxic stored oilseeds both qualitatively and quantitatively. They bring about the variety of biochemical changes in the suitable conditions. Considering this fact, experiments C ORRESPONDENCE were undertaken to understand nutritional changes like change in reducing sugar, change in crude fat content and change in crude fiber content of oilseeds due to Rajendra B. Kakde, Seed Pathology and Fungal artificial infestation of storage fungi. It was found that, Alternaria dianthicola, Biotechnology Laboratory, Department of Botany, Curvularia lunata, Fusarium oxysporum, Fusarium equiseti, Macrophomina Dr. Babasaheb Ambedkar Marathwada University, phaseolina and Rhizopus stolonifer causes decrease in reducing sugar of oilseeds. Aurangabad-431004 (M.S.) India Alternaria dianthicola, Curvularia pellescens, Macrophomina phaseolina, Penicillium digitatum and Penicillium chrysogenum hampered the fat content of oilseeds. E-mail: [email protected] Curvularia lunata, Curvularia pellescens, Fusarium oxysporum, Macrophomina phaseolina, Rhizopus stolonifer and Penicillium digitatum increased the fiber content E DITOR in oilseeds. An attempt was also made to control the seed-borne fungi by using Gadgile D.P. aqueous extract of ten medicinal plants. Aqueous extract of Eucalyptus angophoroides was found to be most fungitoxic. CB Volume 2, Year 2011, Pages 17-22 Introduction are not fit for human consumption and are also rejected at the India is one of the largest producers of oilseeds in the industrial level.
    [Show full text]
  • Microsatellite Characterization and Marker Development for the Fungus Penicillium Digitatum, Causal Agent of Green Mold of Citrus
    Received: 31 August 2018 | Revised: 14 November 2018 | Accepted: 16 November 2018 DOI: 10.1002/mbo3.788 ORIGINAL ARTICLE Microsatellite characterization and marker development for the fungus Penicillium digitatum, causal agent of green mold of citrus Erika S. Varady1,2 | Sohrab Bodaghi1 | Georgios Vidalakis1 | Greg W. Douhan3 1Department of Microbiology and Plant Pathology, University of California, Abstract Riverside, California Penicillium digitatum is one of the most important postharvest pathogens of citrus on 2 Department of Molecular Biology and a global scale causing significant annual losses due to fruit rot. However, little is Biochemistry, University of California Irvine, Irvine, California known about the diversity of P. digitatum populations. The genome of P. digitatum has 3University of California Cooperative been sequenced, providing an opportunity to determine the microsatellite distribu‐ Extension, Tulare, California tion within P. digitatum to develop markers that could be valuable tools for studying Correspondence the population biology of this pathogen. In the analyses, a total of 3,134 microsatel‐ Greg W. Douhan, University of California lite loci were detected; 66.73%, 23.23%, 8.23%, 1.24%, 0.16%, and 0.77% were de‐ Cooperative Extension, Tulare, CA. and tected as mono‐, di‐, tri‐, tetra‐, penta‐, and hexanucleotide repeats, respectively. As Georgios Vidalakis, Department of consistent with other ascomycete fungi, the genome size of P. digitatum does not Microbiology and Plant Pathology, University of California Riverside, Riverside, seem to correlate with the density of microsatellite loci. However, significantly longer CA. motifs of mono‐, di‐, and tetranucleotide repeats were identified in P. digitatum com‐ Emails: [email protected]; georgios. [email protected] pared to 10 other published ascomycete species with repeats of over 800, 300, and Funding information 900 motifs found, respectively.
