Download Slides (Pdf)

Total Page:16

File Type:pdf, Size:1020Kb

Download Slides (Pdf) PEARLS OF LABORATORY MEDICINE Hyaline and Mucorales Molds Dennise E. Otero Espinal MD Assistant Director of Clinical Pathology at Lenox Hill Hospital DOI: 10.15428/CCTC.2019.304881 © Clinical Chemistry Objectives • Name methods for mold identification • Describe the characteristics of hyaline molds • Discuss some of the most commonly Mucorales fungi isolated in the laboratory 2 Methods of Identification • Direct visualization • Slide prepared before setting fungal cultures • Calcofluor White fluorescent stain o Non- specific 1 Hyaline mold stained with Calcofluor White fluorescent stain. Photo credit: Melinda Wills • Histology o Hematoxilin & Eosin stain (H&E) o Gomori Methenamine Silver stain (GMS) o Periodic acid–Schiff (PAS) o Non-specific 2 Rhizopus spp. - H&E, 60x 3 Methods of Identification • Culture • Colony morphology • Lactophenol cotton blue stain • Media types: o Non-selective o With antibiotics o With cycloheximide • MALDI-TOF MS • DNA sequencing Penicillium spp., lactophenol cotton blue stain, 60x 4 Hyaline Molds • Rapid growth • Thin, regularly septate hyphae • Acute angle branching septations (blue arrows) • Aspergillus spp., Fusarium spp., and Scedosporium spp. may be indistinguishable by Hyaline mold, H&E stain, 60x histology 5 Hyaline Molds - Aspergillus fumigatus Complex • Most common cause of invasive aspergillosis, allergic aspergillosis, fungal sinusitis, and aspergilloma (fungus ball) 1 • Fast growing blue-green colonies with white borders (image 1), white to tan on reverse • Dome or flask-shaped vesicle with uniseriate phialides covering 2/3 of the vesicle (red arrows image 2) 2 A. fumigatus complex - Lactophenol cotton blue stain, 60x 6 Hyaline Molds - Aspergillus flavus Complex • Second most common cause of invasive aspergillosis • Producer of aflatoxin • Fast growing, yellow-green 1 colonies, yellowish on reverse (image 1) • Rough or spiny conidiophore, may be hard to see (red arrow image 2) • Globose vesicle covered by uniseriate or biseriate phialides 2 A. flavus complex – Lactophenol cotton blue stain, 60x 7 Hyaline Molds - Aspergillus niger Complex • Cause of aspergilloma (fungus ball) and otitis externa 1 • Fast growing black colonies, white on reverse (image 1) • Globose vesicle with biserate phialides and brown conidia (image 2 2) A. niger complex - Lactophenol cotton blue stain, 60x 8 Hyaline Molds - Aspergillus terreus Complex • Can cause disseminated disease 1 • Resistant to amphotericin B • Fast growing cinnamon- brown colonies, yellow on reverse • Upper half of the dome- shaped vesicle has biserate phialides (red arrow) 2 A. terreus complex - Lactophenol cotton blue stain, 60x 9 Hyaline Molds - Penicillium spp. • Most often considered to be a contaminant • Talaromyces marneffei (Penicillium marneffei) 1 • Fast growing, powdery blue-green colonies (image 1) • Branched and unbranched conidiophores with clusters of phialides with round conidia in chains (image 2) 2 Penicillium spp. - Lactophenol cotton blue stain, 60x 10 Hyaline Molds - Paecilomyces spp. • Considered a contaminant • May be a cause of keratitis • Usually fast growing, flat, yellow-brown colonies, with off- white reverse • Branched conidiophores with clusters of phialides with delicate tapering ends and oval conidia in chains Paecilomyces spp. – Lactophenol cotton blue stain, 60x 11 Hyaline Molds – Penicillium Vs. Paecilomyces Penicillium Paecillomyces Blue-green colonies Yellow-brown colonies Blunt phialides Long tapering phialides Round conidia Oval conidia 12 Hyaline Molds - Fusarium ssp. • Can cause a wide array of infections, from nail to disseminated disease (in immunocompromised patients) • Fast growing wooly colonies • White, cream, pink, or purple • Light or deeply colored reverse • Produces micro and macroconidia • 1-2 celled microconidia • Curved macroconidia (banana or sickled shaped), septate, Fusarium