Practical Computational Toolkits for Dendrimers and Dendrons Structure Design

Total Page:16

File Type:pdf, Size:1020Kb

Practical Computational Toolkits for Dendrimers and Dendrons Structure Design Practical computational toolkits for dendrimers and dendrons structure design Nuno Martinho1,2,3, Liana C. Silva1, Helena F. Florindo1, Steve Brocchini2, Teresa Barata2,* and Mire Zloh3,* 1 Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, Lisbon 1649-003, Portugal 2 Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29/39 Brunswick Square, London WC1N 1AX, UK 3 School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK * Authors to whom correspondence should be addressed. e-mail: [email protected] & [email protected] ABSTRACT Dendrimers and dendrons offer an excellent platform for developing novel drug delivery systems and medicines. The rational design and further development of these repetitively branched systems are restricted by difficulties in scalable synthesis and structural determination, which can be overcome by judicious use of molecular modelling and molecular simulations. A major difficulty to utilise in silico studies to design dendrimers lies in the laborious generation of their structures. Current modelling tools utilise automated assembly of simpler dendrimers or the inefficient manual assembly of monomer precursors to generate more complicated dendrimer structures. Herein we describe two novel graphical user interface (GUI) toolkits written in Python that provide an improved degree of automation for rapid assembly of dendrimers and generation of their 2D and 3D structures. Our first toolkit uses the RDkit library, SMILES nomenclature of monomers and SMARTS reaction nomenclature to generate SMILES and mol files of dendrimers without 3D coordinates. These files are used for simple graphical representations and storing their structures in databases. The second toolkit assembles complex topology dendrimers from monomers to construct 3D dendrimer structures to be used as starting points for simulation using existing and widely available software and force fields. Both tools were validated for ease-of-use to prototype dendrimer structure and the second toolkit was especially relevant for dendrimers of high complexity and size. INTRODUCTION Dendrimers and dendrons are a type of hyper-branched macromolecules characterised by a well-defined three-dimensional branching architecture with a high degree of mono-disperse molecular weight characteristics emanating from a multifunctional core [1]. They are often defined by the composition and chemistry of their core, branching (internal monomers) and by their multivalent terminal groups (surface groups). This results in a wide diversity of different topologies described in the literature since different core precursor and branching monomers can be used in their preparation. In particular, the use of different types of monomers can have dramatic changes in the size, volume, shape, flexibility, physicochemical properties and available space (interior density) of dendrimers [2, 3]. These features provide an excellent platform for potential applications of dendrimers for various purposes, for example: enhancing solubility and delivery of drugs [4–8], optimization of therapeutic agents toxicity [9, 10], developing sensors [11], diagnostic agents [4] and transfection reagents [12]. The multivalent surface of dendrimers can also be utilized for passive or active targeting by modification of terminal groups using small molecules or macromolecules to employ relevant molecular recognition mechanisms [12–17]. Dendrimers are prepared following a wide range of synthetic routes. Divergent routes essentially proceed from the core outwards, and convergent routes tend to proceed from branched end groups to the core. Due to the hyperbranched character of dendrimers, the size of the structure, complexity and branching increases with each additional generation. The increase of each generation often results in the doubling the number of end groups with the possibility that intricate branched structures can be formed. Eventually dendrimers reach a generation number where end-group crowding results in restricted chemical accessibility self- interruption of synthesis [18]. The conformation of dendrimers at lower generation numbers can be different from higher number generation dendrimers and their conformation in solution is highly dependent on chemical structure and requires analysis on a case-by-case basis. For example, generations 1 and 3 of equilibrated triazine dendrimers in water assume a globular-like configuration with a dense core and flexible surface, generation 5 becomes less spherical but having still dense core, while generations 7 and 9 are porous and open to the penetration to the solvent [19]. As with most polymers, the behaviour of end groups depends on the nature of the terminal groups, in some cases the end groups may be flexible [19] or folded into the interior of the dendrimer [18]. The size and flexibility of structures of many dendrimers prevent