Hickory Report

Total Page:16

File Type:pdf, Size:1020Kb

Hickory Report Hickory Shagbark hickory, Carya ovata Bitternut hickory, Carya cordiformis The volume in hickory has increased steadily over the last several decades and is aging. Since 1983, the volume in large trees has more than tripled while the volume in small trees has only increased 21%. Growth rates haven’t changed significantly since 1983 but mortality has quadrupled. Hickory accounts for about 1.4% of volume and growth but only 0.7% of mortality and 0.9% of removals. The volume of bitternut hickory is expected to decrease in the next 40 years while the volume of shagbark hickory should increase substantially. Hickory is not a prominent timber species, accounting for only 0.3% of roundwood production in 2009. Although removals have increased five-fold since 1983, we harvest much less hickory compared to other species. Hickory wood has the highest density of all species in Wisconsin and therefore may be a valuable source of woody biomass. • How has the hickory resource changed? Growing stock volume and diameter class distribution • Where is hickory found in Wisconsin? Growing stock volume by region with map • What kind of sites does hickory grow on? Habitat type and site index distribution • How fast is hickory growing? Average annual net growth: trends and ratio of growth to volume • How healthy is hickory in Wisconsin? Average annual mortality: trends and ratio of mortality to volume • Does hickory have any disease or pest issues? 100 Canker Disease: biology, symptoms and impact • How much hickory do we harvest? Roundwood production by product and ratio of growth to removals • How much hickory biomass do we have? Aboveground biomass by region of the state Division of Forestry • Can we predict the future of beech? WI Dept of Natural Resources December 2019 Modelling future volumes “How has the hickory resource changed?” Growing stock volume and diameter class distribution by year The growing stock volume of hickory in 2018 was about 301 million cubic feet or 1.4% of total statewide volume (chart on right). The Growing stock volume of hickory volume of hickory has increased steadily over the past few decades, 350 55% since 1983 and 37% since 1996. 300 250 The hickory resource is maturing; the total volume in small growing 3 stock (5-12.9 inches dbh) has increased by 19% since 1983 while the 200 volume in large trees (13+ inches dbh) has more than tripled (chart 150 Million ft below left). 100 50 The number of sawtimber hickory has increased by 49% since 2004 0 while the number of saplings has decreased by 7% (chart below 1983 1996 2004 2011 2018 right). Lack of regeneration may affect long term sustainability of Growing stock volume (million cubic feet) by inventory year. both species. Source: USDA Forest Inventory and Analysis data Volume of hickory by diameter class Percentage change in tree numbers Seedling Sapling Pole Sawtimber 120 100% 100 5-8.9 50% 3 80 9-12.9 13-16.9 60 0% 17-20.9 Million ft 40 21-24.9 -50% 20 25+ 0 -100% 1983 1996 2011 2018 Bitternut hickory Shagbark hickory Total hickory Growing stock volume (million cubic feet) by diameter class (inches). Percentage change in the number of live trees by size class between 2004 and 2018. Source: USDA Forest Inventory and Analysis data. Source: USDA Forest Inventory and Analysis data 2004 and 2018. “Where is hickory found in Wisconsin?” Growing stock volume by region with map About 59% of hickory volume is shagbark hickory (Table 1). Most hickory occurs in southwest Wisconsin with only 4% in the northern part of the state. Shagbark hickory is found almost exclusively on the oak / hickory forest type whereas bitternut hickory is also an important component of the maple / beech / birch type. Table 1. Growing stock volume (million ft3) by species and region of the state. North North South South Percent Species Central Total east west east west of total Bitternut hickory 29 6 7 15 66 122 41% Shagbark hickory 16 - - 51 112 178 59% Total 45 6 7 66 178 301 100% Percent of total 15% 2% 2% 22% 59% 100% Source: USDA Forest Service, Forest Inventory and Analysis 2018 For a table on Volume by County go to: http://dnr.wi.gov/topic/ForestBusinesses/documents/tables/VolumeCountySpecies.pdf “What kind of sites does hickory grow on?” Habitat type and site index distribution About two-thirds of both bitternut and shagbark hickory growing stock volume is found on dry- mesic to mesic and mesic habitat types (chart below). Shagbark hickory is a little more likely to be found on drier sites, whereas bitternut hickory is more often found on wetter sites. Bitternut hickory 0% Shagbark hickory 0% 0% 0% 0% 0% Very Dry to Dry 11% 15% Dry 30% 31% 18% Dry to Dry-mesic Dry-mesic 24% Dry-mesic to Mesic Mesic 2% 34% 3% 27% Mesic to Wet-mesic 5% 0% Wet-Mesic to wet Undefined Percent distribution of growing stock volume by habitat type group1 (USDA Forest Inventory & Analysis data). Hickory percent of volume by site index 40% 35% Bitternut hickory growing stock volume is found on slightly richer 30% sites (chart on left). Over 86% of bitternut hickory volume is 25% located on sites with a site index greater than 60. Only 62% of 20% All Species shagbark hickory volume is on sites with a site index greater than 15% Bitternut hickory 60. 