spp. - Lactophenol cotton blue stain, 60x usually in clusters 13 Hyaline Molds – Acremonium spp. • Cause of white-grain mycetoma, keratitis, and nail infection • Slow growing rose to white colonies • Clusters of single cell conidia at the end of narrow phialides (red arrow), usually in masses Acremonium spp. - Lactophenol cotton blue stain , 60x Photo credit: Melinda Wills 14 Mucormycosis • Caused fungi from the Mucorales order • Rhizopus spp., Mucor spp., Lichtheimia (previously Absidia) spp., Rhizomucor, and Apophysomyces spp and others rarely • Zygomycetes - obsolete term • Cause of rhinocerebral, pulmonary, cutaneous, and systemic invasive disease • Diabetes, iron overload, immune suppressed 15 Mucorales • Rapidly growing mycelium • Pauciseptated, ribbon-like or broad hyphae • Wide-angle branching Rhizopus spp. - H&E stain, 60x • Histology 16 Mucorales - Rhizopus spp. • Most common cause of mucormycosis • White, cottony, fast growing colonies that darken with age. White to pale grey or brown reverse • Characterized by presence of rhizoids • Root like structures (red arrow) Rhizopus spp. - Lactophenol cotton blue stain, 60x • Multispored, spherical sporangia • Unbranched sporangiophores directly connected to rhizoids 17 Mucorales - Mucor spp. • Less common cause of mucormycosis • White-yellow to grey, cottony, fast growing colonies that 1 darken with age (Image 1). Reverse is white • Hyaline sporangiophores • Multispored, spherical sporangia • No rhizoids (red arrow image 2) • Identification of exclusion 2 Mucor spp. - Lactophenol cotton blue stain, 60x 18 Mucorales • Differential characteristics between Lichtheimia, Rhizomucor, and Apophysomyces Genus Sporangiophore Apophysis Columella Sporangium Rhizoids Apophysomyces Unbranched Bell- Dome Pyriform Present grey-brown shaped, not shaped prominent Lichtheimia Branched Conical, not Dome Pyriform Primitive, hyaline prominent shaped present Rhizomucor Branched Absent Round Globose Present, brown few 19 References 1. Chen SCA, Sorrell TC, Meyer W. Aspergillus and Penicillium. In: Jorgensen JH, Pfaller MA, Carroll KC et al., eds. Manual of Clinical Microbiology. 11th ed. Washington DC: ASM; 2015: 2030- 2056. 2. Zhang SX, O’Donnell K, Sutton DA. Fusarium and Other Opportunistic Hyaline Fungi. In: Jorgensen JH, Pfaller MA, Carroll KC et al., eds. Manual of Clinical Microbiology. 11th ed. Washington DC: ASM; 2015: 2057-2086. 3. Garcia-Hermoso D, Alanio A, Lortholary O, et al. Agents of Systemic and Subcutaneous Mucormycosis and Entomophthoromycosis. In: Jorgensen JH, Pfaller MA, Carroll KC et al., eds. Manual of Clinical Microbiology. 11th ed. Washington DC: ASM; 2015: 2087-2109. 4. Love GL, Ribes JA. Color Atlas of Mycology: An Illustrated Field Guide Based on Proficiency Testing. Northfield, IL: College of American Pathologists; 2018. 5. Guarner J, Brandt ME. Histopathologic diagnosis of fungal infections in the 21st century. Clin Microbiol Rev 2011;24:247-80. 6. Ribes JA, Vanover-Sams CL, Baker DJ. Zygomycetes in human disease. Clin Microbiol Rev 2000;13:236-301. 7. Mendoza L, Vilela R, Voelz K, Ibrahim AS, Voigt K, Lee SC. Human Fungal Pathogens of Mucorales and Entomophthorales. Cold Spring Harb Perspect Med. 2014;5(4):a019562. 20 Disclosures/Potential Conflicts of Interest Upon Pearl submission, the presenter completed the Clinical Chemistry disclosure form. Disclosures and/or potential conflicts of interest: . Employment or Leadership: No disclosures . Consultant or Advisory Role: No disclosures . Stock Ownership: No disclosures . Honoraria: No disclosures . Research Funding: No disclosures . Expert Testimony: No disclosures . Patents: No disclosures 21 Thank you for participating in this Clinical Chemistry Trainee Council Pearl of Laboratory Medicine. Find our upcoming Pearls and other Trainee Council information at www.traineecouncil.org Download the free Clinical Chemistry app on iTunes today for additional content! Follow us: 22.