the unequivocal determination of their conformation using common experimental techniques. Currently, there are only 15 reported structures of dendrimers determined by X-ray crystallography in the protein data bank (PDB) [20]. There is a significant progress in analysis of dendrimers using NMR from distinguishing the signals of different generations and signal assignments [21, 22]to understanding the dynamics and mobility of dendrimers [23]. However, the full three dimensional structure determination of dendrimers using NMR is still hindered due to the repetitive nature of monomers in each generation of the dendrimer that leads to ambiguous assignments of nOe signals. The use of biophysical and physicochemical techniques can provide information on complexes that dendrimers form with other molecules of interest [24], however the detailed structural information that can be obtained experimentally remains limited. Due to the large variation in chemical structures of monomers that can be used to prepare dendrimers, it is increasingly difficult to envision their important properties, such as shape, flexibility and interior flexibility. Molecular modelling and simulations has become a powerful tool to probe and model molecular structural information. Molecular modelling has been increasingly used to rationally design dendrimers for biomedical applications with special focus on studying their structure and dynamic response to environment stimulus (e.g. pH change) as well as interactions of dendrimers with other molecules [23, 25–28]. Modelling studies of dendrimers have been conducted using different force fields developed for proteins and small molecules, including CHARMM[29], AMBER[30], CVFF[31], Dreiding[32], GROMOS[33], COMPAS [34] and OPLS[35]. Although these types of molecular modelling studies provide information that corroborate experimental data, it still remains difficult to generate the three dimensional models of relevant dendrimers in silico. This is particularly true for larger generations or for non-regular dendrimers or dendrons with complex structures. Several molecular modelling tools are suited to build regular dendrimers and hyper-branched polymers, namely Starmaker (part of Silico toolkit)[36, 37], Dendrimer Building Toolkit[30], Dendrimer Builder in Materials Studio [38] and HBP builder [39]. However, there are still opportunities to automate process of generation of the structures of more complex dendrimers or dendrons. We have previously developed a method to describe dendrimer structures as a sequence of monomers accompanied by a “connectivity table” [40] for use in generating structure using XPLOR-NIH software [41]. This method still required the manual description of the sequence and the “connectivity table” and thus lacked the automation required for general use. Therefore, there is still a demand for a GUI that allows building frameworks of dendrimers and dendrons with different chemistries and being able to use different force fields in a reliable manner. This manuscript concerns the description of an algorithm presented in a GUI to generate the sequence of monomers and connectivity tables to be exported to XPLOR to generate topology files of dendrimers and complete 3D structure to be used in MD simulation packages. Additionally, we also provide an automated method to generate 2D structure and smiles of dendrimers for fast prototyping and database management of these macromolecules. Both tools were shown to provide a faster and easier way to assemble dendrimers in preparation for further computational studies. RESULTS AND DISCUSSION Our approach aims to provide a framework of tools to build dendrimers and dendrons in a reliable and consistent way using two approaches according to the level of parameterization and complexity of the dendrimer required. As with other dendrimer building strategies, the principle is to construct the dendrimer framework from the set of monomers needed to increase the dendrimer generation number. We focused on tools written in Python language that allow the design of different chemistry templates with varying complexity. In cases where parameterization for further MD simulation of dendrimers is not required and only the assembly is important we provide a GUI to generate 2D mol files of dendrimers (Toolkit 1). When parameterization is required to further model the dendrimers, we created a GUI to automate our previously reported method [40]. This new GUI generates the input file containing the sequence of monomers and their connectivity to
Recommended publications
  • Molecular Dynamics Simulations in Drug Discovery and Pharmaceutical Development