    [Show full text]
  • Allergic Bronchopulmonary Aspergillosis and Severe Asthma with Fungal Sensitisation
    Allergic Bronchopulmonary Aspergillosis and Severe Asthma with Fungal Sensitisation Dr Rohit Bazaz National Aspergillosis Centre, UK Manchester University NHS Foundation Trust/University of Manchester ~ ABPA -a41'1 Severe asthma wl'th funga I Siens itisat i on Subacute IA Chronic pulmonary aspergillosjs Simp 1Ie a:spe rgmoma As r§i · bronchitis I ram une dysfu net Ion Lun· damage Immu11e hypce ractivitv Figure 1 In t@rarctfo n of Aspergillus Vliith host. ABP A, aHerg tc broncho pu~ mo na my as µe rgi ~fos lis; IA, i nvas we as ?@rgiH os 5. MANCHl·.'>I ER J:-\2 I Kosmidis, Denning . Thorax 2015;70:270–277. doi:10.1136/thoraxjnl-2014-206291 Allergic Fungal Airway Disease Phenotypes I[ Asthma AAFS SAFS ABPA-S AAFS-asthma associated with fu ngaIsensitization SAFS-severe asthma with funga l sensitization ABPA-S-seropositive a llergic bronchopulmonary aspergi ll osis AB PA-CB-all ergic bronchopulmonary aspergi ll osis with central bronchiectasis Agarwal R, CurrAlfergy Asthma Rep 2011;11:403 Woolnough K et a l, Curr Opin Pulm Med 2015;21:39 9 Stanford Lucile Packard ~ Children's. Health Children's. Hospital CJ Scanford l MEDICINE Stanford MANCHl·.'>I ER J:-\2 I Aspergi 11 us Sensitisation • Skin testing/specific lgE • Surface hydroph,obins - RodA • 30% of patients with asthma • 13% p.atients with COPD • 65% patients with CF MANCHl·.'>I ER J:-\2 I Alternar1a• ABPA •· .ABPA is an exagg·erated response ofthe imm1une system1 to AspergUlus • Com1pUcatio n of asthm1a and cystic f ibrosis (rarell·y TH2 driven COPD o r no identif ied p1 rior resp1 iratory d isease) • ABPA as a comp1 Ucation of asth ma affects around 2.5% of adullts.
    [Show full text]
  • Microorganisms
    microorganisms Article Protection of Citrus Fruits from Postharvest Infection with Penicillium digitatum and Degradation of Patulin by Biocontrol Yeast Clavispora lusitaniae 146 1, 1, 1 Mariana Andrea Díaz y, Martina María Pereyra y, Fabricio Fabián Soliz Santander , María Florencia Perez 1 , Josefina María Córdoba 1 , Mohammad Alhussein 2, Petr Karlovsky 2,* and Julián Rafael Dib 1,3,* 1 Planta Piloto de Procesos Industriales Microbiológicos (PROIMI) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Belgrano y Pje. Caseros, 4000 Tucumán, Argentina; [email protected] (M.A.D.); [email protected] (M.M.P.); [email protected] (F.F.S.S.); [email protected] (M.F.P.); cordobajosefi[email protected] (J.M.C.) 2 Molecular Phytopathology and Mycotoxin Research, University of Goettingen, Grisebachstrasse 6, D-37077 Göttingen, Germany; [email protected] 3 Instituto de Microbiología, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, 4000 Tucumán, Argentina * Correspondence: [email protected] (P.K.); [email protected] (J.R.D.); Tel.: +49-551-39-12918 (P.K.); +54-381-4344888 (J.R.D.) These authors contributed equally to this work. y Received: 14 September 2020; Accepted: 23 September 2020; Published: 25 September 2020 Abstract: Fungal rots are one of the main causes of large economic losses and deterioration in the quality and nutrient composition of fruits during the postharvest stage. The yeast Clavispora lusitaniae 146 has previously been shown to efficiently protect lemons from green mold caused by Penicillium digitatum. In this work, the effect of yeast concentration and exposure time on biocontrol efficiency was assessed; the protection of various citrus fruits against P.