Recommended publications
  • FINAL RISK ASSESSMENT for Aspergillus Niger (February 1997)
    ATTACHMENT I--FINAL RISK ASSESSMENT FOR Aspergillus niger (February 1997) I. INTRODUCTION Aspergillus niger is a member of the genus Aspergillus which includes a set of fungi that are generally considered asexual, although perfect forms (forms that reproduce sexually) have been found. Aspergilli are ubiquitous in nature. They are geographically widely distributed, and have been observed in a broad range of habitats because they can colonize a wide variety of substrates. A. niger is commonly found as a saprophyte growing on dead leaves, stored grain, compost piles, and other decaying vegetation. The spores are widespread, and are often associated with organic materials and soil. History of Commercial Use and Products Subject to TSCA Jurisdiction The primary uses of A. niger are for the production of enzymes and organic acids by fermentation. While the foods, for which some of the enzymes may be used in preparation, are not subject to TSCA, these enzymes may have multiple uses, many of which are not regulated except under TSCA. Fermentations to produce these enzymes may be carried out in vessels as large as 100,000 liters (Finkelstein et al., 1989). A. niger is also used to produce organic acids such as citric acid and gluconic acid. The history of safe use for A. niger comes primarily from its use in the food industry for the production of many enzymes such as a-amylase, amyloglucosidase, cellulases, lactase, invertase, pectinases, and acid proteases (Bennett, 1985a; Ward, 1989). In addition, the annual production of citric acid by fermentation is now approximately 350,000 tons, using either A.
    [Show full text]
  • Turning on Virulence: Mechanisms That Underpin the Morphologic Transition and Pathogenicity of Blastomyces
    Virulence ISSN: 2150-5594 (Print) 2150-5608 (Online) Journal homepage: http://www.tandfonline.com/loi/kvir20 Turning on Virulence: Mechanisms that underpin the Morphologic Transition and Pathogenicity of Blastomyces Joseph A. McBride, Gregory M. Gauthier & Bruce S. Klein To cite this article: Joseph A. McBride, Gregory M. Gauthier & Bruce S. Klein (2018): Turning on Virulence: Mechanisms that underpin the Morphologic Transition and Pathogenicity of Blastomyces, Virulence, DOI: 10.1080/21505594.2018.1449506 To link to this article: https://doi.org/10.1080/21505594.2018.1449506 © 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group© Joseph A. McBride, Gregory M. Gauthier and Bruce S. Klein Accepted author version posted online: 13 Mar 2018. Submit your article to this journal Article views: 15 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=kvir20 Publisher: Taylor & Francis Journal: Virulence DOI: https://doi.org/10.1080/21505594.2018.1449506 Turning on Virulence: Mechanisms that underpin the Morphologic Transition and Pathogenicity of Blastomyces Joseph A. McBride, MDa,b,d, Gregory M. Gauthier, MDa,d, and Bruce S. Klein, MDa,b,c a Division of Infectious Disease, Department of Medicine, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792, USA; b Division of Infectious Disease, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, 1675 Highland Avenue, Madison, WI 53792, USA; c Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, 1550 Linden Drive, Madison, WI 53706, USA.