    processes Review Molecular Dynamics Simulations in Drug Discovery and Pharmaceutical Development Outi M. H. Salo-Ahen 1,2,* , Ida Alanko 1,2, Rajendra Bhadane 1,2 , Alexandre M. J. J. Bonvin 3,* , Rodrigo Vargas Honorato 3, Shakhawath Hossain 4 , André H. Juffer 5 , Aleksei Kabedev 4, Maija Lahtela-Kakkonen 6, Anders Støttrup Larsen 7, Eveline Lescrinier 8 , Parthiban Marimuthu 1,2 , Muhammad Usman Mirza 8 , Ghulam Mustafa 9, Ariane Nunes-Alves 10,11,* , Tatu Pantsar 6,12, Atefeh Saadabadi 1,2 , Kalaimathy Singaravelu 13 and Michiel Vanmeert 8 1 Pharmaceutical Sciences Laboratory (Pharmacy), Åbo Akademi University, Tykistökatu 6 A, Biocity, FI-20520 Turku, Finland; ida.alanko@abo.fi (I.A.); rajendra.bhadane@abo.fi (R.B.); parthiban.marimuthu@abo.fi (P.M.); atefeh.saadabadi@abo.fi (A.S.) 2 Structural Bioinformatics Laboratory (Biochemistry), Åbo Akademi University, Tykistökatu 6 A, Biocity, FI-20520 Turku, Finland 3 Faculty of Science-Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands; [email protected] 4 Swedish Drug Delivery Forum (SDDF), Department of Pharmacy, Uppsala Biomedical Center, Uppsala University, 751 23 Uppsala, Sweden; [email protected] (S.H.); [email protected] (A.K.) 5 Biocenter Oulu & Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7 A, FI-90014 Oulu, Finland; andre.juffer@oulu.fi 6 School of Pharmacy, University of Eastern Finland, FI-70210 Kuopio, Finland; maija.lahtela-kakkonen@uef.fi (M.L.-K.); tatu.pantsar@uef.fi
    [Show full text]
  • Maestro 10.2 User Manual
    Maestro User Manual Maestro 10.2 User Manual Schrödinger Press Maestro User Manual Copyright © 2015 Schrödinger, LLC. All rights reserved. While care has been taken in the preparation of this publication, Schrödinger assumes no responsibility for errors or omissions, or for damages resulting from the use of the information contained herein. Canvas, CombiGlide, ConfGen, Epik, Glide, Impact, Jaguar, Liaison, LigPrep, Maestro, Phase, Prime, PrimeX, QikProp, QikFit, QikSim, QSite, SiteMap, Strike, and WaterMap are trademarks of Schrödinger, LLC. Schrödinger, BioLuminate, and MacroModel are registered trademarks of Schrödinger, LLC. MCPRO is a trademark of William L. Jorgensen. DESMOND is a trademark of D. E. Shaw Research, LLC. Desmond is used with the permission of D. E. Shaw Research. All rights reserved. This publication may contain the trademarks of other companies. Schrödinger software includes software and libraries provided by third parties. For details of the copyrights, and terms and conditions associated with such included third party software, use your browser to open third_party_legal.html, which is in the docs folder of your Schrödinger software installation. This publication may refer to other third party software not included in or with Schrödinger software ("such other third party software"), and provide links to third party Web sites ("linked sites"). References to such other third party software or linked sites do not constitute an endorsement by Schrödinger, LLC or its affiliates. Use of such other third party software and linked sites may be subject to third party license agreements and fees. Schrödinger, LLC and its affiliates have no responsibility or liability, directly or indirectly, for such other third party software and linked sites, or for damage resulting from the use thereof.
    [Show full text]
  • Kepler Gpus and NVIDIA's Life and Material Science
    LIFE AND MATERIAL SCIENCES Mark Berger; [email protected] Founded 1993 Invented GPU 1999 – Computer Graphics Visual Computing, Supercomputing, Cloud & Mobile Computing NVIDIA - Core Technologies and Brands GPU Mobile Cloud ® ® GeForce Tegra GRID Quadro® , Tesla® Accelerated Computing Multi-core plus Many-cores GPU Accelerator CPU Optimized for Many Optimized for Parallel Tasks Serial Tasks 3-10X+ Comp Thruput 7X Memory Bandwidth 5x Energy Efficiency How GPU Acceleration Works Application Code Compute-Intensive Functions Rest of Sequential 5% of Code CPU Code GPU CPU + GPUs : Two Year Heart Beat 32 Volta Stacked DRAM 16 Maxwell Unified Virtual Memory 8 Kepler Dynamic Parallelism 4 Fermi 2 FP64 DP GFLOPS GFLOPS per DP Watt 1 Tesla 0.5 CUDA 2008 2010 2012 2014 Kepler Features Make GPU Coding Easier Hyper-Q Dynamic Parallelism Speedup Legacy MPI Apps Less Back-Forth, Simpler Code FERMI 1 Work Queue CPU Fermi GPU CPU Kepler GPU KEPLER 32 Concurrent Work Queues Developer Momentum Continues to Grow 100M 430M CUDA –Capable GPUs CUDA-Capable GPUs 150K 1.6M CUDA Downloads CUDA Downloads 1 50 Supercomputer Supercomputers 60 640 University Courses University Courses 4,000 37,000 Academic Papers Academic Papers 2008 2013 Explosive Growth of GPU Accelerated Apps # of Apps Top Scientific Apps 200 61% Increase Molecular AMBER LAMMPS CHARMM NAMD Dynamics GROMACS DL_POLY 150 Quantum QMCPACK Gaussian 40% Increase Quantum Espresso NWChem Chemistry GAMESS-US VASP CAM-SE 100 Climate & COSMO NIM GEOS-5 Weather WRF Chroma GTS 50 Physics Denovo ENZO GTC MILC ANSYS Mechanical ANSYS Fluent 0 CAE MSC Nastran OpenFOAM 2010 2011 2012 SIMULIA Abaqus LS-DYNA Accelerated, In Development NVIDIA GPU Life Science Focus Molecular Dynamics: All codes are available AMBER, CHARMM, DESMOND, DL_POLY, GROMACS, LAMMPS, NAMD Great multi-GPU performance GPU codes: ACEMD, HOOMD-Blue Focus: scaling to large numbers of GPUs Quantum Chemistry: key codes ported or optimizing Active GPU acceleration projects: VASP, NWChem, Gaussian, GAMESS, ABINIT, Quantum Espresso, BigDFT, CP2K, GPAW, etc.
