Kepler Gpus and NVIDIA's Life and Material Science

Total Page:16

File Type:pdf, Size:1020Kb

Kepler Gpus and NVIDIA's Life and Material Science LIFE AND MATERIAL SCIENCES Mark Berger; [email protected] Founded 1993 Invented GPU 1999 – Computer Graphics Visual Computing, Supercomputing, Cloud & Mobile Computing NVIDIA - Core Technologies and Brands GPU Mobile Cloud ® ® GeForce Tegra GRID Quadro® , Tesla® Accelerated Computing Multi-core plus Many-cores GPU Accelerator CPU Optimized for Many Optimized for Parallel Tasks Serial Tasks 3-10X+ Comp Thruput 7X Memory Bandwidth 5x Energy Efficiency How GPU Acceleration Works Application Code Compute-Intensive Functions Rest of Sequential 5% of Code CPU Code GPU CPU + GPUs : Two Year Heart Beat 32 Volta Stacked DRAM 16 Maxwell Unified Virtual Memory 8 Kepler Dynamic Parallelism 4 Fermi 2 FP64 DP GFLOPS GFLOPS per DP Watt 1 Tesla 0.5 CUDA 2008 2010 2012 2014 Kepler Features Make GPU Coding Easier Hyper-Q Dynamic Parallelism Speedup Legacy MPI Apps Less Back-Forth, Simpler Code FERMI 1 Work Queue CPU Fermi GPU CPU Kepler GPU KEPLER 32 Concurrent Work Queues Developer Momentum Continues to Grow 100M 430M CUDA –Capable GPUs CUDA-Capable GPUs 150K 1.6M CUDA Downloads CUDA Downloads 1 50 Supercomputer Supercomputers 60 640 University Courses University Courses 4,000 37,000 Academic Papers Academic Papers 2008 2013 Explosive Growth of GPU Accelerated Apps # of Apps Top Scientific Apps 200 61% Increase Molecular AMBER LAMMPS CHARMM NAMD Dynamics GROMACS DL_POLY 150 Quantum QMCPACK Gaussian 40% Increase Quantum Espresso NWChem Chemistry GAMESS-US VASP CAM-SE 100 Climate & COSMO NIM GEOS-5 Weather WRF Chroma GTS 50 Physics Denovo ENZO GTC MILC ANSYS Mechanical ANSYS Fluent 0 CAE MSC Nastran OpenFOAM 2010 2011 2012 SIMULIA Abaqus LS-DYNA Accelerated, In Development NVIDIA GPU Life Science Focus Molecular Dynamics: All codes are available AMBER, CHARMM, DESMOND, DL_POLY, GROMACS, LAMMPS, NAMD Great multi-GPU performance GPU codes: ACEMD, HOOMD-Blue Focus: scaling to large numbers of GPUs Quantum Chemistry: key codes ported or optimizing Active GPU acceleration projects: VASP, NWChem, Gaussian, GAMESS, ABINIT, Quantum Espresso, BigDFT, CP2K, GPAW, etc. GPU code: TeraChem Analytical and Medical Imaging Instruments Genomics/Bioinformatics Molecular Dynamics (MD) Applications Features Application GPU Perf Release Status Notes/Benchmarks Supported AMBER 12, GPU Revision Support 12.2 PMEMD Explicit Solvent & GB > 100 ns/day JAC Released http://ambermd.org/gpus/benchmarks. AMBER Implicit Solvent NVE on 2X K20s Multi-GPU, multi-node htm#Benchmarks 2x C2070 equals Release C37b1; Implicit (5x), Explicit (2x) Solvent Released 32-35x X5667 http://www.charmm.org/news/c37b1.html#pos CHARMM via OpenMM Single & Multi-GPU in single node CPUs tjump Two-body Forces, Link-cell Pairs, Source only, Results Published Release V 4.04 Ewald SPME forces, 4x http://www.stfc.ac.uk/CSE/randd/ccg/softwar DL_POLY Multi-GPU, multi-node Shake VV e/DL_POLY/25526.aspx 165 ns/Day DHFR Released Implicit (5x), Explicit (2x) on Release 4.6.2; 1st Multi-GPU support GROMACS Multi-GPU, multi-node 4X C2075s Lennard-Jones, Gay-Berne, Released http://lammps.sandia.gov/bench.html#desktop 3.5-18x on Titan LAMMPS Tersoff & many more potentials Multi-GPU, multi-node