    [Show full text]
  • Allergic Bronchopulmonary Aspergillosis and Severe Asthma with Fungal Sensitisation
    Allergic Bronchopulmonary Aspergillosis and Severe Asthma with Fungal Sensitisation Dr Rohit Bazaz National Aspergillosis Centre, UK Manchester University NHS Foundation Trust/University of Manchester ~ ABPA -a41'1 Severe asthma wl'th funga I Siens itisat i on Subacute IA Chronic pulmonary aspergillosjs Simp 1Ie a:spe rgmoma As r§i · bronchitis I ram une dysfu net Ion Lun· damage Immu11e hypce ractivitv Figure 1 In t@rarctfo n of Aspergillus Vliith host. ABP A, aHerg tc broncho pu~ mo na my as µe rgi ~fos lis; IA, i nvas we as ?@rgiH os 5. MANCHl·.'>I ER J:-\2 I Kosmidis, Denning . Thorax 2015;70:270–277. doi:10.1136/thoraxjnl-2014-206291 Allergic Fungal Airway Disease Phenotypes I[ Asthma AAFS SAFS ABPA-S AAFS-asthma associated with fu ngaIsensitization SAFS-severe asthma with funga l sensitization ABPA-S-seropositive a llergic bronchopulmonary aspergi ll osis AB PA-CB-all ergic bronchopulmonary aspergi ll osis with central bronchiectasis Agarwal R, CurrAlfergy Asthma Rep 2011;11:403 Woolnough K et a l, Curr Opin Pulm Med 2015;21:39 9 Stanford Lucile Packard ~ Children's. Health Children's. Hospital CJ Scanford l MEDICINE Stanford MANCHl·.'>I ER J:-\2 I Aspergi 11 us Sensitisation • Skin testing/specific lgE • Surface hydroph,obins - RodA • 30% of patients with asthma • 13% p.atients with COPD • 65% patients with CF MANCHl·.'>I ER J:-\2 I Alternar1a• ABPA •· .ABPA is an exagg·erated response ofthe imm1une system1 to AspergUlus • Com1pUcatio n of asthm1a and cystic f ibrosis (rarell·y TH2 driven COPD o r no identif ied p1 rior resp1 iratory d isease) • ABPA as a comp1 Ucation of asth ma affects around 2.5% of adullts.
    [Show full text]
  • Monoclonal Antibodies As Tools to Combat Fungal Infections
    Journal of Fungi Review Monoclonal Antibodies as Tools to Combat Fungal Infections Sebastian Ulrich and Frank Ebel * Institute for Infectious Diseases and Zoonoses, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, D-80539 Munich, Germany; [email protected] * Correspondence: [email protected] Received: 26 November 2019; Accepted: 31 January 2020; Published: 4 February 2020 Abstract: Antibodies represent an important element in the adaptive immune response and a major tool to eliminate microbial pathogens. For many bacterial and viral infections, efficient vaccines exist, but not for fungal pathogens. For a long time, antibodies have been assumed to be of minor importance for a successful clearance of fungal infections; however this perception has been challenged by a large number of studies over the last three decades. In this review, we focus on the potential therapeutic and prophylactic use of monoclonal antibodies. Since systemic mycoses normally occur in severely immunocompromised patients, a passive immunization using monoclonal antibodies is a promising approach to directly attack the fungal pathogen and/or to activate and strengthen the residual antifungal immune response in these patients. Keywords: monoclonal antibodies; invasive fungal infections; therapy; prophylaxis; opsonization 1. Introduction Fungal pathogens represent a major threat for immunocompromised individuals [1]. Mortality rates associated with deep mycoses are generally high, reflecting shortcomings in diagnostics as well as limited and often insufficient treatment options. Apart from the development of novel antifungal agents, it is a promising approach to activate antimicrobial mechanisms employed by the immune system to eliminate microbial intruders. Antibodies represent a major tool to mark and combat microbes. Moreover, monoclonal antibodies (mAbs) are highly specific reagents that opened new avenues for the treatment of cancer and other diseases.