    [Show full text]
  • Trends in Atomistic Simulation Software Usage [1.3]
    A LiveCoMS Perpetual Review Trends in atomistic simulation software usage [1.3] Leopold Talirz1,2,3*, Luca M. Ghiringhelli4, Berend Smit1,3 1Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingenierie Chimiques, Valais, École Polytechnique Fédérale de Lausanne, CH-1951 Sion, Switzerland; 2Theory and Simulation of Materials (THEOS), Faculté des Sciences et Techniques de l’Ingénieur, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; 3National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; 4The NOMAD Laboratory at the Fritz Haber Institute of the Max Planck Society and Humboldt University, Berlin, Germany This LiveCoMS document is Abstract Driven by the unprecedented computational power available to scientific research, the maintained online on GitHub at https: use of computers in solid-state physics, chemistry and materials science has been on a continuous //github.com/ltalirz/ rise. This review focuses on the software used for the simulation of matter at the atomic scale. We livecoms-atomistic-software; provide a comprehensive overview of major codes in the field, and analyze how citations to these to provide feedback, suggestions, or help codes in the academic literature have evolved since 2010. An interactive version of the underlying improve it, please visit the data set is available at https://atomistic.software. GitHub repository and participate via the issue tracker. This version dated August *For correspondence: 30, 2021 [email protected] (LT) 1 Introduction Gaussian [2], were already released in the 1970s, followed Scientists today have unprecedented access to computa- by force-field codes, such as GROMOS [3], and periodic tional power.
    [Show full text]
  • In Silico Strategy for Targeting the Mtor Kinase at Rapamycin Binding Site by Small Molecules
    molecules Article In Silico Strategy for Targeting the mTOR Kinase at Rapamycin Binding Site by Small Molecules Serena Vittorio 1 , Rosaria Gitto 1 , Ilenia Adornato 1, Emilio Russo 2 and Laura De Luca 1,* 1 Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci 13, I-98168 Messina, Italy; [email protected] (S.V.); [email protected] (R.G.); [email protected] (I.A.) 2 Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, Viale Europa e Germaneto, I-88100 Catanzaro, Italy; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +39-090-676-6410 Abstract: Computer aided drug-design methods proved to be powerful tools for the identification of new therapeutic agents. We employed a structure-based workflow to identify new inhibitors targeting mTOR kinase at rapamycin binding site. By combining molecular dynamics (MD) simulation and pharmacophore modelling, a simplified structure-based pharmacophore hypothesis was built starting from the FKBP12-rapamycin-FRB ternary complex retrieved from RCSB Protein Data Bank (PDB code 1FAP). Then, the obtained model was used as filter to screen the ZINC biogenic compounds library, containing molecules derived from natural sources or natural-inspired compounds. The resulting hits were clustered according to their similarity; moreover, compounds showing the highest pharmacophore fit-score were chosen from each cluster. The selected molecules were subjected to docking studies to clarify their putative binding mode. The binding free energy of the obtained complexes was calculated by MM/GBSA method and the hits characterized by the lowest DGbind Citation: Vittorio, S.; Gitto, R.; values were identified as potential mTOR inhibitors.
