March 20, 2008 HAZARDOUS AIR POLLUTANTS – Sorted Alphabetically
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Simple, Fast, and Reliable LC-MS/MS Method for Determination and Quantification of Phthalates in Distilled Beverages
A Simple, Fast, and Reliable LC-MS/MS Method for Determination and Quantification of Phthalates in Distilled Beverages Dimple Shah and Jennifer Burgess Waters Corporation, Milford, MA, USA APPLICATION BENEFITS INTRODUCTION ■■ Separation and detection of 7 phthalates Phthalates, esters of phthalic acid, are often used as plasticizers for polymers such in 11 minutes. as polyvinylchloride. They are widely applicable in various products including personal care goods, cosmetics, paints, printing inks, detergents, coatings, ■■ Simple, quick “dilute and shoot” sample preparation method for routine applications and food packaging. These phthalates have been found to leach readily into the where high sample throughput is required. environment and food as they are not chemically bound to plastics. As such they are known to be ubiquitously present in our environment. ■■ Elimination of major phthalate contamination using the ACQUITY UPLC® Isolator Column. Phthalates have been reported to show a variety of toxic effects related to reproduction in animal studies, which has resulted in these compounds being ■■ Selective mass spectra obtained for all seven considered as endocrine disruptors. Screening food and beverages for phthalates phthalates with dominant precursor ion. contamination is required by many legislative bodies, although regulations vary ■■ Low limits of quantification achieved using from country to country in regards to acceptable daily tolerances and specific Waters® ACQUITY UPLC H-Class System migration limits. and Xevo® TQD. Traditionally, phthalates have been analyzed by gas chromatography-mass ■■ Single and robust method for a variety spectrometry (GC-MS), where derivatization and/or extraction and sample of distilled beverages. preparation is often required to improve chromatographic separation.1 The ■■ Maintain consumer confidence and resulting GC-EI-MS spectra can lack selectivity, where the base ion, used for ensure compliance in market. -
Synthesis and Toxicity
Molecules 2008, 13, 986-994 molecules ISSN 1420-3049 © 2008 by MDPI www.mdpi.org/molecules Full Paper Fluorinated Analogs of Malachite Green: Synthesis and Toxicity George A. Kraus 1,*, Insik Jeon 1, Marit Nilsen-Hamilton 2, Ahmed M. Awad 2, Jayeeta Banerjee 2 and Bahram Parvin 3 1 Iowa State University Department of Chemistry, Ames, IA 50011, USA; Tel. +1 515-294-7794; Fax: +1 515-294-0105 2 Iowa State University Department of Biochemistry, Biophysics and Molecular Biology, Ames, IA 50011, USA; Tel. +1 515-9996; Fax: +1 515-294-0453 3 Lawrence Berkeley Laboratory Department of Cancer Biology, Berkeley, CA 94720, USA; Tel. +1 510-486-6203; Fax: +1 510-486-6363 * Author to whom correspondence should be addressed; E-mail: [email protected] Received: 21 March 2008; in revised form: 22 April 2008 / Accepted: 22 April 2008 / Published: 27 April 2008 Abstract: A series of fluorinated analogs of malachite green (MG) have been synthesized and their toxicity to Saccharomyces cerevisiae and a human ovarian epithelial cell line examined. The toxicity profiles were found to be different for these two species. Two analogs, one with 2,4-difluoro substitution and the other with 2-fluoro substitution seem to be the most promising analogs because they showed the lowest toxicity to the human cells. Keywords: Malachite Green; Malachite Green analogs; Bathochromic shift; Toxicity; Saccharomyces cerevisiae; human ovarian epithelial cells. Introduction We are developing a new procedure for real-time imaging of gene expression. It involves a nucleic acid probe that can be used in conjunction with a 18F-labeled target molecule to image gene expression in vivo [1]. -
The Use and Storage of Methyl Isocyanate (MIC) at Bayer Cropscience