    [Show full text]
  • MM 0839 REV0 0918 Idweek 2018 Mucor Abstract Poster FINAL
    Invasive Mucormycosis Management: Mucorales PCR Provides Important, Novel Diagnostic Information Kyle Wilgers,1 Joel Waddell,2 Aaron Tyler,1 J. Allyson Hays,2,3 Mark C. Wissel,1 Michelle L. Altrich,1 Steve Kleiboeker,1 Dwight E. Yin2,3 1 Viracor Eurofins Clinical Diagnostics, Lee’s Summit, MO 2 Children’s Mercy, Kansas City, MO 3 University of Missouri-Kansas City School of Medicine, Kansas City, MO INTRODUCTION RESULTS Early diagnosis and treatment of invasive mucormycosis (IM) affects patient MUC PCR results of BAL submitted for Aspergillus testing. The proportions of Case study of IM confirmed by MUC PCR. A 12 year-old boy with multiply relapsed pre- outcomes. In immunocompromised patients, timely diagnosis and initiation of appropriate samples positive for Mucorales and Aspergillus in BAL specimens submitted for IA testing B cell acute lymphoblastic leukemia, despite extensive chemotherapy, two allogeneic antifungal therapy are critical to improving survival and reducing morbidity (Chamilos et al., are compared in Table 2. Out of 869 cases, 12 (1.4%) had POS MUC PCR, of which only hematopoietic stem cell transplants, and CAR T-cell therapy, presented with febrile 2008; Kontoyiannis et al., 2014; Walsh et al., 2012). two had been ordered for MUC PCR. Aspergillus was positive in 56/869 (6.4%) of neutropenia (0 cells/mm3), cough, and right shoulder pain while on fluconazole patients, with 5/869 (0.6%) positive for Aspergillus fumigatus and 50/869 (5.8%) positive prophylaxis. Chest CT revealed a right lung cavity, which ultimately became 5.6 x 6.2 x 5.9 Differentiating diagnosis between IM and invasive aspergillosis (IA) affects patient for Aspergillus terreus.
    [Show full text]
  • Allergic Bronchopulmonary Aspergillosis: a Perplexing Clinical Entity Ashok Shah,1* Chandramani Panjabi2
    Review Allergy Asthma Immunol Res. 2016 July;8(4):282-297. http://dx.doi.org/10.4168/aair.2016.8.4.282 pISSN 2092-7355 • eISSN 2092-7363 Allergic Bronchopulmonary Aspergillosis: A Perplexing Clinical Entity Ashok Shah,1* Chandramani Panjabi2 1Department of Pulmonary Medicine, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India 2Department of Respiratory Medicine, Mata Chanan Devi Hospital, New Delhi, India This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. In susceptible individuals, inhalation of Aspergillus spores can affect the respiratory tract in many ways. These spores get trapped in the viscid spu- tum of asthmatic subjects which triggers a cascade of inflammatory reactions that can result in Aspergillus-induced asthma, allergic bronchopulmo- nary aspergillosis (ABPA), and allergic Aspergillus sinusitis (AAS). An immunologically mediated disease, ABPA, occurs predominantly in patients with asthma and cystic fibrosis (CF). A set of criteria, which is still evolving, is required for diagnosis. Imaging plays a compelling role in the diagno- sis and monitoring of the disease. Demonstration of central bronchiectasis with normal tapering bronchi is still considered pathognomonic in pa- tients without CF. Elevated serum IgE levels and Aspergillus-specific IgE and/or IgG are also vital for the diagnosis. Mucoid impaction occurring in the paranasal sinuses results in AAS, which also requires a set of diagnostic criteria. Demonstration of fungal elements in sinus material is the hall- mark of AAS.
    [Show full text]
  • Characterization of Terrelysin, a Potential Biomarker for Aspergillus Terreus
    Graduate Theses, Dissertations, and Problem Reports 2012 Characterization of terrelysin, a potential biomarker for Aspergillus terreus Ajay Padmaj Nayak West Virginia University Follow this and additional works at: https://researchrepository.wvu.edu/etd Recommended Citation Nayak, Ajay Padmaj, "Characterization of terrelysin, a potential biomarker for Aspergillus terreus" (2012). Graduate Theses, Dissertations, and Problem Reports. 3598. https://researchrepository.wvu.edu/etd/3598 This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Characterization of terrelysin, a potential biomarker for Aspergillus terreus Ajay Padmaj Nayak Dissertation submitted to the School of Medicine at West Virginia University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Immunology and Microbial Pathogenesis Donald H. Beezhold,
    [Show full text]
  • Concomitant Mucormycosis with Aspergillosis in Patients with Uncontrolled Diabetes