10% Shagbark hickory 5% 0% The average site index by volume for bitternut hickory is 74 much <41 41 - 50 51 - 60 61 - 70 71 - 80 81 - 90 90+ higher than the average for all species, 66. The average for Site Index Class shagbark hickory is 65. Percent distribution of growing stock volume by site index class (USDA Forest Inventory & Analysis data). 1For more information on habitat types see Schmidt, Thomas L. 1997. Wisconsin forest statistics, 1996. Resource Bulletin NC-183. St. Paul, MN: U.S. Dept. of Agriculture, Forest Service, North Central “How fast is hickory growing?” Average annual net growth: trends and ratio of growth to volume Average annual net growth of hickory The average annual net growth of hickory is about 8.0 million cubic feet per year, representing 1.4% of statewide volume growth (chart on right). Volume growth has increased 10 slightly since 1983. 9 8 7 Almost all volume growth for hickory occurs in southern 3 6 Wisconsin (Table 2), but the highest growth to volume ratio 5 is currently in northwest Wisconsin. 4 Million ft 3 2 1 0 Table 2. Average annual net growth (million ft3/year) of growing stock and the 1983 1996 2011 2018 ratio of growth to volume by region of the state. Average annual net growth (million cubic feet). Percent of Ratio of growth Source: USDA Forest Inventory & Analysis data Region Net growth Total to volume Northeast -0.1 - - Northwest 0.3 3% 4.1% The ratio of growth to volume for hickory is 2.7%, almost Central 1.3 16% 2.8% equal to the statewide average of 2.6% for all species. Southwest 4.8 60% 2.7% Southeast 1.8 22% 2.7% Statewide 8.0 100% 2.7% Source: USDA Forest Inventory and Analysis 2018 For a table of Average annual growth, mortality and removals by region go to: http://dnr.wi.gov/topic/ForestBusinesses/documents/tables/GrowthMortalityRemovals.pdf “How healthy is hickory in Wisconsin?” Average annual mortality: trends and ratio of mortality to volume Average annual mortality of hickory The average annual mortality of hickory, about 2.1 million cubic 6 feet per year from 2012 to 2018, has increased four-fold since 5 1983 (chart on right). The percent of statewide mortality, 0.9%, 4 is much less than the percent of total volume in the state, 1.4%. 3 3 he ratio of mortality to volume is 0.7% for hickory species (Table T Million ft 3). This rate is much lower than the statewide average of 1.1% 2 for all species. However, the difference between the mortality 1 to volume ratio for bitternut hickory (1.4%) and shagbark hickory (0.2%) is very large. 0 1983 1996 2011 2018 Average annual mortality (million cubic feet) by inventory year. Error bars represent the 67% confidence interval. Source: USDA Forest Inventory & Analysis data Table 3. Mortality, volume and the ratio of mortality to volume. Average annual Volume of growing Mortality Species mortality (ft3) stock (ft3) / volume Bitternut hickory 1,709,648 122,083,638 1.4% Shagbark hickory 356,622 178,513,902 0.2% Total hickory 2,066,270 300,597,540 0.7% Source: USDA Forest Inventory & Analysis data For a table of Average annual growth, mortality and removals by region go to: http://dnr.wi.gov/topic/ForestBusinesses/documents/tables/GrowthMortalityRemovals.pdf “Does hickory have any major disease or pest issues?” Thousand Canker Disease: biology, symptoms and impact Since 2005, dieback and mortality of bitternut and shagbark hickory have been reported in Wisconsin. Although affecting both species, mortality appears to be more prevalent for bitternut hickory (Figure on right). Mortality and dieback peaked in Wisconsin in 2011, possibly related to drought in 2003-2009. Since 2011, mortality has decreased for both species. Symptoms progress rapidly from thinning crowns to branch mortality to complete tree mortality. Epicormic branches often sprout only to die later, and sunken cankers can often be found on these trees. Tree mortality occurs two or three Left: Annual mortality rates by species and inventory year. Right. Percentage of hickory years after an initial appearance of symptoms. trees with crown dieback over 5% by inventory year.