and http://lammps.sandia.gov/bench.html#titan 4.0 ns/day Released Full electrostatics with PME and F1-ATPase on 100M atom capable NAMD 2.9 NAMD most simulation features 1x K20X Multi-GPU, multi-node GPU Perf compared against Multi-core x86 CPU socket. GPU Perf benchmarked on GPU supported features and may be a kernel to kernel perf comparison New/Additional MD Applications Ramping Features Application GPU Perf Release Status Notes Supported 150 ns/day DHFR on Released Production bio-molecular dynamics (MD) Written for use only on GPUs ACEMD 1x K20 Single and Multi-GPUs software specially optimized to run on GPUs http://www.deshawresearch.com/resources_whatd TBD TBD Under development DESMOND esmonddoes.html Powerful distributed computing Depends upon Released http://folding.stanford.edu molecular dynamics system; Folding@Home number of GPUs GPUs and CPUs GPUs get 4X the points of CPUs implicit solvent and folding High-performance all-atom Depends upon Released http://www.gpugrid.net/ biomolecular simulations; explicit GPUGrid.net number of GPUs NVIDIA GPUs only solvent and binding Simple fluids and binary mixtures (pair potentials, high-precision Up to 66x on 2090 vs. Released, Version 0.2.0 http://halmd.org/benchmarks.html#supercooled HALMD NVE and NVT, dynamic 1 CPU core Single GPU -binary-mixture-kob-andersen correlations) Kepler 2X faster than Released, Version 0.11.3 http://codeblue.umich.edu/hoomd-blue/ Written for use only on GPUs HOOMD-Blue Fermi Single and Multi-GPU on 1 node Multi-GPU w/ MPI in September 2013 mdcore TBD TBD Released, Version 0.1.7 http://mdcore.sourceforge.net/download.html GPU Perf compared against Multi-core x86 CPU socket. Implicit: 127-213 GPU Perf benchmarked on GPU supported features Implicit and explicit solvent, Released, Version 5.1 Library and application for molecular dynamics ns/day Explicit: 18- OpenMM custom forces Multi-GPU and may be a kernelon high to-performance kernel perf comparison 55 ns/day DHFR AMBER 12 GPU Support Revision 12.2 1/22/2013 13 Kepler - Our Fastest Family of GPUs Yet 30.00 Factor IX Running AMBER 12 GPU Support Revision 12.1 25.39 25.00 The blue node contains Dual E5-2687W CPUs 22.44 (8 Cores per CPU). 7.4x The green nodes contain Dual E5-2687W CPUs (8 20.00 18.90 Cores per CPU) and either 1x NVIDIA M2090, 1x K10 or 1x K20 for the GPU 6.6x 15.00 11.85 5.6x Nanoseconds / Day 10.00 3.5x 5.00 3.42 0.00 Factor IX 1 CPU Node 1 CPU Node + 1 CPU Node + K10 1 CPU Node + K20 1 CPU Node + K20X M2090 GPU speedup/throughput increased from 3.5x (with M2090) to 7.4x (with K20X) when compared to a CPU only node 14 K20 Accelerates Simulations of All Sizes 30.00 28.00 Running AMBER 12 GPU Support Revision 12.1 25.56 SPFP with CUDA 4.2.9 ECC Off 25.00 The blue node contains 2x Intel E5-2687W CPUs (8 Cores per CPU) 20.00 Each green nodes contains 2x Intel E5-2687W CPUs (8 Cores per CPU) plus 1x NVIDIA K20 GPUs 15.00 10.00 7.28 6.50 6.56 Speedup Compared to CPU Only 5.00 2.66 1.00 0.00 CPU All TRPcage GB JAC NVE PME Factor IX NVE Cellulose NVE Myoglobin GB Nucleosome Molecules PME PME GB Gain 28x throughput/performance by adding just one K20 GPU Nucleosome when compared to dual CPU performance 15 Quantum Chemistry Applications Application Features Supported GPU Perf Release Status Notes Local