The Route of Development in Intra-Regional Income Equality Via High-Speed Rail: Evidence from China

Total Page:16

File Type:pdf, Size:1020Kb

The Route of Development in Intra-Regional Income Equality Via High-Speed Rail: Evidence from China The Route of Development in intra-regional Income Equality via High-Speed Rail: Evidence from China Wenjing YU, China Academy for Rural Development, Zhejiang University [email protected] Yansang YAO, China Academy for Rural Development, Zhejiang University [email protected] Selected Paper prepared for presentation at the 2019 Agricultural & Applied Economics Association Annual Meeting, Atlanta, GA, July 21 – July 23 Copyright 2019 by [Wenjing Yu, Yansang Yao]. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies. The Route of Development in intra-regional Income Equality via High-Speed Rail: Evidence from China Abstract This paper mainly studies how the bullet trains, a new generation of vehicles, are associated with income inequality in China for the years between 2008 and 2018. Gini coefficients are used to measure the income inequality from county level, and within urban and rural areas of China. A staggered Difference-in-Difference (DID) approach is taken to identify the causal effect of high-speed rail on intra-regional income inequality. Factors other than transportation are also considered in our regression model, including a few social variables and major economic indicators. It is found that the Gini coefficient of reginal economy would rise by 0.0327 in average when new high-speed railway stations are opened, which means that the intra-regional income inequality is being exacerbated. We also find that the treatment drawn by high-speed rail system is not uniform in different regions, and the greatest impact was set on the western region. Key words: high-speed rail, income inequality, county level Introduction With rapid economic growth following the opening-up policy, economic disparity has become a major challenge in China (Jian et al., 1996). Income inequality problem is not only reflected on the income gap among different regions, but also manifested in the income inequality within certain areas, which has a more direct influence on the harmony and stability of local society. Most literatures(Kaiyuen, 1998; Adler & Schmid,2013; Hui, 2008) summarize the causes of income inequality into two aspects, namely the endowments differences and the frequency of production factor flows. The former mainly refers to human capital, such as education level and health conditions; the latter is closely related to the transportation network. Transportation system and the economy are unavoidably linked. Traffic itself set no value, but it is considered as a way to bridge the spatial gap between regions, which can respond to the derivative needs of human activities. Beginning with “New Economic Geography” (Krugman, 1991), it has been proved that under the background of the imperfectly competitive world, changes in transportation costs and accessibility can generate a profound impact on the location and agglomeration of activities. One proposed solution to the issue of income inequality is putting investments in public transportation. Most governments, especially in developing countries, prefer to invest in transportation infrastructure to stimulate the economy, and the bullet train, one of the most advanced ground transportation modes, has commanded attention in recent years. (Amos et al., 2013; Ashish et al., 2013; Ke et al., 2017). In current China, the development of traditional railways is far from meeting the needs of integrated transportation system for other industries. Rather than upgrading traditional railway station, Chinese government chose to brand tens of thousands of new high-speed rail stations, especially in suburban areas, with the purpose to stimulate new towns’ development and accelerate regional urbanization. Most researchers (Zhang & Zou, 2012; Zheng & Kahn, 2013) focused on the impact of HSR on economic productivity and competitiveness, arguing that economies can benefit from lower generalized costs of transport. A few scholars (Chen & Haynes, 2017; Yang et al., 2018) pointed out that the HSR projects have also shown the positive effects on regional imbalance during the past few decades, supporting that HSR investment could have a transformative impact on the economy as a whole, rather than just on directly affected local areas. However, little attention has been paid to income inequity within regions and the economic theory is unclear on how investments in transportation system should affect income inequality. In principle, the opening of high-speed rail can accelerate the speed of inter-regional elements flowing, especially of the labor resources. As a result, the degree of market information asymmetry between regions is weakened, as well as the structure of production factors within regions changing, which is presented as the structure reorganization of labor force and three main industries. The income distribution within regions will be rewritten due to the resource reallocation. Empirical analysis of the effect of public transportation investment on income inequality has been mixed.Yan Li and Maria N. DaCosta (2013) studies the relationship between various types of transportation modes and income inequality in China for the years between 1978 and 2007, finding that most transportation modes are negatively associated with income inequality in urban areas while the coefficients are positive for rural areas. Each of the previous results were established using cross-city data, and examine the impart of high-speed rail system on economic growth or inter-regional inequality. However, there is growing evidence that public transportation does affect income equality of intra-regions. Investing in high-speed rail is on the front line of action