Recommended publications
  • CHESTNUT (CASTANEA Spp.) CULTIVAR EVALUATION for COMMERCIAL CHESTNUT PRODUCTION
    CHESTNUT (CASTANEA spp.) CULTIVAR EVALUATION FOR COMMERCIAL CHESTNUT PRODUCTION IN HAMILTON COUNTY, TENNESSEE By Ana Maria Metaxas Approved: James Hill Craddock Jennifer Boyd Professor of Biological Sciences Assistant Professor of Biological and Environmental Sciences (Director of Thesis) (Committee Member) Gregory Reighard Jeffery Elwell Professor of Horticulture Dean, College of Arts and Sciences (Committee Member) A. Jerald Ainsworth Dean of the Graduate School CHESTNUT (CASTANEA spp.) CULTIVAR EVALUATION FOR COMMERCIAL CHESTNUT PRODUCTION IN HAMILTON COUNTY, TENNESSEE by Ana Maria Metaxas A Thesis Submitted to the Faculty of the University of Tennessee at Chattanooga in Partial Fulfillment of the Requirements for the Degree of Master of Science in Environmental Science May 2013 ii ABSTRACT Chestnut cultivars were evaluated for their commercial applicability under the environmental conditions in Hamilton County, TN at 35°13ꞌ 45ꞌꞌ N 85° 00ꞌ 03.97ꞌꞌ W elevation 230 meters. In 2003 and 2004, 534 trees were planted, representing 64 different cultivars, varieties, and species. Twenty trees from each of 20 different cultivars were planted as five-tree plots in a randomized complete block design in four blocks of 100 trees each, amounting to 400 trees. The remaining 44 chestnut cultivars, varieties, and species served as a germplasm collection. These were planted in guard rows surrounding the four blocks in completely randomized, single-tree plots. In the analysis, we investigated our collection predominantly with the aim to: 1) discover the degree of acclimation of grower- recommended cultivars to southeastern Tennessee climatic conditions and 2) ascertain the cultivars’ ability to survive in the area with Cryphonectria parasitica and other chestnut diseases and pests present.
    [Show full text]
  • Michigan Forests 2014
    United States Department of Agriculture Michigan Forests 2014 Forest Service Northern Resource Bulletin Publication Date Research Station NRS-110 April 2017 Abstract The eighth inventory of Michigan’s forests, completed in 2014, describes more than 20.3 million acres of forest land. The data in this report are based on visits to 4,289 forested plots from 2009 to 2014. Timberland accounts for 95 percent of this forest land, and 62 percent is privately owned. The sugar maple/beech/yellow birch forest type accounts for 19 percent of the State’s forest land, followed by aspen (12 percent) and white oak/red oak/hickory (7 percent). Balsam fir, red maple, and sugar maple are the three most common species by number of trees. Growing-stock volume on timberland has continued to increase and now totals about 30.2 billion cubic feet (ft3). The associated net growth, harvest removals, and mortality totaled 674, 313, and 303 million ft3/ year, respectively. In addition to information on forest attributes, this report includes data on forest health, land use change, family forest owners, timber-product outputs, and future forests. Detailed information on forest inventory methods, data quality estimates, and important resource statistics can be found online at https://doi.org/10.2737/NRS-RB-110. Acknowledgments We thank the field crew for their hard work and dedication while collecting the information that is the basis for this report. Special thanks also go to Mark Hatfield, Paul Sowers, John Vissage, Barry Wilson, Barb O’Connell, Charles Barnett, and Dale Gormanson who also contributed to this report.