    [Show full text]
  • F Fbacillus Subtilis F F (Penicillium Digitatum Sacc.) F F 2549 F Bacillus
    I! Bacillus subtilis ! (Penicillium digitatum Sacc.) aL ! () *( ! !+ Eb JHK 2549 Nc G + Bacillus spp. @ ! 23 205 4 1 ! / 1 1 ,C ,C,D9/ Penicillium digitatum /E +-/ @ B. subtilis @ ! 9 4 / @ 1 (1:32) P. digitatum (80-100 %) * 4+ -8 1 30-70% 143 LM 4 11! 80% @ Bacillus spp. 9 !/ B. subtilis 155 1 , 2 1. 1+/ EC 50 / 3 , P. digitatum / 77.26 81.35 E+ / @ 1 ,C ! 4 1* 1! ! E+ E QR-/ E1 3 CHCl 3/MeOH/H 2O (65:25:4, , /, ) 3Z 4 Rf / 0.14, 0.19, 0.28, 0.49 0.58 11 E1 EC 50 + 95.73, 14.07, 15.19, 108.59 100 E+ / @ 1 LME, @ B. subtilis 155 * 1! E ]Q 4+! 4! 80% +/ EC 50 ,7 288 E+ / LME, 4 1 Z 4@ )E Q ]/, 2 6 Z 4 15 P. digitatum 11 +! E + 41 ,. P. digitatum (10 4 , / ) --! 1 E +1 3! 4 3 / -3! 4 5 1 +!+E + E1, B. subtilis 155 1 * -1! ! / ^/ 1!/ E1, + 43//,. 24 4! E Z 1 E +11 (99.70%) 3! 4 8 /! 1* (10 / ) Z 11 . 143/ E1 1 E + 3 5 ! -/ 0. 6 4 - 4- 4,. /!E1, + 1* * @ 1 ] / 1- 431+!+ 41E + / @ + (3) Thesis Title Growth Inhibitory Properties of Bacillus subtilis Strains and Their Metabolites Against the Green Mold Pathogen ( Penicillium digitatum Sacc.) of Citrus Author Miss Panpen Hemmanee Major Program Biochemistry Academic Year 2006 ABSTRACT Twenty three strains of Bacillus spp. screened from 205 isolated of soil bacteria showed antagonistic activities towards Penicillium digitatum pathogen, a cause fruit rot disease of citrus.
    [Show full text]
  • Monoclonal Antibodies As Tools to Combat Fungal Infections
    Journal of Fungi Review Monoclonal Antibodies as Tools to Combat Fungal Infections Sebastian Ulrich and Frank Ebel * Institute for Infectious Diseases and Zoonoses, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, D-80539 Munich, Germany; [email protected] * Correspondence: [email protected] Received: 26 November 2019; Accepted: 31 January 2020; Published: 4 February 2020 Abstract: Antibodies represent an important element in the adaptive immune response and a major tool to eliminate microbial pathogens. For many bacterial and viral infections, efficient vaccines exist, but not for fungal pathogens. For a long time, antibodies have been assumed to be of minor importance for a successful clearance of fungal infections; however this perception has been challenged by a large number of studies over the last three decades. In this review, we focus on the potential therapeutic and prophylactic use of monoclonal antibodies. Since systemic mycoses normally occur in severely immunocompromised patients, a passive immunization using monoclonal antibodies is a promising approach to directly attack the fungal pathogen and/or to activate and strengthen the residual antifungal immune response in these patients. Keywords: monoclonal antibodies; invasive fungal infections; therapy; prophylaxis; opsonization 1. Introduction Fungal pathogens represent a major threat for immunocompromised individuals [1]. Mortality rates associated with deep mycoses are generally high, reflecting shortcomings in diagnostics as well as limited and often insufficient treatment options. Apart from the development of novel antifungal agents, it is a promising approach to activate antimicrobial mechanisms employed by the immune system to eliminate microbial intruders. Antibodies represent a major tool to mark and combat microbes. Moreover, monoclonal antibodies (mAbs) are highly specific reagents that opened new avenues for the treatment of cancer and other diseases.