to revitalize the railways. The ultimate objective is to create new generation of passenger transport for the sake of reducing congestion, accidents and environmental externalities. High-speed rail investment is seen as a feasible measure, with the aim of drawing the benefit from railways which is associated with lower total travel time, higher comfort and reliability, a reduction in the probability of accident and, in some cases, the release of extra capacity which helps to enlarge the frequency of information exchange among regions. Last but not least, it has been argued that high-speed rail investment weakens the differences of absolute economic advantages among regions and boosts regional development. In fact,the main element transported by high-speed railway is human beings and the impact of high-speed rail stations set on the cross-regional mobility depend on the characteristics of target passengers, because the ticket price of bullet trains is several times higher than that of ordinary transport modes, and residents' demand for high-speed rail is related to their economic affordability. Furthermore, each station is equipped with a complete public system, including commercial facilities and social Infrastructure, which increase the employment opportunities for labors within a certain radius. No matter in which region, individual’s income and labor market structure are both probably shocked by high-speed rail project. Our current work provides evidence adding to the body of empirical literature examining the effects of high-speed rail investment on reginal development. As income inequality is a serious issue in China, the primary question in this paper is to examine how high-speed rail stations openings in China impact intra-regional income inequality, which would be measured by Gini index. In principle, one might calculate the effect of public transportation on income inequality by regressing the Gini coefficient, an authoritative proxy variable of income inequality based on the Lorenz curve, which plots the share of population against the share of income received. However, this approach is likely to be flawed because of other confounding factors driving both variables. For example, economic structure is closely related to the regional quadratic assignment strategy, such as tax policy formulated by government. To be specific, we regress the degree of intra-regional income inequality on a dummy variable for new high-speed railway stations’ openings in a difference-in-difference framework where time is the running variable. Our key identifying assumption is that the intra-regional income disparity of full samples keeps parallel trend which means all other factors influencing Gini index are smooth except the new rail stations themselves. Changes to other contributors to income equality, such as the local population and economy, do not threaten our identifying assumption as long as they evolve parallelly among all the counties. As a result, the treatment effect in our outcomes of interest at the time of the high-speed stations’ openings can be attributed to the change in income disparity of local residents. We compare the Gini index per month—between counties that made their traffic system more generous and inclusive and other counties that did not—before and after the opening of high- speed rail stations (difference-in-difference) to estimate the difference made by changes in the high-speed rail system. We find that high-speed rail stations’ openings cause large ups in intra-reginal income inequality. In our primary specification, the major finding is the significant impact of the high- speed rail project on income inequality within regions, as the Gini index changed by 0.0327, which means intra-regional income disparity has generally increased
Recommended publications
  • Urban Transformation in Transitional Economies: Lessons from the Mongolian Plateau
    URBAN TRANSFORMATION IN TRANSITIONAL ECONOMIES: LESSONS FROM THE MONGOLIAN PLATEAU By Hogeun Park A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of Planning, Design, and Construction—Doctor of Philosophy 2018 ABSTRACT URBAN TRANSFORMATION IN TRANSITIONAL ECONOMIES: LESSONS FROM THE MONGOLIAN PLATEAU By Hogeun Park Over the past three decades, transitional economies have experienced dramatic urbanization in response to changes in the human and natural environments, resulting from economic transitions, industrial restructures, institutional reforms, and climate variability. However, our knowledge of the causes and processes of urbanization in transitional economies remains limited. Here, I used the Mongolian Plateau (MGP), including Inner Mongolia in China (IM) and Mongolia (MG), as a testbed for studying the processes and causes of urbanization. I also investigated urban challenges and the policy implications of those issues. The dissertation is set to three research objectives: (1) understanding the processes of urbanization in the MGP, (2) analyzing the driving forces of rural-to-urban migration, and (3) identifying urban challenges and proposing policy solutions. For the first objective, I analyzed the spatial characteristics of urbanization in six cities (Hohhot, Baotou, and Ulanqab in IM, and Ulaanbaatar, Erdenet, and Darkhan in MG) using remote sensing analyses, computed the urban growth rates, population density, and discontiguity (i.e., leap-frogging index) of each city from 1990 through 2015, and applied structural equation models. I found divergent spatial patterns of urbanization in IM and MG and the differential institutional supports and industrial structures contributing to these disparities. For the second objective, I used household surveys to analyze the forces driving rural-to- urban migration, complemented with remote sensing tools to estimate the actual environmental conditions of respondents’ former residences.