Hamiltonian, non-local Hamiltonian, LOBPCG algorithm, Released; Version 7.2.2 www.abinit.org 1.3-2.7X Abinit diagonalization / Multi-GPU support orthogonalization Integrating scheduling GPU into http://www.olcf.ornl.gov/wp- Under development SIAL programming language and 10X on kernels content/training/electronic-structure- ACES III Multi-GPU support SIP runtime environment 2012/deumens_ESaccel_2012.pdf Pilot project completed, ADF Fock Matrix, Hessians TBD Under development www.scm.com Multi-GPU support http://inac.cea.fr/L_Sim/BigDFT/news.html, http://www.olcf.ornl.gov/wp- 5-25X DFT; Daubechies wavelets, Released, Version 1.6.0 content/training/electronic-structure-2012/BigDFT- (1 CPU core to BigDFT part of Abinit Multi-GPU support Formalism.pdf and http://www.olcf.ornl.gov/wp- GPU kernel) content/training/electronic-structure-2012/BigDFT- HPC-tues.pdf Code for performing quantum Monte Carlo (QMC) electronic Under development http://www.tcm.phy.cam.ac.uk/~mdt26/casino.ht TBD Casino structure calculations for finite Multi-GPU support ml and periodic systems CASTEP TBD TBD Under development GPU Perf comparedhttp://www.castep.org/Main/HomePage against Multi-core x86 CPU socket. GPU Perf benchmarked on GPU supported features http://www.olcf.ornl.gov/wp- DBCSR (spare matrix multiply Under development and may be a kernel to kernel perf comparison 2-7X content/training/ascc_2012/friday/ACSS_2012_Van CP2K library) Multi-GPU support deVondele_s.pdf Libqc with Rys Quadrature 1.3-1.6X, Released Algorithm, Hartree-Fock, MP2 and http://www.msg.ameslab.gov/gamess/index.html GAMESS-US 2.3-2.9x HF Multi-GPU support CCSD Quantum Chemistry Applications Application Features Supported GPU Perf Release Status Notes (ss|ss) type integrals within calculations using Hartree Fock ab Released, Version 7.0 initio methods and density functional 8x http://www.ncbi.nlm.nih.gov/pubmed/21541963 GAMESS-UK Multi-GPU support theory. Supports organics & inorganics. Joint PGI, NVIDIA & Gaussian Under development http://www.gaussian.com/g_press/nvidia_press. TBD Gaussian Collaboration Multi-GPU support htm Electrostatic poisson equation, Released https://wiki.fysik.dtu.dk/gpaw/devel/projects/g GPAW orthonormalizing of vectors, residual 8x Multi-GPU support pu.html, Samuli Hakala (CSC Finland) & Chris minimization method (rmm-diis) O’Grady (SLAC) Schrodinger, Inc. Under development http://www.schrodinger.com/kb/278 Investigating GPU acceleration TBD Multi-GPU support Jaguar http://www.schrodinger.com/productpage/14/7 /32/ http://on- demand.gputechconf.com/gtc/2013/presentation Released CU_BLAS, SP2 algorithm TBD s/S3195-Fast-Quantum-Molecular-Dynamics-in- LATTE Multi-GPU support LATTE.pdf Released, Version 7.8 MOLCAS CU_BLAS support 1.1x Single GPU; Additional GPU www.molcas.org support coming in Version 8 GPU Perf compared against Multi-core x86 CPU socket. Density-fitted MP2 (DF-MP2), density GPU Perf benchmarked on GPU supported features 1.7-2.3X Under development www.molpro.net fitted local correlation methods (DF- and may be a kernel to kernel perf comparison MOLPRO projected Multiple GPU Hans-Joachim Werner RHF, DF-KS), DFT Quantum Chemistry Applications Features Application GPU Perf Release Status Notes Supported Pseudodiagonalization, full Under development Academic port.