    [Show full text]
  • Lawrence Berkeley National Laboratory Recent Work
    Lawrence Berkeley National Laboratory Recent Work Title From NWChem to NWChemEx: Evolving with the Computational Chemistry Landscape. Permalink https://escholarship.org/uc/item/4sm897jh Journal Chemical reviews, 121(8) ISSN 0009-2665 Authors Kowalski, Karol Bair, Raymond Bauman, Nicholas P et al. Publication Date 2021-04-01 DOI 10.1021/acs.chemrev.0c00998 Peer reviewed eScholarship.org Powered by the California Digital Library University of California From NWChem to NWChemEx: Evolving with the computational chemistry landscape Karol Kowalski,y Raymond Bair,z Nicholas P. Bauman,y Jeffery S. Boschen,{ Eric J. Bylaska,y Jeff Daily,y Wibe A. de Jong,x Thom Dunning, Jr,y Niranjan Govind,y Robert J. Harrison,k Murat Keçeli,z Kristopher Keipert,? Sriram Krishnamoorthy,y Suraj Kumar,y Erdal Mutlu,y Bruce Palmer,y Ajay Panyala,y Bo Peng,y Ryan M. Richard,{ T. P. Straatsma,# Peter Sushko,y Edward F. Valeev,@ Marat Valiev,y Hubertus J. J. van Dam,4 Jonathan M. Waldrop,{ David B. Williams-Young,x Chao Yang,x Marcin Zalewski,y and Theresa L. Windus*,r yPacific Northwest National Laboratory, Richland, WA 99352 zArgonne National Laboratory, Lemont, IL 60439 {Ames Laboratory, Ames, IA 50011 xLawrence Berkeley National Laboratory, Berkeley, 94720 kInstitute for Advanced Computational Science, Stony Brook University, Stony Brook, NY 11794 ?NVIDIA Inc, previously Argonne National Laboratory, Lemont, IL 60439 #National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6373 @Department of Chemistry, Virginia Tech, Blacksburg, VA 24061 4Brookhaven National Laboratory, Upton, NY 11973 rDepartment of Chemistry, Iowa State University and Ames Laboratory, Ames, IA 50011 E-mail: [email protected] 1 Abstract Since the advent of the first computers, chemists have been at the forefront of using computers to understand and solve complex chemical problems.
    [Show full text]
  • Elucidating Binding Sites and Affinities of Erα Agonist and Antagonist to Human Alpha-Fetoprotein by in Silico Modeling and Point Mutagenesis Nurbubu T
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 December 2019 doi:10.20944/preprints201912.0374.v1 Peer-reviewed version available at Int. J. Mol. Sci. 2020, 21, 893; doi:10.3390/ijms21030893 Elucidating Binding Sites and Affinities of ERα Agonist and Antagonist to Human Alpha-Fetoprotein by in silico Modeling and Point Mutagenesis Nurbubu T. Moldogazieva1*, Daria S. Ostroverkhova1,2, Nikolai N. Kuzmich1,3, Vladimir V. Kadochnikov4, Alexander A. Terentiev5, Yuri B. Porozov1,4 1 Laboratory of Bioinformatics, I.M. Sechenov First Moscow State Medical University (Sechenov University); Moscow, Russia; 2Department of Bioengineering, M.V. Lomonosov Moscow State University; Moscow, Russia; 3Department of Drug Safety, I.M. Smorodintsev Research Institute of Influenza, WHO National Influenza Centre of Russia; Saint Petersburg, Russia 4Department of Information and Communication Technologies, Saint Petersburg National Research University of Information Technologies, Mechanics and Optics; Saint Petersburg, Russia 5Deparment of Biochemistry and Molecular Biology, N.I. Pirogov Russian National Research Medical University; Moscow Russia *Corresponding author: Nurbubu T. Moldogazieva, e-mail: [email protected] (NM) ¶ These authors contributed equally to this work Short title: Binding of ERα ligands to human alpha-fetoprotein Key words: alpha-fetoprotein, estrogens, selective estrogen receptor modulators, homology-based modeling, molecular docking, protein-ligand interaction, amino acid substitutions. Abbreviations: HAFP, human alpha-fetoprotein; HSA, human serum albumin; E2, 17β-estradiol; DES, diethylstilbestrol. Author contribution: Conceptualization, Nurbubu T. Moldogazieva, Alexander A. Terentiev and Yuri B. Porozov; Data curation, Nurbubu T. Moldogazieva; Formal analysis, Nurbubu T. Moldogazieva and Nikolai N. Kuzmich; Investigation, Daria S. Ostroverkhova and Vladimir V. Kadochnikov; Methodology, Nikolai N. Kuzmich; Supervision, Alexander A.