    [Show full text]
  • 中國中鐵股份有限公司 CHINA RAILWAY GROUP LIMITED (A Joint Stock Limited Company Incorporated in the People’S Republic of China with Limited Liability) (Stock Code: 390)
    Hong Kong Exchanges and Clearing Limited and The Stock Exchange of Hong Kong Limited take no responsibility for the contents of this announcement, make no representation as to its accuracy or completeness and expressly disclaim any liability whatsoever for any loss howsoever arising from or in reliance upon the whole or any part of the contents of this announcement. 中國中鐵股份有限公司 CHINA RAILWAY GROUP LIMITED (A joint stock limited company incorporated in the People’s Republic of China with limited liability) (Stock Code: 390) This overseas regulatory announcement is made pursuant to Rule 13.10B of the Rules Governing the Listing of Securities on The Stock Exchange of Hong Kong Limited. Please refer to the attached “Announcement of China Railway Group Limited on Winning of Bids for Material Projects” published by China Railway Group Limited on the Shanghai Stock Exchange website on 24 October 2019 for your information. By Order of the Board China Railway Group Limited Zhang Zongyan Chairman 24 October 2019 As at the date of this announcement, the executive directors of the Company are ZHANG Zongyan (Chairman) and ZHANG Xian; the independent non-executive directors are GUO Peizhang, WEN Baoman, ZHENG Qingzhi and CHUNG Shui Ming Timpson; and the non-executive director is MA Zonglin. A Shares Stock Code: 601390 A Shares Stock Name: China Railway Announcement No.: H Shares Stock Code: 00390 H Shares Stock Name: China Railway Lin 2019-072 Announcement of China Railway Group Limited on Winning of Bids for Material Projects The board of directors of China Railway Group Limited (the “Company”) and all the directors hereby undertake that this announcement does not have any false or misleading statements or any material omissions, and assume the joint and several liabilities for the truthfulness, accuracy and completeness of the contents.
    [Show full text]
  • Overview of Hainan Province
    Overview of Hainan Province Geographical Location Situated at the southernmost tip of China, Hainan sees Guangdong across the Qiongzhou Strait to the north, Vietnam across theBeibu Bay to the west and Taiwanacross theSouth China Sea to the east. Its neighbors in the South China Sea include the Philippines, Brunei and Malaysia in the southeast and south. The jurisdiction of Hainan covers Hainan Island, theXisha (Paracel) Islands, theZhongsha (Macclesfield) Islands and the Nansha (Spratly) Islands as well as the surrounding maritime areas, making it the largest province in China in terms of area. Hainan covers a land area (mainly including Hainan Island and Xisha, Zhongsha and NanshaIslands) of 35,400 square km (that of Hainan Island reaching 33,900 square km) and has a maritime area of about 2 million square km. With the outline like an oval snow pear, Hainan Island has a total area of 33,900 square km (excluding the satellite islands), the second largest island only next to Taiwan Island. Qiongzhou Strait, located between Hainan Island and Leizhou Peninsula of Guangdong Province is about 18-nautical-mile wide; while Zengmu Ansha in Nansha Islands is the southernmost territory of China. Administrative Divisions By September 2015, Hainan Province had 27 cities and counties (districts), including four prefectural cities, five county-level cities, four counties, six autonomous counties, eight districts, and 21 townships, 175 towns and 22 sub-district offices (totaling 218). Cities at the prefectural level: Haikou, Sanya, Sansha and Danzhou Cities at the county level: Wuzhishan, Wenchang, Qionghai, Wanningand Dongfang Counties: Ding’an, Tunchang, Chengmai and Lingao Autonomous Counties: Baisha Li Autonomous County, Changjiang Li Autonomous County, Ledong Li Autonomous County, Lingshui Li Autonomous County, Baoting Li and Miao Autonomous County and Qiongzhong Li and Miao Autonomous County Population Calculated according to a sample survey on population changes, the birth rate of the province reached 14.57‰, death rate6.00‰, andnatural growth rate8.57‰in 2015.