Recommended publications
  • GPAW, Gpus, and LUMI
    GPAW, GPUs, and LUMI Martti Louhivuori, CSC - IT Center for Science Jussi Enkovaara GPAW 2021: Users and Developers Meeting, 2021-06-01 Outline LUMI supercomputer Brief history of GPAW with GPUs GPUs and DFT Current status Roadmap LUMI - EuroHPC system of the North Pre-exascale system with AMD CPUs and GPUs ~ 550 Pflop/s performance Half of the resources dedicated to consortium members Programming for LUMI Finland, Belgium, Czechia, MPI between nodes / GPUs Denmark, Estonia, Iceland, HIP and OpenMP for GPUs Norway, Poland, Sweden, and how to use Python with AMD Switzerland GPUs? https://www.lumi-supercomputer.eu GPAW and GPUs: history (1/2) Early proof-of-concept implementation for NVIDIA GPUs in 2012 ground state DFT and real-time TD-DFT with finite-difference basis separate version for RPA with plane-waves Hakala et al. in "Electronic Structure Calculations on Graphics Processing Units", Wiley (2016), https://doi.org/10.1002/9781118670712 PyCUDA, cuBLAS, cuFFT, custom CUDA kernels Promising performance with factor of 4-8 speedup in best cases (CPU node vs. GPU node) GPAW and GPUs: history (2/2) Code base diverged from the main branch quite a bit proof-of-concept implementation had lots of quick and dirty hacks fixes and features were pulled from other branches and patches no proper unit tests for GPU functionality active development stopped soon after publications Before development re-started, code didn't even work anymore on modern GPUs without applying a few small patches Lesson learned: try to always get new functionality to the
    [Show full text]
  • Free and Open Source Software for Computational Chemistry Education
    Free and Open Source Software for Computational Chemistry Education Susi Lehtola∗,y and Antti J. Karttunenz yMolecular Sciences Software Institute, Blacksburg, Virginia 24061, United States zDepartment of Chemistry and Materials Science, Aalto University, Espoo, Finland E-mail: [email protected].fi Abstract Long in the making, computational chemistry for the masses [J. Chem. Educ. 1996, 73, 104] is finally here. We point out the existence of a variety of free and open source software (FOSS) packages for computational chemistry that offer a wide range of functionality all the way from approximate semiempirical calculations with tight- binding density functional theory to sophisticated ab initio wave function methods such as coupled-cluster theory, both for molecular and for solid-state systems. By their very definition, FOSS packages allow usage for whatever purpose by anyone, meaning they can also be used in industrial applications without limitation. Also, FOSS software has no limitations to redistribution in source or binary form, allowing their easy distribution and installation by third parties. Many FOSS scientific software packages are available as part of popular Linux distributions, and other package managers such as pip and conda. Combined with the remarkable increase in the power of personal devices—which rival that of the fastest supercomputers in the world of the 1990s—a decentralized model for teaching computational chemistry is now possible, enabling students to perform reasonable modeling on their own computing devices, in the bring your own device 1 (BYOD) scheme. In addition to the programs’ use for various applications, open access to the programs’ source code also enables comprehensive teaching strategies, as actual algorithms’ implementations can be used in teaching.
    [Show full text]
  • D6.1 Report on the Deployment of the Max Demonstrators and Feedback to WP1-5
    Ref. Ares(2020)2820381 - 31/05/2020 HORIZON2020 European Centre of Excellence ​ Deliverable D6.1 Report on the deployment of the MaX Demonstrators and feedback to WP1-5 D6.1 Report on the deployment of the MaX Demonstrators and feedback to WP1-5 Pablo Ordejón, Uliana Alekseeva, Stefano Baroni, Riccardo Bertossa, Miki Bonacci, Pietro Bonfà, Claudia Cardoso, Carlo Cavazzoni, Vladimir Dikan, Stefano de Gironcoli, Andrea Ferretti, Alberto García, Luigi Genovese, Federico Grasselli, Anton Kozhevnikov, Deborah Prezzi, Davide Sangalli, Joost VandeVondele, Daniele Varsano, Daniel Wortmann Due date of deliverable: 31/05/2020 Actual submission date: 31/05/2020 Final version: 31/05/2020 Lead beneficiary: ICN2 (participant number 3) Dissemination level: PU - Public www.max-centre.eu 1 HORIZON2020 European Centre of Excellence ​ Deliverable D6.1 Report on the deployment of the MaX Demonstrators and feedback to WP1-5 Document information Project acronym: MaX Project full title: Materials Design at the Exascale Research Action Project type: European Centre of Excellence in materials modelling, simulations and design EC Grant agreement no.: 824143 Project starting / end date: 01/12/2018 (month 1) / 30/11/2021 (month 36) Website: www.max-centre.eu Deliverable No.: D6.1 Authors: P. Ordejón, U. Alekseeva, S. Baroni, R. Bertossa, M. ​ Bonacci, P. Bonfà, C. Cardoso, C. Cavazzoni, V. Dikan, S. de Gironcoli, A. Ferretti, A. García, L. Genovese, F. Grasselli, A. Kozhevnikov, D. Prezzi, D. Sangalli, J. VandeVondele, D. Varsano, D. Wortmann To be cited as: Ordejón, et al., (2020): Report on the deployment of the MaX Demonstrators and feedback to WP1-5. Deliverable D6.1 of the H2020 project MaX (final version as of 31/05/2020).