Summary The Use and Storage of Methyl Isocyanate (MIC) at Bayer CropScience The use of hazardous chemicals such as methyl isocyanate can be a significant concern to the residents of communities adjacent to chemical facilities, but is often an integral, necessary part of the chemical manufacturing process. In order to ensure that chemical manufacturing takes place in a manner that is safe for workers, members of the local community, and the environment, the philosophy of inherently safer processing can be used to identify opportuni ties to eliminate or reduce the hazards associated with chemical processing. However, the concepts of inherently safer process analysis have not yet been adopted in all chemical manu facturing plants. This report presents a possible framework to help plant managers choose between alternative processing options—considering factors such as environmental impact and product yield as well as safety—to develop a chemical manufacturing system. n 2008, an explosion at the Bayer CropScience chemical production Iplant in Institute, West Virginia, resulted in the deaths of two employees, a fire within the production unit, and extensive damage to nearby structures. The accident drew renewed attention to the fact that the Bayer facility manufac tured and stored methyl isocyanate, or MIC—a volatile, highly toxic chemical used in the production of carbamate pesticides and the agent responsible for thousands of deaths in Bhopal, India, in 1984. In the Institute incident, debris Figure 1. The Bayer CropScience facility at Insitute, WV. from the blast hit the shield surrounding Google Earth satellite image: © 2012 Google a MIC storage tank, and although the container was not damaged, an investiga tion by the U.S. -
162 Part 175—Indirect Food Addi
§ 174.6 21 CFR Ch. I (4–1–19 Edition) (c) The existence in this subchapter B Subpart B—Substances for Use Only as of a regulation prescribing safe condi- Components of Adhesives tions for the use of a substance as an Sec. article or component of articles that 175.105 Adhesives. contact food shall not be construed as 175.125 Pressure-sensitive adhesives. implying that such substance may be safely used as a direct additive in food. Subpart C—Substances for Use as (d) Substances that under conditions Components of Coatings of good manufacturing practice may be 175.210 Acrylate ester copolymer coating. safely used as components of articles 175.230 Hot-melt strippable food coatings. that contact food include the fol- 175.250 Paraffin (synthetic). lowing, subject to any prescribed limi- 175.260 Partial phosphoric acid esters of pol- yester resins. tations: 175.270 Poly(vinyl fluoride) resins. (1) Substances generally recognized 175.300 Resinous and polymeric coatings. as safe in or on food. 175.320 Resinous and polymeric coatings for (2) Substances generally recognized polyolefin films. as safe for their intended use in food 175.350 Vinyl acetate/crotonic acid copoly- mer. packaging. 175.360 Vinylidene chloride copolymer coat- (3) Substances used in accordance ings for nylon film. with a prior sanction or approval. 175.365 Vinylidene chloride copolymer coat- (4) Substances permitted for use by ings for polycarbonate film. 175.380 Xylene-formaldehyde resins con- regulations in this part and parts 175, densed with 4,4′-isopropylidenediphenol- 176, 177, 178 and § 179.45 of this chapter. -
(12) Patent Application Publication (10) Pub. No.: US 2006/0020077 A1 Miyoshi Et Al
US 20060020077A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0020077 A1 Miyoshi et al. (43) Pub. Date: Jan. 26, 2006 (54) ELECTRICALLY CONDUCTIVE RESIN (30) Foreign Application Priority Data COMPOSITION AND PRODUCTION PROCESS THEREOF Apr. 26, 2000 (JP)...................................... 2000-125081 (76) Inventors: Takaaki Miyoshi, Kimitsu-shi (JP); Publication Classification Kazuhiko Hashimoto, Sodegaura-shi (JP) (51) Int. Cl. C08K 3/04 (2006.01) Correspondence Address: (52) U.S. Cl. .............................................................. 