    [Show full text]
  • Appendix 1: Rank of China's 338 Prefecture-Level Cities
    Appendix 1: Rank of China’s 338 Prefecture-Level Cities © The Author(s) 2018 149 Y. Zheng, K. Deng, State Failure and Distorted Urbanisation in Post-Mao’s China, 1993–2012, Palgrave Studies in Economic History, https://doi.org/10.1007/978-3-319-92168-6 150 First-tier cities (4) Beijing Shanghai Guangzhou Shenzhen First-tier cities-to-be (15) Chengdu Hangzhou Wuhan Nanjing Chongqing Tianjin Suzhou苏州 Appendix Rank 1: of China’s 338 Prefecture-Level Cities Xi’an Changsha Shenyang Qingdao Zhengzhou Dalian Dongguan Ningbo Second-tier cities (30) Xiamen Fuzhou福州 Wuxi Hefei Kunming Harbin Jinan Foshan Changchun Wenzhou Shijiazhuang Nanning Changzhou Quanzhou Nanchang Guiyang Taiyuan Jinhua Zhuhai Huizhou Xuzhou Yantai Jiaxing Nantong Urumqi Shaoxing Zhongshan Taizhou Lanzhou Haikou Third-tier cities (70) Weifang Baoding Zhenjiang Yangzhou Guilin Tangshan Sanya Huhehot Langfang Luoyang Weihai Yangcheng Linyi Jiangmen Taizhou Zhangzhou Handan Jining Wuhu Zibo Yinchuan Liuzhou Mianyang Zhanjiang Anshan Huzhou Shantou Nanping Ganzhou Daqing Yichang Baotou Xianyang Qinhuangdao Lianyungang Zhuzhou Putian Jilin Huai’an Zhaoqing Ningde Hengyang Dandong Lijiang Jieyang Sanming Zhoushan Xiaogan Qiqihar Jiujiang Longyan Cangzhou Fushun Xiangyang Shangrao Yingkou Bengbu Lishui Yueyang Qingyuan Jingzhou Taian Quzhou Panjin Dongying Nanyang Ma’anshan Nanchong Xining Yanbian prefecture Fourth-tier cities (90) Leshan Xiangtan Zunyi Suqian Xinxiang Xinyang Chuzhou Jinzhou Chaozhou Huanggang Kaifeng Deyang Dezhou Meizhou Ordos Xingtai Maoming Jingdezhen Shaoguan
    [Show full text]
  • 2016 Annual Report.PDF
    HAITONG SECURITIES CO., LTD. 海通證券股份有限公司 Annual Report 2016 2016 Annual Report 年度報告 CONTENTS Section I Definition and Important Risk Warnings 3 Section II Company Profile and Key Financial Indicators 7 Section III Summary of the Company’s Business 23 Section IV Report of the Board of Directors 28 Section V Significant Events 62 Section VI Changes in Ordinary Share and Particulars about Shareholders 91 Section VII Preferred Shares 100 Section VIII Particulars about Directors, Supervisors, Senior Management and Employees 101 Section IX Corporate Governance 149 Section X Corporate Bonds 184 Section XI Financial Report 193 Section XII Documents Available for Inspection 194 Section XIII Information Disclosure of Securities Company 195 IMPORTANT NOTICE The Board, the Supervisory Committee, Directors, Supervisors and senior management of the Company represent and warrant that this annual report (this “Report”) is true, accurate and complete and does not contain any false records, misleading statements or material omission and jointly and severally take full legal responsibility as to the contents herein. This Report was reviewed and passed at the twenty-third meeting of the sixth session of the Board. The number of Directors to attend the Board meeting should be 13 and the number of Directors having actually attended the Board meeting was 11. Director Li Guangrong, was unable to attend the Board meeting in person due to business travel, and had appointed Director Zhang Ming to vote on his behalf. Director Feng Lun was unable to attend the Board meeting in person due to business travel and had appointed Director Xiao Suining to vote on his behalf.