    [Show full text]
  • Pelvic Fin Flexibility in Tree Climbing Fish
    G Model ZOOL-25524; No. of Pages 7 ARTICLE IN PRESS Zoology xxx (2016) xxx–xxx Contents lists available at ScienceDirect Zoology journal homepage: www.elsevier.com/locate/zool The significance of pelvic fin flexibility for tree climbing fish a b a,b c Adhityo Wicaksono , Saifullah Hidayat , Yudithia Damayanti , Desmond Soo Mun Jin , a b,∗ a,∗ Erly Sintya , Bambang Retnoaji , Parvez Alam a Laboratory of Paper Coating and Converting, Centre for Functional Materials, Abo Akademi University, Porthaninkatu 3, 20500 Turku, Finland b Laboratory of Animal Embryology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia c Rapid Gain Global Corporation, Singapore a r t i c l e i n f o a b s t r a c t Article history: In this article, we compare the characteristics of biomechanical attachment exhibited by two morpholog- Received 1 March 2016 ically different mudskipper species, Boleophthalmus boddarti (with fused pelvic fins) and Periophthalmus Received in revised form 14 April 2016 variabilis (with unfused pelvic fins). P. variabilis is a tree and rock climber while B. boddarti dwells in the Accepted 17 June 2016 muddy shallows and is unable to climb. Our aim in this article is to determine whether it is predominantly Available online xxx chemical or morphological properties of the pelvic fins from each species that may allow P. variabilis to climb trees whilst preventing B. boddarti from doing the same. To fulfil our objective we perform friction Keywords: and suction resistance tests, Fourier transform infrared spectroscopy of the mucosal secretions under Mudskipper the fins, direct geometrical measurements and finite element modelling.
    [Show full text]
  • Chemistry Packages at CHPC
    Chemistry Packages at CHPC Anita M. Orendt Center for High Performance Computing [email protected] Fall 2014 Purpose of Presentation • Identify the computational chemistry software and related tools currently available at CHPC • Present brief overview of these packages • Present how to access packages on CHPC • Information on usage of Gaussian09 http://www.chpc.utah.edu Ember Lonepeak /scratch/lonepeak/serial 141 nodes/1692 cores 16 nodes/256 cores Infiniband and GigE Large memory, GigE General 70 nodes/852 cores 12 GPU nodes (6 General) Kingspeak 199 nodes/4008 cores Ash cluster (417 nodes) Infiniband and GigE Switch General 44 nodes/832 cores Apex Arch Great Wall PFS Telluride cluster (93 nodes) /scratch/ibrix meteoXX/atmosXX nodes NFS Home NFS Administrative Directories & /scratch/kingspeak/serial Group Nodes Directories 10/1/14 http://www.chpc.utah.edu Slide 3 Brief Overview CHPC Resources • Computational Clusters – kingspeak, ember – general allocation and owner-guest on owner nodes – lonepeak – no allocation – ash and telluride – can run as smithp-guest and cheatham-guest, respectively • Home directory – NFS mounted on all clusters – /uufs/chpc.utah.edu/common/home/<uNID> – generally not backed up (there are exceptions) • Scratch systems – /scratch/ibrix/chpc_gen – kingspeak, ember, ash, telluride – 56TB – /scratch/kingspeak/serial – kingspeak, ember, ash – 175TB – /scratch/lonepeak/serial – lonepeak – 33 TB – /scratch/local on compute nodes • Applications – /uufs/chpc.utah.edu/sys/pkg (use for lonepeak, linux desktops if chpc
    [Show full text]
  • Download Article (PDF)
    International Journal of Networked and Distributed Computing, Vol. 5, No. 1 (January 2017) 52–61 ___________________________________________________________________________________________________________ An FPGA Accelerator for Molecular Dynamics Simulation Using OpenCL Hasitha Muthumala Waidyasooriya 1, Masanori Hariyama 1, Kota Kasahara 2 1 Graduate School of Information Sciences, Tohoku University, Aoba 6-6-05, Aramaki, Aoba, Sendai, Miyagi 980-8579, Japan E-mail: {hasitha, hariyama}@tohoku.ac.jp 2 College of Life Sciences, Ritsumeikan University, 1-1-1, Noji-higashi, Kusatsu, Shiga 525-8577, Japan E-mail: [email protected] Abstract Molecular dynamics (MD) simulations are very important to study physical properties of the atoms and molecules. However, a huge amount of processing time is required to simulate a few nano-seconds of an actual experiment. Although the hardware acceleration using FPGAs provides promising results, huge design time and hardware design skills are required to implement an accelerator successfully. In this paper, we use a heterogeneous computing system for MD simulations, that can be used in C-based programming environment. We propose an FPGA accelerator designed using C-based OpenCL for the heterogeneous environment. We achieved over 4.6 times of speed-up compared to CPU-based processing, by using only 36% of the Stratix V FPGA resources. We also evaluate the processing times of different tasks in the heterogeneous environment. Keywords: OpenCL for FPGA, molecular dynamics simulation, hardware acceleration, scientific com- puting. 1. Introduction tation results of one iteration are used as the inputs in the next iteration. Each iteration consists of two major phases: force computation and motion update 1 Molecular dynamics (MD) simulations are very as shown in Fig.1.