524/495 BRCH STEWART KOLASCH & BRCH PO BOX 747 FALLS CHURCH, VA 22040-0747 (US) (57) ABSTRACT A resin composition comprising a polyamide, a polyphe (21) Appl. No.: 11/203,245 nylene ether, an impact modifier, and a carbon type filler for (22) Filed: Aug. 15, 2005 an electrically conductive use, the filler residing in a phase of the polyphenylene ether. The resin composition of the Related U.S. Application Data present invention has excellent electrical conductivity, flu idity, and an excellent balance of a coefficient of linear (62) Division of application No. 10/240,793, filed on Oct. expansion and an impact resistance, and generation of fines 4, 2002, filed as 371 of international application No. caused by pelletizing thereof can be largely Suppressed PCT/JPO1/O1416, filed on Feb. 26, 2001. when processing of an extrusion thereof is conducted. Patent Application Publication Jan. 26, 2006 US 2006/0020077 A1 FIG. 1 FIG. 2 US 2006/0020077 A1 Jan. 26, 2006 ELECTRICALLY CONDUCTIVE RESIN 0009 From the above-described standpoint, the tech COMPOSITION AND PRODUCTION PROCESS nique wherein improvement in balance of a coefficient of THEREOF linear expansion and an impact resistance can be attained by using a composition Substantially not containing an inor 0001. -
Aniline and Aniline Hydrochloride
SOME AROMATIC AMINES AND RELATED COMPOUNDS VOLUME 127 This publication represents the views and expert opinions of an IARC Working Group on the Identification of Carcinogenic Hazards to Humans, which met remotely, 25 May–12 June 2020 LYON, FRANCE - 2021 IARC MONOGRAPHS ON THE IDENTIFICATION OF CARCINOGENIC HAZARDS TO HUMANS ANILINE AND ANILINE HYDROCHLORIDE 1. Exposure Characterization 1.1.2 Structural and molecular formulae, and relative molecular mass 1.1 Identification of the agent (a) Aniline 1.1.1 Nomenclature NH2 (a) Aniline Chem. Abstr. Serv. Reg. No.: 62-53-3 EC No.: 200-539-3 Molecular formula: C H N IUPAC systematic name: aniline 6 7 Relative molecular mass: 93.13 (NCBI, 2020a). Synonyms and abbreviations: benzenamine; phenylamine; aminobenzene; aminophen; (b) Aniline hydrochloride aniline oil. NH2 (b) Aniline hydrochloride Chem. Abstr. Serv. Reg. No.: 142-04-1 EC No.: 205-519-8 HCl IUPAC systematic name: aniline hydro - Molecular formula: C6H8ClN chloride Relative molecular mass: 129.59 (NCBI, Synonyms: aniline chloride; anilinium chlo- 2020b). ride; benzenamine hydrochloride; aniline. HCl; phenylamine hydrochloride; phenylam- monium chloride. 1.1.3 Chemical and physical properties of the pure substance Aniline is a basic compound and will undergo acid–base reactions. Aniline and its hydrochlo- ride salt will achieve a pH-dependent acid–base equilibrium in the body. 109 IARC MONOGRAPHS – 127 (a) Aniline Octanol/water partition coefficient (P): log Kow, 0.936, predicted median (US EPA, 2020b) Description: aniline appears as a yellowish Conversion factor: 1 ppm = 5.3 mg/m3 [calcu- to brownish oily liquid with a musty fishy lated from: mg/m3 = (relative molecular odour (NCBI, 2020a), detectable at 1 ppm 3 mass/24.45) × ppm, assuming temperature [3.81 mg/m ] (European Commission, 2016; (25 °C) and pressure (101 kPa)]. -
Assessment of Portable HAZMAT Sensors for First Responders
The author(s) shown below used Federal funds provided by the U.S. Department of Justice and prepared the following final report: Document Title: Assessment of Portable HAZMAT Sensors for First Responders Author(s): Chad Huffman, Ph.D., Lars Ericson, Ph.D. Document No.: 246708 Date Received: May 2014 Award Number: 2010-IJ-CX-K024 This report has not been published by the U.S. Department of Justice. To provide better customer service, NCJRS has made this Federally- funded grant report available electronically. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice. Assessment of Portable HAZMAT Sensors for First Responders DOJ Office of Justice Programs National Institute of Justice Sensor, Surveillance, and Biometric Technologies (SSBT) Center of Excellence (CoE) March 1, 2012 Submitted by ManTech Advanced Systems International 1000 Technology Drive, Suite 3310 Fairmont, West Virginia 26554 Telephone: (304) 368-4120 Fax: (304) 366-8096 Dr. Chad Huffman, Senior Scientist Dr. Lars Ericson, Director UNCLASSIFIED This project was supported by Award No. 2010-IJ-CX-K024, awarded by the National Institute of Justice, Office of Justice Programs, U.S. Department of Justice. The opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect those of the Department of Justice. This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. -
Catalyzed Reaction of Isocyanates (RNCO) with Water