    [Show full text]
  • Annual Report 2019 Mobility
    (a joint stock limited company incorporated in the People’s Republic of China with limited liability) Stock Code: 1766 Annual Report Annual Report 2019 Mobility 2019 for Future Connection Important 1 The Board and the Supervisory Committee of the Company and its Directors, Supervisors and Senior Management warrant that there are no false representations, misleading statements contained in or material omissions from this annual report and they will assume joint and several legal liabilities for the truthfulness, accuracy and completeness of the contents disclosed herein. 2 This report has been considered and approved at the seventeenth meeting of the second session of the Board of the Company. All Directors attended the Board meeting. 3 Deloitte Touche Tohmatsu CPA LLP has issued standard unqualified audit report for the Company’s financial statements prepared under the China Accounting Standards for Business Enterprises in accordance with PRC Auditing Standards. 4 Liu Hualong, the Chairman of the Company, Li Zheng, the Chief Financial Officer and Wang Jian, the head of the Accounting Department (person in charge of accounting affairs) warrant the truthfulness, accuracy and completeness of the financial statements in this annual report. 5 Statement for the risks involved in the forward-looking statements: this report contains forward-looking statements that involve future plans and development strategies which do not constitute a substantive commitment by the Company to investors. Investors should be aware of the investment risks. 6 The Company has proposed to distribute a cash dividend of RMB0.15 (tax inclusive) per share to all Shareholders based on the total share capital of the Company of 28,698,864,088 shares as at 31 December 2019.
    [Show full text]
  • Reliability Optimization of a Railway Network
    sustainability Article Reliability Optimization of a Railway Network Xuelei Meng 1,2,*, Yahui Wang 3, Limin Jia 2 and Lei Li 4 1 School of Traffic and Transportation, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China 2 State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China; [email protected] 3 School of Foreign Languages, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China; [email protected] 4 Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, Zhejiang, China; [email protected] * Correspondence: [email protected] Received: 7 October 2020; Accepted: 14 November 2020; Published: 24 November 2020 Abstract: With the increase of the railway operating mileage, the railway network is becoming more and more complicated. We expect to build more railway lines to offer the possibility to offer more high quality service for the passengers, while the investment is often limited. Therefore, it is very important to decide the pairs of cities to add new railway lines under the condition of limited construction investment in order to optimize the railway line network to maximize the reliability of the railway network to deal with the railway passenger transport task under emergency conditions. In this paper, we firstly define the reliability of the railway networks based on probability theory by analyzing three minor cases. Then we construct a reliability optimization model for the railway network to solve the problem, expecting to enhance the railway network with the limited investment. The goal is to make an optimal decision when choosing where to add new railway lines to maximize the reliability of the whole railway network, taking the construction investment as the main constraint, which is turned to the building mileage limit.
    [Show full text]
  • Jiangsu(PDF/288KB)
    Mizuho Bank China Business Promotion Division Jiangsu Province Overview Abbreviated Name Su Provincial Capital Nanjing Administrative 13 cities and 45 counties Divisions Secretary of the Luo Zhijun; Provincial Party Li Xueyong Committee; Mayor 2 Size 102,600 km Shandong Annual Mean 16.2°C Jiangsu Temperature Anhui Shanghai Annual Precipitation 861.9 mm Zhejiang Official Government www.jiangsu.gov.cn URL Note: Personnel information as of September 2014 [Economic Scale] Unit 2012 2013 National Share (%) Ranking Gross Domestic Product (GDP) 100 Million RMB 54,058 59,162 2 10.4 Per Capita GDP RMB 68,347 74,607 4 - Value-added Industrial Output (enterprises above a designated 100 Million RMB N.A. N.A. N.A. N.A. size) Agriculture, Forestry and Fishery 100 Million RMB 5,809 6,158 3 6.3 Output Total Investment in Fixed Assets 100 Million RMB 30,854 36,373 2 8.2 Fiscal Revenue 100 Million RMB 5,861 6,568 2 5.1 Fiscal Expenditure 100 Million RMB 7,028 7,798 2 5.6 Total Retail Sales of Consumer 100 Million RMB 18,331 20,797 3 8.7 Goods Foreign Currency Revenue from Million USD 6,300 2,380 10 4.6 Inbound Tourism Export Value Million USD 328,524 328,857 2 14.9 Import Value Million USD 219,438 221,987 4 11.4 Export Surplus Million USD 109,086 106,870 3 16.3 Total Import and Export Value Million USD 547,961 550,844 2 13.2 Foreign Direct Investment No. of contracts 4,156 3,453 N.A.