    DOI: 10.7860/JCDR/2021/47912.14507 Case Series Concomitant Mucormycosis with Aspergillosis in Patients with Uncontrolled Diabetes Microbiology Section Microbiology Mellitus: A Case Series ARPANA SINGH1, AROOP MOHANTY2, SHWETA JHA3, PRATIMA GUPTA4, NEELAM KAISTHA5 ABSTRACT Fungal infections are life threatening especially in presence of immunosuppression or uncontrolled diabetes mellitus mainly due to their invasive potential. Mucormycosis of the oculo-rhino-cerebral region is an opportunistic, aggressive, fatal and rapidly spreading infection caused by organisms belonging to Mucorales order and class Zygomycetes. The organisms associated are ubiquitous. Aspergillosis is a common clinical condition caused by the Aspergillus species, most often by Aspergillus fumigatus (A. fumigatus). Both fungi have a predilection for the immunosuppressive conditions, with uncontrolled diabetes and malignancy being the most common among them. Mucormycosis is caused by environmental spores which get access into the body through the lungs and cause various systemic manifestations like rhino-cerebral mucormycosis. Here, a case series of such concomitant infections of Aspergillus and Mucor spp from Rishikesh, Uttarakhand, India is reported. Keywords: Diabetes, Fungal infection, Invasive mycoses, Rhinosinusitis INTRODUCTION Case 2 Mucorales are the universally distributed saprophytes causing A 60-year-old female patient presented with complaints of aggressive and opportunistic infection. They are angio-invasive fever for three days and ptosis for one day. She was a known in nature. Aspergillosis is the clinical condition caused by the case of Type 2 Diabetes Mellitus (T2DM) and hypertension for Aspergillus species most often A. fumigatus [1]. It proves to be the past seven years but was on irregular drug metformin and fatal, if it infects secondarily to the brain.
    [Show full text]
  • Estimation of the Burden of Serious Human Fungal Infections in Malaysia
    Journal of Fungi Article Estimation of the Burden of Serious Human Fungal Infections in Malaysia Rukumani Devi Velayuthan 1,*, Chandramathi Samudi 1, Harvinder Kaur Lakhbeer Singh 1, Kee Peng Ng 1, Esaki M. Shankar 2,3 ID and David W. Denning 4,5 ID 1 Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; [email protected] (C.S.); [email protected] (H.K.L.S.); [email protected] (K.P.N.) 2 Centre of Excellence for Research in AIDS (CERiA), Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; [email protected] 3 Department of Microbiology, School of Basic & Applied Sciences, Central University of Tamil Nadu (CUTN), Thiruvarur 610 101, Tamil Nadu, India 4 Faculty of Biology, Medicine and Health, The University of Manchester and Manchester Academic Health Science Centre, Oxford Road, Manchester M13 9PL, UK; [email protected] 5 The National Aspergillosis Centre, Education and Research Centre, Wythenshawe Hospital, Manchester M23 9LT, UK * Correspondence: [email protected]; Tel.: +60-379-492-755 Received: 11 December 2017; Accepted: 14 February 2018; Published: 19 March 2018 Abstract: Fungal infections (mycoses) are likely to occur more frequently as ever-increasingly sophisticated healthcare systems create greater risk factors. There is a paucity of systematic data on the incidence and prevalence of human fungal infections in Malaysia. We conducted a comprehensive study to estimate the burden of serious fungal infections in Malaysia. Our study showed that recurrent vaginal candidiasis (>4 episodes/year) was the most common of all cases with a diagnosis of candidiasis (n = 501,138).
    [Show full text]
  • Allergic Bronchopulmonary Aspergillosis in a Patient with Chronic Obstructive Pulmonary Disease
    Prim Care Respir J 2012; 21(1): 111-114 CASE-BASED LEARNING Allergic bronchopulmonary aspergillosis in a patient with chronic obstructive pulmonary disease Elias Mira,*Ashok Shaha a Department of Respiratory Medicine, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India Originally received 13th April 2011; resubmitted 27th July 2011; revised 16th September 2011; accepted 17th September 2011; online 5th January 2012 Summary Allergic bronchopulmonary aspergillosis (ABPA) is a debilitating lung disease which occurs as a result of interplay between a variety of host and environmental factors. It occurs in certain susceptible individuals who develop hypersensensitivity to the colonised Aspergillus species. ABPA is a complicating factor in 2% of patients with asthma and is also seen in patients with cystic fibrosis. Asthma and chronic obstructive pulmonary disease (COPD) are known to share key elements of pathogenesis. It is well known that ABPA can occur in patients with asthma, but it has recently been reported in patients with COPD as well. We report a 55-year-old male ex-smoker who presented with complaints of exertional breathlessness and productive cough for five years and an episode of haemoptysis four days prior to presentation. Spirometery showed airflow obstruction which was not reversible with bronchodilators. Chest CT scan revealed paraseptal emphysema along with central bronchiectasis (CB) in the right upper lobe and bilateral lower lobes. A type I skin hypersensitivity reaction to Aspergillus species was elicited. He fulfilled the serological criteria for ABPA and was diagnosed as having concomitant COPD and ABPA-CB. The patient was initiated on therapy for COPD along with oral corticosteroids, on which he had remarkable symptomatic improvement.