Catalyzed Reaction of Isocyanates (RNCO) with Water Mark E. Wolf,y Jonathon E. Vandezande,z,{ and Henry F. Schaefer III∗,y yCenter for Computational Quantum Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, USA z1st Source Research, 617 Hutton St., Raleigh, North Carolina 27606, USA {Zymergen, 5980 Horton Street, Suite 105, Emeryville, California 94608, USA E-mail: [email protected] Phone: +1 706 542-2067. Fax: +1 706 542-0406 Abstract The reactions between substituted isocyanates (RNCO) and other small molecules (e.g. water, alcohols, and amines) are of significant industrial importance, particularly for the development of novel polyurethanes and other useful polymers. We present very high level ab initio computations on the HNCO + H2O reaction, with results tar- geting the CCSDT(Q)/CBS//CCSD(T)/cc-pVQZ level of theory. Our results affirm that hydrolysis can occur across both the N−C and C−O bonds of HNCO via con- certed mechanisms to form carbamate or imidic acid with ∆H0K barrier heights of 38.5 −1 and 47.5 kcal mol . A total of 24 substituted RNCO + H2O reactions were studied. Geometries obtained with a composite method and refined with CCSD(T)/CBS single point energies determine that substituted RNCO species have a significant influence on these barrier heights, with an extreme case like fluorine lowering both barriers by close to 20 kcal mol−1 and most common alkyl substituents lowering both by approxi- mately 4 kcal mol−1. Natural Bond Oribtal (NBO) analysis provides evidence that the 1 predicted barrier heights are strongly associated with the occupation of the in-plane C−O* orbital of the RNCO reactant. -
What Is in Your Cigarette?
What Is In Your Cigarette? There are more than 4,000 ingredients, including 43 known cancer-causing (carcinogenic) compounds and 400 other toxins in a cigarette other than tobacco. Common additives include yeast, wine, caffeine, beeswax and chocolate. Here are some other ingredients: • Ammonia • Cadmium • Megastigmatrienone (Household cleaner) (Used in batteries) (Chemical naturally found in grapefruit juice) • Angelica root extract • Cyanide (Deadly poison) (Known to cause cancer in • Maltitol • DDT (A banned insecticide) animals) (Sweetener for diabetics) • Ethyl Furoate • Arsenic • Napthalene (Causes liver damage in (Used in rat poisons) (Ingredient in mothballs) animals) • Benzene • Methyl isocyanate • Lead (Used in making dyes, (Its accidental release killed (Poisonous in high doses) synthetic rubber) 2000 people in Bhopal, India in 1984) • Formaldehiyde (Used to • Butane preserve dead specimens) (Gas; used in lighter fluid) • Polonium (Cancer-causing radioactive • Methoprene (Insecticide) • Carbon monoxide element) (Poisonous gas) Important to know: • Fungicides and pesticides -- Cause many types of cancers and birth defects. • Cadmium -- Linked to lung and prostate cancer. • Benzene -- Linked to leukemia. • Formaldehyde -- Linked to lung cancer. • Nickel -- Causes increased susceptibility to lung infections. If you are angry that so many things have been added to the cigarettes you enjoy so much, you should be. Many of these chemicals were added to make you better able to tolerate toxic amounts of cigarette smoke. Make sure that you have the last laugh. Regardless of the countless chemicals in your cigarettes, quitting is always your option. Cigna Members: Call (855) 246 – 1873 to speak with a health coach today! Non-Cigna Members: Call (877) U – Can – Now for the Florida Quit Line to speak to a health coach today! . -
1. Detta Föreställer Kapitelrubrik (1K Kapitelrubrik)
SCOEL/SUM/118 September 2006 Recommendation from the Scientific Committee on Occupational Exposure Limits for Methyl Isocyanate 8-hour TWA: - STEL (15 min): 0,02 ppm Additional classification: - Substance Identity and Properties CAS No.: 624-83-9 Synonyms: isocyanic acid methylester Structure: H3C-N=C=O Molecular weight: 57.06 Boiling point: 39°C Melting point: -45°C Vapour pressure: 46.4 kPa (20°C) Conversion factors: 1 ppm = 2.4 mg/m3 1 mg/m3 = 0.4 ppm Classification: F+; R12 Extremely flammable Repr.Cat.3; R63 Possible risk of harm to the unborn child T+; R26 Very toxic by inhalation T; R24/25 Toxic in contact with skin and if swallowed