    [Show full text]
  • Scientific Name Common Name NATURAL ASSOCIATIONS of TREES and SHRUBS for the PIEDMONT a List
    www.rainscapes.org NATURAL ASSOCIATIONS OF TREES AND SHRUBS FOR THE PIEDMONT A list of plants which are naturally found growing with each other and which adapted to the similar growing conditions to each other Scientific Name Common Name Acer buergeranum Trident maple Acer saccarum Sugar maple Acer rubrum Red Maple Betula nigra River birch Trees Cornus florida Flowering dogwood Fagus grandifolia American beech Maple Woods Liriodendron tulipifera Tulip-tree, yellow poplar Liquidamber styraciflua Sweetgum Magnolia grandiflora Southern magnolia Amelanchier arborea Juneberry, Shadbush, Servicetree Hamamelis virginiana Autumn Witchhazel Shrubs Ilex opaca American holly Ilex vomitoria*** Yaupon Holly Viburnum acerifolium Maple leaf viburnum Aesulus parvilflora Bottlebrush buckeye Aesulus pavia Red buckeye Carya ovata Shadbark hickory Cornus florida Flowering dogwood Halesia carolina Crolina silverbell Ilex cassine Cassina, Dahoon Ilex opaca American Holly Liriodendron tulipifera Tulip-tree, yellow poplar Trees Ostrya virginiana Ironwood Prunus serotina Wild black cherry Quercus alba While oak Quercus coccinea Scarlet oak Oak Woods Quercus falcata Spanish red oak Quercus palustris Pin oak Quercus rubra Red oak Quercus velutina Black oak Sassafras albidum Sassafras Azalea nudiflorum Pinxterbloom azalea Azalea canescens Piedmont azalea Ilex verticillata Winterberry Kalmia latifolia Mountain laurel Shrubs Rhododenron calendulaceum Flame azalea Rhus copallina Staghorn sumac Rhus typhina Shining sumac Vaccinium pensylvanicum Low-bush blueberry Magnolia
    [Show full text]
  • GIS Handbook Appendices
    Aerial Survey GIS Handbook Appendix D Revised 11/19/2007 Appendix D Cooperating Agency Codes The following table lists the aerial survey cooperating agencies and codes to be used in the agency1, agency2, agency3 fields of the flown/not flown coverages. The contents of this list is available in digital form (.dbf) at the following website: http://www.fs.fed.us/foresthealth/publications/id/id_guidelines.html 28 Aerial Survey GIS Handbook Appendix D Revised 11/19/2007 Code Agency Name AFC Alabama Forestry Commission ADNR Alaska Department of Natural Resources AZFH Arizona Forest Health Program, University of Arizona AZS Arizona State Land Department ARFC Arkansas Forestry Commission CDF California Department of Forestry CSFS Colorado State Forest Service CTAES Connecticut Agricultural Experiment Station DEDA Delaware Department of Agriculture FDOF Florida Division of Forestry FTA Fort Apache Indian Reservation GFC Georgia Forestry Commission HOA Hopi Indian Reservation IDL Idaho Department of Lands INDNR Indiana Department of Natural Resources IADNR Iowa Department of Natural Resources KDF Kentucky Division of Forestry LDAF Louisiana Department of Agriculture and Forestry MEFS Maine Forest Service MDDA Maryland Department of Agriculture MADCR Massachusetts Department of Conservation and Recreation MIDNR Michigan Department of Natural Resources MNDNR Minnesota Department of Natural Resources MFC Mississippi Forestry Commission MODC Missouri Department of Conservation NAO Navajo Area Indian Reservation NDCNR Nevada Department of Conservation
    [Show full text]
  • Conservation Assessment for Butternut Or White Walnut (Juglans Cinerea) L. USDA Forest Service, Eastern Region
    Conservation Assessment for Butternut or White walnut (Juglans cinerea) L. USDA Forest Service, Eastern Region 2003 Jan Schultz Hiawatha National Forest Forest Plant Ecologist (906) 228-8491 This Conservation Assessment was prepared to compile the published and unpublished information on Juglans cinerea L. (butternut). This is an administrative review of existing information only and does not represent a management decision or direction by the U. S. Forest Service. Though the best scientific information available was gathered and reported in preparation of this document, then subsequently reviewed by subject experts, it is expected that new information will arise. In the spirit of continuous learning and adaptive management, if the reader has information that will assist in conserving the subject taxon, please contact the Eastern Region of the Forest Service Threatened and Endangered Species Program at 310 Wisconsin Avenue, Milwaukee, Wisconsin 53203. Conservation Assessment for Butternut or White walnut (Juglans cinerea) L. 2 Table Of Contents EXECUTIVE SUMMARY .....................................................................................5 INTRODUCTION / OBJECTIVES.......................................................................7 BIOLOGICAL AND GEOGRAPHICAL INFORMATION..............................8 Species Description and Life History..........................................................................................8 SPECIES CHARACTERISTICS...........................................................................9