    [Show full text]
  • MM 0839 REV0 0918 Idweek 2018 Mucor Abstract Poster FINAL
    Invasive Mucormycosis Management: Mucorales PCR Provides Important, Novel Diagnostic Information Kyle Wilgers,1 Joel Waddell,2 Aaron Tyler,1 J. Allyson Hays,2,3 Mark C. Wissel,1 Michelle L. Altrich,1 Steve Kleiboeker,1 Dwight E. Yin2,3 1 Viracor Eurofins Clinical Diagnostics, Lee’s Summit, MO 2 Children’s Mercy, Kansas City, MO 3 University of Missouri-Kansas City School of Medicine, Kansas City, MO INTRODUCTION RESULTS Early diagnosis and treatment of invasive mucormycosis (IM) affects patient MUC PCR results of BAL submitted for Aspergillus testing. The proportions of Case study of IM confirmed by MUC PCR. A 12 year-old boy with multiply relapsed pre- outcomes. In immunocompromised patients, timely diagnosis and initiation of appropriate samples positive for Mucorales and Aspergillus in BAL specimens submitted for IA testing B cell acute lymphoblastic leukemia, despite extensive chemotherapy, two allogeneic antifungal therapy are critical to improving survival and reducing morbidity (Chamilos et al., are compared in Table 2. Out of 869 cases, 12 (1.4%) had POS MUC PCR, of which only hematopoietic stem cell transplants, and CAR T-cell therapy, presented with febrile 2008; Kontoyiannis et al., 2014; Walsh et al., 2012). two had been ordered for MUC PCR. Aspergillus was positive in 56/869 (6.4%) of neutropenia (0 cells/mm3), cough, and right shoulder pain while on fluconazole patients, with 5/869 (0.6%) positive for Aspergillus fumigatus and 50/869 (5.8%) positive prophylaxis. Chest CT revealed a right lung cavity, which ultimately became 5.6 x 6.2 x 5.9 Differentiating diagnosis between IM and invasive aspergillosis (IA) affects patient for Aspergillus terreus.
    [Show full text]
  • Allergic Bronchopulmonary Aspergillosis: a Perplexing Clinical Entity Ashok Shah,1* Chandramani Panjabi2
    Review Allergy Asthma Immunol Res. 2016 July;8(4):282-297. http://dx.doi.org/10.4168/aair.2016.8.4.282 pISSN 2092-7355 • eISSN 2092-7363 Allergic Bronchopulmonary Aspergillosis: A Perplexing Clinical Entity Ashok Shah,1* Chandramani Panjabi2 1Department of Pulmonary Medicine, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India 2Department of Respiratory Medicine, Mata Chanan Devi Hospital, New Delhi, India This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. In susceptible individuals, inhalation of Aspergillus spores can affect the respiratory tract in many ways. These spores get trapped in the viscid spu- tum of asthmatic subjects which triggers a cascade of inflammatory reactions that can result in Aspergillus-induced asthma, allergic bronchopulmo- nary aspergillosis (ABPA), and allergic Aspergillus sinusitis (AAS). An immunologically mediated disease, ABPA, occurs predominantly in patients with asthma and cystic fibrosis (CF). A set of criteria, which is still evolving, is required for diagnosis. Imaging plays a compelling role in the diagno- sis and monitoring of the disease. Demonstration of central bronchiectasis with normal tapering bronchi is still considered pathognomonic in pa- tients without CF. Elevated serum IgE levels and Aspergillus-specific IgE and/or IgG are also vital for the diagnosis. Mucoid impaction occurring in the paranasal sinuses results in AAS, which also requires a set of diagnostic criteria. Demonstration of fungal elements in sinus material is the hall- mark of AAS.