    [Show full text]
  • A Brief Introduction to the Dairy Industry in Heilongjiang NBSO Dalian
    A brief introduction to the Dairy Industry in Heilongjiang NBSO Dalian RVO.nl | Brief Introduction Dairy industry Heilongjiang, NBSO Dalian Colofon This is a publication of: Netherlands Enterprise Agency Prinses Beatrixlaan 2 PO Box 93144, 2509 AC, The Hague Phone: 088 042 42 42 Email: via contact form on the website Website: www.rvo.nl This survey has been conducted by the Netherlands Business Support Office in Dalian If you have any questions regarding this business sector in Heilongjiang Province or need any form of business support, please contact NBSO Dalian: Chief Representative: Renée Derks Deputy Representative: Yin Hang Phone: +86 (0)411 3986 9998 Email: [email protected] For further information on the Netherlands Business Support Offices, see www.nbso.nl © Netherlands Enterprise Agency, August 2015 NL Enterprise Agency is a department of the Dutch ministry of Economic Affairs that implements government policy for agricultural, sustainability, innovation, and international business and cooperation. NL Enterprise Agency is the contact point for businesses, educational institutions and government bodies for information and advice, financing, networking and regulatory matters. Although a great degree of care has been taken in the preparation of this document, no rights may be derived from this brochure, or from any of the examples contained herein, nor may NL Enterprise Agency be held liable for the consequences arising from the use thereof. This publication may not be reproduced, in whole, or in part, in any form, without the prior written consent of the publisher. Page 2 of 10 RVO.nl | Brief Introduction Dairy industry Heilongjiang, NBSO Dalian Contents Colofon .....................................................................................................
    [Show full text]
  • Strategic Development Outline for Economic Cooperation Between the People's Republic of China and Mongolia
    STRATEGIC DEVELOPMENT OUTLINE FOR ECONOMIC COOPERATION BETWEEN THE PEOPLE’S REPUBLIC OF CHINA AND MONGOLIA (PROJECT AREA: XINGANMENG PREFECTURE IN THE INNER MONGOLIA AUTONOMOUS REGION OF THE PRC AND THE PROVINCES OF DORNOD, HENTIY, SUHBAATAR OF MONGOLIA ) i This publication was prepared by Asian Development Bank consultants under the guidance of Bank staff. The findings, interpre- tations, and conclusions expressed in it do not necessarily represent the views of the Bank or those of its member countries. The Asian Development Bank does not guarantee the accuracy of the data in- cluded in this publication and accepts no responsibility whatsoever for any consequences of their use. @ Asian Development Bank 2002 ISBN No. 971-561-412-4 Stock No. 110501 Published by the Asian Development Bank P.O. Box. 789, 0980 Manila, Philippines For more information on ADB, visit http:\\www.adb.org ii STRATEGIC DEVELOPMENT OUTLINE FOR ECONOMIC COOPERATION BETWEEN THE PEOPLE’S REPUBLIC OF CHINA AND MONGOLIA (PROJECT AREA: XINGANMENG PREFECTURE IN THE INNER MONGOLIA AUTONOMOUS REGION OF THE PRC AND THE PROVINCES OF DORNOD, HENTIY, SUHBAATAR OF MONGOLIA ) iii Message from the People’s Republic of China n line with the open door policy, the Government of options for economic cooperation in a specific project the People’s Republic of China regards promotion area covering Xinganmeng Prefecture of Inner Mongolia Iof economic cooperation with neighboring coun- Autonomous Region and the three eastern provinces in tries as a special means to accelerate growth and eco- Mongolia. As revealed by the strategic study, the two nomic development of the local economy in the provinces countries have good opportunity to cooperate in the and autonomous regions that share border with other project area in the sectors of agriculture, mining, tour- countries.