    [Show full text]
  • The Conversion of Abandoned Chestnut Forests to Managed Ones Does Not Affect the Soil Chemical Properties and Improves the Soil Microbial Biomass Activity
    Article The Conversion of Abandoned Chestnut Forests to Managed Ones Does Not Affect the Soil Chemical Properties and Improves the Soil Microbial Biomass Activity Mauro De Feudis 1,* , Gloria Falsone 1, Gilmo Vianello 2 and Livia Vittori Antisari 1 1 Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, Via Fanin, 40, 40127 Bologna, Italy; [email protected] (G.F.); [email protected] (L.V.A.) 2 Centro Sperimentale per lo Studio e l’Analisi del Suolo (CSSAS), Alma Mater Studiorum—University of Bologna, 40127 Bologna, Italy; [email protected] * Correspondence: [email protected] Received: 20 June 2020; Accepted: 19 July 2020; Published: 22 July 2020 Abstract: Recently, several hectares of abandoned chestnut forests (ACF) were recovered into chestnut stands for nut or timber production; however, the effects of such practice on soil mineral horizon properties are unknown. This work aimed to (1) identify the better chestnut forest management to maintain or to improve the soil properties during the ACF recovery, and (2) give an insight into the effect of unmanaged to managed forest conversion on soil properties, taking in consideration sweet chestnut (Castanea sativa Mill.) forest ecosystems. The investigation was conducted in an experimental chestnut (Castanea sativa Mill.) forest located in the northern part of the Apennine chain (Italy). We identified an ACF, a chestnut forest for wood production (WCF), and chestnut forests 1 for nut production with a tree density of 98 and 120 plants ha− (NCFL and NCFH, respectively). WCF, NCFL and NCFH stands are the result of the ACF recovery carried out in 2004.
    [Show full text]
  • Diversity of Wisconsin Rosids
    Diversity of Wisconsin Rosids . oaks, birches, evening primroses . a major group of the woody plants (trees/shrubs) present at your sites The Wind Pollinated Trees • Alternate leaved tree families • Wind pollinated with ament/catkin inflorescences • Nut fruits = 1 seeded, unilocular, indehiscent (example - acorn) *Juglandaceae - walnut family Well known family containing walnuts, hickories, and pecans Only 7 genera and ca. 50 species worldwide, with only 2 genera and 4 species in Wisconsin Carya ovata Juglans cinera shagbark hickory Butternut, white walnut *Juglandaceae - walnut family Leaves pinnately compound, alternate (walnuts have smallest leaflets at tip) Leaves often aromatic from resinous peltate glands; allelopathic to other plants Carya ovata Juglans cinera shagbark hickory Butternut, white walnut *Juglandaceae - walnut family The chambered pith in center of young stems in Juglans (walnuts) separates it from un- chambered pith in Carya (hickories) Juglans regia English walnut *Juglandaceae - walnut family Trees are monoecious Wind pollinated Female flower Male inflorescence Juglans nigra Black walnut *Juglandaceae - walnut family Male flowers apetalous and arranged in pendulous (drooping) catkins or aments on last year’s woody growth Calyx small; each flower with a bract CA 3-6 CO 0 A 3-∞ G 0 Juglans cinera Butternut, white walnut *Juglandaceae - walnut family Female flowers apetalous and terminal Calyx cup-shaped and persistant; 2 stigma feathery; bracted CA (4) CO 0 A 0 G (2-3) Juglans cinera Juglans nigra Butternut, white
    [Show full text]
  • Nut Production, Marketing Handout