    [Show full text]
  • Download PDF 137.14 KB
    Why should biochemistry students be introduced to molecular dynamics simulations—and how can we introduce them? Donald E. Elmore Department of Chemistry and Biochemistry Program; Wellesley College; Wellesley, MA 02481 Abstract Molecular dynamics (MD) simulations play an increasingly important role in many aspects of biochemical research but are often not part of the biochemistry curricula at the undergraduate level. This article discusses the pedagogical value of exposing students to MD simulations and provides information to help instructors consider what software and hardware resources are necessary to successfully introduce these simulations into their courses. In addition, a brief review of the MD based activities in this issue and other sources are provided. Keywords molecular dynamics simulations, molecular modeling, biochemistry education, undergraduate education, computational chemistry Published in Biochemistry and Molecular Biology Education, 2016, 44:118-123. Several years ago, I developed a course on the modeling of biochemical systems at Wellesley College, which was described in more detail in a previous issue of this journal [1]. As I set out to design that course, I decided to place a particular emphasis on molecular dynamics (MD) simulations. In full candor, this decision was likely related to my experience integrating these simulations into my own research, but I also believe it was due to some inherent advantages of exposing students to this particular computational approach. Notably, even as this initial biochemical molecular modeling course evolved into a more general (i.e. not solely biochemical) course in computational chemistry, a significant emphasis on MD has remained, emphasizing the central role I and my other colleague who teaches the current course felt it played in students’ education.
    [Show full text]
  • Lessons Learned from Comparing Molecular Dynamics Engines on the SAMPL5 Dataset
    JCAMD manuscript No. (will be inserted by the editor) Lessons learned from comparing molecular dynamics engines on the SAMPL5 dataset Michael R. Shirts · Christoph Klein · Jason M. Swails · Jian Yin · Michael K. Gilson · David L. Mobley · David A. Case · Ellen D. Zhong Received: date / Accepted: date Abstract We describe our efforts to prepare common starting structures and models for the SAMPL5 blind prediction challenge. We generated the starting input files and single configuration potential energies for the host-guest in the SAMPL5 blind prediction challenge for the GROMACS, AMBER, LAMMPS, DESMOND and CHARMM molecular simulation programs. All conversions were fully automated from the originally prepared AMBER input files using a combination of the ParmEd and InterMol conversion programs. We find that the energy calculations for all molecular dynamics engines for this molecular set agree to a better than 0.1% relative absolute energy for all energy components, and in most cases an order of magnitude better, when Michael R. Shirts Department of Chemical and Biological Engineering, University of Colorado Boulder, Boul- der, Colorado, USA E-mail: [email protected] Christoph Klein Department of Chemical Engineering, Vanderbilt University, Nashville, TN, USA Jason M. Swails Department of Chemistry and Chemical Biology, Rutgers University, Rutgers, NJ, USA Jian Yin Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, USA Michael K. Gilson Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, USA David L. Mobley Departments of Pharmaceutical Sciences and Chemistry, University of California, Irvine, Irvine, CA, USA David A. Case Department of Chemistry and Chemical Biology, Rutgers University, Rutgers, NJ, USA Ellen D.
    [Show full text]