R42/43 May cause sensitization by inhalation and skin contact Xi; R37/38 Irritating to respiratory system and skin R41 Risk of serious damage to eyes 1 This summary document is based on a consensus document from the Swedish Criteria Group for Occupational Standards (Montelius, 2002). Methyl isocyanate (MIC) is a monoisocyanate and should be distinguished from the diisocyanates. At room temperature MIC is a clear liquid. It is sparingly soluble in water, although on contact with water it reacts violently, producing a large amount of heat. MIC has a sharp odour with an odour threshold above 2 ppm (Römpp and Falbe, 1997). Occurrence and Use Methylisocyanate (MIC) occurs primarily as an intermediate in the production of carbamate pesticides. It has also been used in the production of polymers (Hrhyhorczuk et al., 1992). Photolytic breakdown of N-methyldithiocarbamate releases some MIC, and it can therefore occur in the air around application of the pesticides (Geddes et al., 1995). -
Proposed Designation of Butyl Benzyl Phthalate As a High-Priority
United States Office of Chemical Safety and Environmental Protection Agency Pollution Prevention Proposed Designation of Butyl Benzyl Phthalate (CASRN 85-68-7) as a High-Priority Substance for Risk Evaluation August 22, 2019 Table of Contents List of Tables ................................................................................................................................ iii Acronyms and Abbreviations ..................................................................................................... iv 1. Introduction ............................................................................................................................... 1 2. Production volume or significant changes in production volume ........................................ 3 Approach ..................................................................................................................................... 3 Results and Discussion ............................................................................................................... 3 3. Conditions of use or significant changes in conditions of use ............................................... 3 Approach ..................................................................................................................................... 3 CDR Tables ................................................................................................................................. 4 CDR and TRI Summary and Additional Information on Conditions of Use ............................. 6 -
Nitrosamines EMEA-H-A5(3)-1490
25 June 2020 EMA/369136/2020 Committee for Medicinal Products for Human Use (CHMP) Assessment report Procedure under Article 5(3) of Regulation EC (No) 726/2004 Nitrosamine impurities in human medicinal products Procedure number: EMEA/H/A-5(3)/1490 Note: Assessment report as adopted by the CHMP with all information of a commercially confidential nature deleted. Official address Domenico Scarlattilaan 6 ● 1083 HS Amsterdam ● The Netherlands Address for visits and deliveries Refer to www.ema.europa.eu/how-to-find-us Send us a question Go to www.ema.europa.eu/contact Telephone +31 (0)88 781 6000 An agency of the European Union © European Medicines Agency, 2020. Reproduction is authorised provided the source is acknowledged. Table of contents Table of contents ...................................................................................... 2 1. Information on the procedure ............................................................... 7 2. Scientific discussion .............................................................................. 7 2.1. Introduction......................................................................................................... 7 2.2. Quality and safety aspects ..................................................................................... 7 2.2.1. Root causes for presence of N-nitrosamines in medicinal products and measures to mitigate them............................................................................................................. 8 2.2.2. Presence and formation of N-nitrosamines