    Nut Production, Marketing Handout Why grow nuts in Iowa??? Nuts can produce the equivalent of a white-collar salary from a part-time job. They are up to 12 times more profitable per acre than corn was, even back when corn was $8/bushel. Nuts can accomplish the above with just a fraction of the investment in capital, land, and labor. Nuts can be grown in a biologically diverse perennial polyculture system with the following benefits: Builds soil instead of losing it to erosion Little or no chemical inputs needed Sequesters CO2 and builds soil organic matter Increases precipitation infiltration and storage, reduces runoff, building resilience against drought Produces high-quality habitat for wildlife, pollinating insects, and beneficial soil microbes Can build rural communities by providing a good living and a high quality of life for a whole farm family, on a relatively few acres If it’s so great, why doesn’t everybody do it? “Time Preference” economic principle: the tendency of people to prefer a smaller reward immediately over having to wait for a larger reward. Example: if an average person was to be given the choice between the following…. # 1. $10,000 cash right now, tax-free, no strings, or #2. Work part-time for 10 years with no pay, but after 10 years receive $100,000 per year, every year, for the rest of his/her life, and then for his/her heirs, in perpetuity… Most would choose #1, the immediate, smaller payoff. This is a near-perfect analogy for nut growing. Nut growing requires a substantial up-front investment with no return for the first five years, break-even not until eight to ten years, then up to $10,000 per acre or more at maturity, 12-15 years.
    [Show full text]
  • Field Instructions for The
    FIELD INSTRUCTIONS FOR THE URBAN INVENTORY OF SAN DIEGO, CALIFORNIA 2017 FOREST INVENTORY AND ANALYSIS RESOURCE MONITORING AND ASSESSMENT PROGRAM PACIFIC NORTHWEST RESEARCH STATION USDA FOREST SERVICE Note to User: URBAN FIA Field Guide 7.1 is based on the National CORE Field Guide, Version 7.1. Data elements are national CORE unless indicated as follows: • National CORE data elements that end in “+U” (e.g., x.x+U) have had values,codes, or text added, changed, or adjusted from the CORE program. Any additional URBAN FIA text for a national CORE data element is hi-lighted or shown as an "Urban Note". • All URBAN FIA data elements end in “U” (e.g., x.xU). The text for an URBAN FIA data element is not hi- lighted and does not have a corresponding variable in CORE. • URBAN FIA electronic file notes: • national CORE data elements that are not applicable in URBAN FIA are formatted as light gray or light gray hidden text. • hyperlink cross-references are included for various sections, figures, and tables. *National CORE data elements retain their national CORE field guide data element/variable number but may not retain their national CORE field guide location or sequence within the guide. pg.3 Table of Contents CHAPTER 1 INTRODUCTION . 11 SECTION 1.1 URBAN OVERVIEW. .11 SECTION 1.2 FIELD GUIDE LAYOUT . 12 SECTION 1.3 UNITS OF MEASURE . 12 CHAPTER 2 GENERAL DESCRIPTION . 13 SECTION 2.1 PLOT SETUP . 15 SECTION 2.2 PLOT INTEGRITY . 15 SECTION 2.3 PLOT MONUMENTATION . 15 ITEM 2.3.0.1 MONUMENT TYPE (CORE 0.3.1U) .
    [Show full text]
  • Monsanto Improved Fatty Acid Profile MON 87705 Soybean, Petition 09-201-01P
    Monsanto Improved Fatty Acid Profile MON 87705 Soybean, Petition 09-201-01p OECD Unique Identifier: MON-87705-6 Final Environmental Assessment September 2011 Agency Contact Cindy Eck USDA, APHIS, BRS 4700 River Road, Unit 147 Riverdale, MD 20737-1237 Phone: (301) 734-0667 Fax: (301) 734-8669 [email protected] The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’S TARGET Center at (202) 720–2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326–W, Whitten Building, 1400 Independence Avenue, SW, Washington, DC 20250–9410 or call (202) 720–5964 (voice and TDD). USDA is an equal opportunity provider and employer. Mention of companies or commercial products in this report does not imply recommendation or endorsement by the U.S. Department of Agriculture over others not mentioned. USDA neither guarantees nor warrants the standard of any product mentioned. Product names are mentioned solely to report factually on available data and to provide specific information. This publication reports research involving pesticides. All uses of pesticides must be registered by appropriate State and/or Federal agencies before they can be recommended. MONSANTO 87705 SOYBEAN TABLE OF CONTENTS PAGE ACRONYMS ................................................................................................................................ iv 1 PURPOSE AND NEED ........................................................................................................