    [Show full text]
  • Key Nutrients to Aspergillus Fumigatus Virulence
    Journal of Fungi Review Nitrogen, Iron, and Zinc Acquisition: Key Nutrients to Aspergillus fumigatus Virulence Uxue Perez-Cuesta , Xabier Guruceaga , Saioa Cendon-Sanchez , Eduardo Pelegri-Martinez, Fernando L. Hernando, Andoni Ramirez-Garcia * , Ana Abad-Diaz-de-Cerio and Aitor Rementeria * Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology, and Parasitology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; [email protected] (U.P.-C.); [email protected] (X.G.); [email protected] (S.C.-S.); [email protected] (E.P.-M.); fl[email protected] (F.L.H.); [email protected] (A.A.-D.-d.-C.) * Correspondence: [email protected] (A.R.-G.); [email protected] (A.R.) Abstract: Aspergillus fumigatus is a ubiquitous soil decomposer and an opportunistic pathogen that is characterized by its large metabolic machinery for acquiring nutrients from media. Lately, an ever-increasing number of genes involved in fungal nutrition has been associated with its virulence. Of these, nitrogen, iron, and zinc metabolism-related genes are particularly noteworthy, since 78% of them have a direct implication in virulence. In this review, we describe the sensing, uptake and regulation process of the acquisition of these nutrients, the connections between pathways and the virulence-implicated genes. Nevertheless, only 40% of the genes mentioned in this review have been assayed for roles in virulence, leaving a wide field of knowledge that remains uncertain and might Citation: Perez-Cuesta, U.; offer new therapeutic and diagnostic targets. Guruceaga, X.; Cendon-Sanchez, S.; Pelegri-Martinez, E.; Hernando, F.L.; Keywords: Aspergillus fumigatus; nitrogen; iron; zinc; nutrient acquisition; siderophores; metals; Ramirez-Garcia, A.; transcription factors; primary metabolism; nitrogen metabolite repression Abad-Diaz-de-Cerio, A.; Rementeria, A.
    [Show full text]
  • Black Fungus: a New Threat Uddin KN
    Editorial (BIRDEM Med J 2021; 11(3): 164-165) Black fungus: a new threat Uddin KN Fungal infections, also known as mycoses, are Candida spp. including non-albicans Candida (causing traditionally divided into superficial, subcutaneous and candidiasis), p. Aspergillus spp. (causing aspergillosis), systemic mycoses. Cryptococcus (causing cryptococcosis), Mucormycosis previously called zygomycosis caused by Zygomycetes. What are systemic mycoses? These fungi are found in or on normal skin, decaying Systemic mycoses are fungal infections affecting vegetable matter and bird droppings respectively but internal organs. In the right circumstances, the fungi not exclusively. They are present throughout the world. enter the body via the lungs, through the gut, paranasal sinuses or skin. The fungi can then spread via the Who are at risk of systemic mycoses? bloodstream to multiple organs, often causing multiple Immunocompromised people are at risk of systemic organs to fail and eventually, result in the death of the mycoses. Immunodeficiency can result from: human patient. immunodeficiency virus (HIV) infection, systemic malignancy (cancer), neutropenia, organ transplant What causes systemic mycoses? recipients including haematological stem cell transplant, Patients who are immunocompromised are predisposed after a major surgical operation, poorly controlled to systemic mycoses but systemic mycosis can develop diabetes mellitus, adult-onset immunodeficiency in otherwise healthy patients. Systemic mycoses can syndrome, very old or very young. be split between two main varieties, endemic respiratory infections and opportunistic infections. What are the clinical features of systemic mycoses? The clinical features of a systemic mycosis depend on Endemic respiratory infections the specific infection and which organs have been Fungi that can cause systemic infection in people with affected.
    [Show full text]