    [Show full text]
  • 5 Jul 2020 (finite Non-Periodic Vs
    ELSI | An Open Infrastructure for Electronic Structure Solvers Victor Wen-zhe Yua, Carmen Camposb, William Dawsonc, Alberto Garc´ıad, Ville Havue, Ben Hourahinef, William P. Huhna, Mathias Jacqueling, Weile Jiag,h, Murat Ke¸celii, Raul Laasnera, Yingzhou Lij, Lin Ling,h, Jianfeng Luj,k,l, Jonathan Moussam, Jose E. Romanb, Alvaro´ V´azquez-Mayagoitiai, Chao Yangg, Volker Bluma,l,∗ aDepartment of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA bDepartament de Sistemes Inform`aticsi Computaci´o,Universitat Polit`ecnica de Val`encia,Val`encia,Spain cRIKEN Center for Computational Science, Kobe 650-0047, Japan dInstitut de Ci`enciade Materials de Barcelona (ICMAB-CSIC), Bellaterra E-08193, Spain eDepartment of Applied Physics, Aalto University, Aalto FI-00076, Finland fSUPA, University of Strathclyde, Glasgow G4 0NG, UK gComputational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA hDepartment of Mathematics, University of California, Berkeley, CA 94720, USA iComputational Science Division, Argonne National Laboratory, Argonne, IL 60439, USA jDepartment of Mathematics, Duke University, Durham, NC 27708, USA kDepartment of Physics, Duke University, Durham, NC 27708, USA lDepartment of Chemistry, Duke University, Durham, NC 27708, USA mMolecular Sciences Software Institute, Blacksburg, VA 24060, USA Abstract Routine applications of electronic structure theory to molecules and peri- odic systems need to compute the electron density from given Hamiltonian and, in case of non-orthogonal basis sets, overlap matrices. System sizes can range from few to thousands or, in some examples, millions of atoms. Different discretization schemes (basis sets) and different system geometries arXiv:1912.13403v3 [physics.comp-ph] 5 Jul 2020 (finite non-periodic vs.