    [Show full text]
  • Avoiding Peanut, Tree Nuts, Egg, Corn, and Wheat Ingredients Common Food Allergens May Be Listed Many Different Ways on Food Labels and Can Be Hidden in Common Foods
    Food Allergen Graph: Avoiding Peanut, Tree Nuts, Egg, Corn, and Wheat Ingredients Common food allergens may be listed many different ways on food labels and can be hidden in common foods. Below you will find different labels for common allergens. Avoiding Peanuts: Avoiding Tree Nuts: Avoiding Egg: Avoiding Corn: Avoiding Wheat: Artificial nuts Almond Albumin / albumen Corn - meal, flakes, Bread Crumbs Beer nuts Artificial nuts Egg (dried, powdered, syrup, solids, flour, Bulgur Cold pressed, expeller Brazil nut solids, white, yolk) niblets, kernel, Cereal extract Flour: pressed or extruded peanut Beechnut Eggnog alcohol, on the cob, Club Wheat all-purpose Butternut oil Globulin / Ovoglobulin starch, bread,muffins Conscous bread Goobers Cashew Fat subtitutes sugar/sweetener, oil, Cracker meal cake Durum Ground nuts Chestnut Livetin Caramel corn / flavoring durum Einkorn Mandelonas (peanuts soaked Chinquapin nut Lysozyme Citric acid (may be corn enriched Emmer in almond flavoring) Coconut (really is a fruit not a based) graham Mayonnaise Farina Mixed nuts tree nut, but classified as a Grits high gluten Meringue (meringue Hydrolyzed Monkey nuts nut on some charts) high protein powder) Hominy wheat protein Nut meat Filbert / hazelnut instant Ovalbumin Maize Kamut Gianduja -a chocolate-nut mix pastry Nut pieces Ovomucin / Ovomucoid / Malto / Dextrose / Dextrate Matzoh Peanut butter Ginkgo nut Modified cornstarch self-rising Ovotransferrin Matzoh meal steel ground Peanut flour Hickory nut Polenta Simplesse Pasta stone ground Peanut protein hydrolysate
    [Show full text]
  • Winter Tree Identification Pocket Guide
    Pocket Reference for Winter Tree Identification If found please send to P.O. Box 1040, Mahomet, IL 61853 or drop off at any of the Champaign County Forest Preserves. Characteristics To Look For In Winter ID • Bud arrangement - opposite (M.A.D. Horse Bucks) Maples Ashes Dogwoods Horse Chestnuts Buckeyes - alternate (Others) - whorled (Catalpa sp.) • Shape and color of buds • Shape and color of leaf scars • Color and structure of tree bark General Notes • Species with opposite arrangements are near the front of the reference, while species with alternate and whorled arrangements are near the back. • Each species has the common name, genus and species, as well as the family name listed. Genus and species names are in italics and the family names all end in “AE.” • A species marked with a denotes a species that we would like to have a location reported, so we can collect seed when the time is right. Lastly, this is by no means a complete guide to native trees in Illinois. It is simply a compilation of common trees that could be encountered during a hike in the woods. More trees will be added to this reference in the future so that a more complete guide can be generated Thank You and Enjoy! Maple Aceraceae Acer sp. Box Elder Acer negundo Distinguishing features • Buds are opposite. • Twig color is red. • White hairs are present on buds, creating a white “frost” on twig. Maple Aceraceae Acer sp. Sugar Maple Acer saccharum Distinguishing features • Buds are opposite and pointed. • Bud color is dark brown or shades of red.
    [Show full text]