    [Show full text]
  • Insar Reveals Land Deformation at Guangzhou and Foshan, China Between 2011 and 2017 with COSMO-Skymed Data
    remote sensing Article InSAR Reveals Land Deformation at Guangzhou and Foshan, China between 2011 and 2017 with COSMO-SkyMed Data Alex Hay-Man Ng 1,2 ID , Hua Wang 1,*, Yiwei Dai 1, Carolina Pagli 3, Wenbin Chen 1, Linlin Ge 2, Zheyuan Du 2 and Kui Zhang 4 1 Department of Surveying Engineering, Guangdong University of Technology, Guangzhou 510006, China; [email protected] (A.H.-M.N.); [email protected] (Y.D.); [email protected] (W.C.) 2 School of Civil and Environmental Engineering, UNSW Australia, Sydney 2052, Australia; [email protected] (L.G.); [email protected] (Z.D.) 3 Department of Earth Sciences, University of Pisa, Pisa 56100, Italy; [email protected] 4 School of Communication Engineering, Chongqing University, Chongqing 400044, China; [email protected] * Correspondence: [email protected]; Tel.: +86-135-7001-9257 Received: 23 April 2018; Accepted: 23 May 2018; Published: 24 May 2018 Abstract: Subsidence from groundwater extraction and underground tunnel excavation has been known for more than a decade in Guangzhou and Foshan, but past studies have only monitored the subsidence patterns as far as 2011 using InSAR. In this study, the deformation occurring during the most recent time-period between 2011 and 2017 has been measured using COSMO-SkyMed (CSK) to understand if changes in temporal and spatial patterns of subsidence rates occurred. Using InSAR time-series analysis (TS-InSAR), we found that significant surface displacement rates occurred in the study area varying from −35 mm/year (subsidence) to 10 mm/year (uplift). The 2011–2017 TS-InSAR results were compared to two separate TS-InSAR analyses (2011–2013, and 2013–2017).
    [Show full text]
  • Supplementary Materials
    Supplementary material BMJ Open Supplementary materials for A cross-sectional study on the epidemiological features of human brucellosis in Tongliao city, Inner Mongolia province, China, over a 11-year period (2007-2017) Di Li1, Lifei Li2, Jingbo Zhai3, Lingzhan Wang4, Bin Zhang5 1Department of Anatomy, The Medical College of Inner Mongolia University for the Nationalities, Tongliao City, Inner Mongolia Autonomous region, China 2Department of Respiratory Medicine, Affiliated Hospital of Inner Mongolia University for The Nationalities, Tongliao City, Inner Mongolia Autonomous region, China 3Brucellosis Prevenyion and Treatment Engineering Technology Research Center of Mongolia Autonomous region, Tongliao City, Inner Mongolia Autonomous region, China 4Institute of Applied Anatomy, The Medical College of Inner Mongolia University for the Nationalities, Tongliao City, Inner Mongolia Autonomous region, China 5Department of Thoracic Surgery, Affiliated Hospital of Inner Mongolia University for The Nationalities, Tongliao City, Inner Mongolia Autonomous region, China Correspondence to: Dr Bin Zhang; [email protected] Li D, et al. BMJ Open 2020; 10:e031206. doi: 10.1136/bmjopen-2019-031206 Supplementary material BMJ Open Table S1 The annual age distribution of human brucellosis in Tongliao during 2007-2017. Age stage 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 Total 0- 1 4 1 1 4 5 3 2 3 3 5 32 4- 4 10 11 4 14 11 9 5 4 5 6 83 10- 7 5 14 7 17 7 6 10 1 2 8 84 15- 5 21 33 29 46 39 19 25 8 5 21 251 20- 13 44 63 52 102 86 59 68 32 23 33 575
    [Show full text]