    [Show full text]
  • An Ab Initio Materials Simulation Code
    CP2K: An ab initio materials simulation code Lianheng Tong Physics on Boat Tutorial , Helsinki, Finland 2015-06-08 Faculty of Natural & Mathematical Sciences Department of Physics Brief Overview • Overview of CP2K - General information about the package - QUICKSTEP: DFT engine • Practical example of using CP2K to generate simulated STM images - Terminal states in AGNR segments with 1H and 2H termination groups What is CP2K? Swiss army knife of molecular simulation www.cp2k.org • Geometry and cell optimisation Energy and • Molecular dynamics (NVE, Force Engine NVT, NPT, Langevin) • STM Images • Sampling energy surfaces (metadynamics) • DFT (LDA, GGA, vdW, • Finding transition states Hybrid) (Nudged Elastic Band) • Quantum Chemistry (MP2, • Path integral molecular RPA) dynamics • Semi-Empirical (DFTB) • Monte Carlo • Classical Force Fields (FIST) • And many more… • Combinations (QM/MM) Development • Freely available, open source, GNU Public License • www.cp2k.org • FORTRAN 95, > 1,000,000 lines of code, very active development (daily commits) • Currently being developed and maintained by community of developers: • Switzerland: Paul Scherrer Institute Switzerland (PSI), Swiss Federal Institute of Technology in Zurich (ETHZ), Universität Zürich (UZH) • USA: IBM Research, Lawrence Livermore National Laboratory (LLNL), Pacific Northwest National Laboratory (PNL) • UK: Edinburgh Parallel Computing Centre (EPCC), King’s College London (KCL), University College London (UCL) • Germany: Ruhr-University Bochum • Others: We welcome contributions from
    [Show full text]
  • Real-Time Pymol Visualization for Rosetta and Pyrosetta
    Real-Time PyMOL Visualization for Rosetta and PyRosetta Evan H. Baugh1, Sergey Lyskov1, Brian D. Weitzner1, Jeffrey J. Gray1,2* 1 Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, United States of America, 2 Program in Molecular Biophysics, The Johns Hopkins University, Baltimore, Maryland, United States of America Abstract Computational structure prediction and design of proteins and protein-protein complexes have long been inaccessible to those not directly involved in the field. A key missing component has been the ability to visualize the progress of calculations to better understand them. Rosetta is one simulation suite that would benefit from a robust real-time visualization solution. Several tools exist for the sole purpose of visualizing biomolecules; one of the most popular tools, PyMOL (Schro¨dinger), is a powerful, highly extensible, user friendly, and attractive package. Integrating Rosetta and PyMOL directly has many technical and logistical obstacles inhibiting usage. To circumvent these issues, we developed a novel solution based on transmitting biomolecular structure and energy information via UDP sockets. Rosetta and PyMOL run as separate processes, thereby avoiding many technical obstacles while visualizing information on-demand in real-time. When Rosetta detects changes in the structure of a protein, new coordinates are sent over a UDP network socket to a PyMOL instance running a UDP socket listener. PyMOL then interprets and displays the molecule. This implementation also allows remote execution of Rosetta. When combined with PyRosetta, this visualization solution provides an interactive environment for protein structure prediction and design. Citation: Baugh EH, Lyskov S, Weitzner BD, Gray JJ (2011) Real-Time PyMOL Visualization for Rosetta and PyRosetta.
    [Show full text]
  • CESMIX: Center for the Exascale Simulation of Materials in Extreme Environments
    CESMIX: Center for the Exascale Simulation of Materials in Extreme Environments Project Overview Youssef Marzouk MIT PSAAP-3 Team 18 August 2020 The CESMIX team • Our team integrates expertise in quantum chemistry, atomistic simulation, materials science; hypersonic flow; validation & uncertainty quantification; numerical algorithms; parallel computing, programming languages, compilers, and software performance engineering 1 Project objectives • Exascale simulation of materials in extreme environments • In particular: ultrahigh temperature ceramics in hypersonic flows – Complex materials, e.g., metal diborides – Extreme aerothermal and chemical loading – Predict materials degradation and damage (oxidation, melting, ablation), capturing the central role of surfaces and interfaces • New predictive simulation paradigms and new CS tools for the exascale 2 Broad relevance • Intense current interest in reentry vehicles and hypersonic flight – A national priority! – Materials technologies are a key limiting factor • Material properties are of cross-cutting importance: – Oxidation rates – Thermo-mechanical properties: thermal expansion, creep, fracture – Melting and ablation – Void formation • New systems being proposed and fabricated (e.g., metallic high-entropy alloys) • May have relevance to materials aging • Yet extreme environments are largely inaccessible in the laboratory – Predictive simulation is an essential path… 3 Demonstration problem: specifics • Aerosurfaces of a hypersonic vehicle… • Hafnium diboride (HfB2) promises necessary temperature
    [Show full text]
  • Automated Construction of Quantum–Classical Hybrid Models Arxiv:2102.09355V1 [Physics.Chem-Ph] 18 Feb 2021
    Automated construction of quantum{classical hybrid models Christoph Brunken and Markus Reiher∗ ETH Z¨urich, Laboratorium f¨urPhysikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Z¨urich, Switzerland February 18, 2021 Abstract We present a protocol for the fully automated construction of quantum mechanical-(QM){ classical hybrid models by extending our previously reported approach on self-parametri- zing system-focused atomistic models (SFAM) [J. Chem. Theory Comput. 2020, 16 (3), 1646{1665]. In this QM/SFAM approach, the size and composition of the QM region is evaluated in an automated manner based on first principles so that the hybrid model describes the atomic forces in the center of the QM region accurately. This entails the au- tomated construction and evaluation of differently sized QM regions with a bearable com- putational overhead that needs to be paid for automated validation procedures. Applying SFAM for the classical part of the model eliminates any dependence on pre-existing pa- rameters due to its system-focused quantum mechanically derived parametrization. Hence, QM/SFAM is capable of delivering a high fidelity and complete automation. Furthermore, since SFAM parameters are generated for the whole system, our ansatz allows for a con- venient re-definition of the QM region during a molecular exploration. For this purpose, a local re-parametrization scheme is introduced, which efficiently generates additional clas- sical parameters on the fly when new covalent bonds are formed (or broken) and moved to the classical region. arXiv:2102.09355v1 [physics.chem-ph] 18 Feb 2021 ∗Corresponding author; e-mail: [email protected] 1 1 Introduction In contrast to most protocols of computational quantum chemistry that consider isolated molecules, chemical processes can take place in a vast variety of complex environments.