    [Show full text]
  • Characterization of Terrelysin, a Potential Biomarker for Aspergillus Terreus
    Graduate Theses, Dissertations, and Problem Reports 2012 Characterization of terrelysin, a potential biomarker for Aspergillus terreus Ajay Padmaj Nayak West Virginia University Follow this and additional works at: https://researchrepository.wvu.edu/etd Recommended Citation Nayak, Ajay Padmaj, "Characterization of terrelysin, a potential biomarker for Aspergillus terreus" (2012). Graduate Theses, Dissertations, and Problem Reports. 3598. https://researchrepository.wvu.edu/etd/3598 This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Characterization of terrelysin, a potential biomarker for Aspergillus terreus Ajay Padmaj Nayak Dissertation submitted to the School of Medicine at West Virginia University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Immunology and Microbial Pathogenesis Donald H. Beezhold,
    [Show full text]
  • Penicillium Digitatum Metabolites on Synthetic Media and Citrus Fruits
    J. Agric. Food Chem. 2002, 50, 6361−6365 6361 Penicillium digitatum Metabolites on Synthetic Media and Citrus Fruits MARTA R. ARIZA,† THOMAS O. LARSEN,‡ BENT O. PETERSEN,§ JENS Ø. DUUS,§ AND ALEJANDRO F. BARRERO*,† Department of Organic Chemistry, University of Granada, Avdn. Fuentenueva 18071, Spain; Mycology Group, BioCentrum-DTU, Søltofts Plads, Technical University of Denmark, 2800 Lyngby, Denmark; and Carlsberg Research Laboratory, Gamle Carlsberg Vej 10, DK-2500 Valby, Denmark Penicillium digitatum has been cultured on citrus fruits and yeast extract sucrose agar media (YES). Cultivation of fungal cultures on solid medium allowed the isolation of two novel tryptoquivaline-like metabolites, tryptoquialanine A (1) and tryptoquialanine B (2), also biosynthesized on citrus fruits. Their structural elucidation is described on the basis of their spectroscopic data, including those from 2D NMR experiments. The analysis of the biomass sterols led to the identification of 8-12. Fungal infection on the natural substrates induced the release of citrus monoterpenes together with fungal volatiles. The host-pathogen interaction in nature and the possible biological role of citrus volatiles are also discussed. KEYWORDS: Citrus fruits; Penicillium digitatum; quivaline metabolites; tryptoquivaline; P. digitatum sterols; phenylacetic acid derivatives; volatile metabolites INTRODUCTION obtained from a Hewlett-Packard 5972A mass spectrometer using an ionizing voltage of 70 eV, coupled to a Hewlett-Packard 5890A gas P. digitatum grows on the surface of postharvested citrus fruits chromatograph. producing a characteristic powdery olive-colored conidia and Preparation of TMS Derivatives and Analysis by GC-MS. TMS is commonly known as green-mold. This pathogen is of main derivatives were obtained according to the procedure previously concern as it is responsible for 90% of citrus losses due to described (7).
    [Show full text]
  • Concomitant Mucormycosis with Aspergillosis in Patients with Uncontrolled Diabetes
    DOI: 10.7860/JCDR/2021/47912.14507 Case Series Concomitant Mucormycosis with Aspergillosis in Patients with Uncontrolled Diabetes Microbiology Section Microbiology Mellitus: A Case Series ARPANA SINGH1, AROOP MOHANTY2, SHWETA JHA3, PRATIMA GUPTA4, NEELAM KAISTHA5 ABSTRACT Fungal infections are life threatening especially in presence of immunosuppression or uncontrolled diabetes mellitus mainly due to their invasive potential. Mucormycosis of the oculo-rhino-cerebral region is an opportunistic, aggressive, fatal and rapidly spreading infection caused by organisms belonging to Mucorales order and class Zygomycetes. The organisms associated are ubiquitous. Aspergillosis is a common clinical condition caused by the Aspergillus species, most often by Aspergillus fumigatus (A. fumigatus). Both fungi have a predilection for the immunosuppressive conditions, with uncontrolled diabetes and malignancy being the most common among them. Mucormycosis is caused by environmental spores which get access into the body through the lungs and cause various systemic manifestations like rhino-cerebral mucormycosis. Here, a case series of such concomitant infections of Aspergillus and Mucor spp from Rishikesh, Uttarakhand, India is reported. Keywords: Diabetes, Fungal infection, Invasive mycoses, Rhinosinusitis INTRODUCTION Case 2 Mucorales are the universally distributed saprophytes causing A 60-year-old female patient presented with complaints of aggressive and opportunistic infection. They are angio-invasive fever for three days and ptosis for one day. She was a known in nature. Aspergillosis is the clinical condition caused by the case of Type 2 Diabetes Mellitus (T2DM) and hypertension for Aspergillus species most often A. fumigatus [1]. It proves to be the past seven years but was on irregular drug metformin and fatal, if it infects secondarily to the brain.
    [Show full text]