    [Show full text]
  • Popular GPU-Accelerated Applications
    LIFE & MATERIALS SCIENCES GPU-ACCELERATED APPLICATIONS | CATALOG | AUG 12 LIFE & MATERIALS SCIENCES APPLICATIONS CATALOG Application Description Supported Features Expected Multi-GPU Release Status Speed Up* Support Bioinformatics BarraCUDA Sequence mapping software Alignment of short sequencing 6-10x Yes Available now reads Version 0.6.2 CUDASW++ Open source software for Smith-Waterman Parallel search of Smith- 10-50x Yes Available now protein database searches on GPUs Waterman database Version 2.0.8 CUSHAW Parallelized short read aligner Parallel, accurate long read 10x Yes Available now aligner - gapped alignments to Version 1.0.40 large genomes CATALOG GPU-BLAST Local search with fast k-tuple heuristic Protein alignment according to 3-4x Single Only Available now blastp, multi cpu threads Version 2.2.26 GPU-HMMER Parallelized local and global search with Parallel local and global search 60-100x Yes Available now profile Hidden Markov models of Hidden Markov Models Version 2.3.2 mCUDA-MEME Ultrafast scalable motif discovery algorithm Scalable motif discovery 4-10x Yes Available now based on MEME algorithm based on MEME Version 3.0.12 MUMmerGPU A high-throughput DNA sequence alignment Aligns multiple query sequences 3-10x Yes Available now LIFE & MATERIALS& LIFE SCIENCES APPLICATIONS program against reference sequence in Version 2 parallel SeqNFind A GPU Accelerated Sequence Analysis Toolset HW & SW for reference 400x Yes Available now assembly, blast, SW, HMM, de novo assembly UGENE Opensource Smith-Waterman for SSE/CUDA, Fast short
    [Show full text]
  • Molecular Dynamics Simulations in Drug Discovery and Pharmaceutical Development
    processes Review Molecular Dynamics Simulations in Drug Discovery and Pharmaceutical Development Outi M. H. Salo-Ahen 1,2,* , Ida Alanko 1,2, Rajendra Bhadane 1,2 , Alexandre M. J. J. Bonvin 3,* , Rodrigo Vargas Honorato 3, Shakhawath Hossain 4 , André H. Juffer 5 , Aleksei Kabedev 4, Maija Lahtela-Kakkonen 6, Anders Støttrup Larsen 7, Eveline Lescrinier 8 , Parthiban Marimuthu 1,2 , Muhammad Usman Mirza 8 , Ghulam Mustafa 9, Ariane Nunes-Alves 10,11,* , Tatu Pantsar 6,12, Atefeh Saadabadi 1,2 , Kalaimathy Singaravelu 13 and Michiel Vanmeert 8 1 Pharmaceutical Sciences Laboratory (Pharmacy), Åbo Akademi University, Tykistökatu 6 A, Biocity, FI-20520 Turku, Finland; ida.alanko@abo.fi (I.A.); rajendra.bhadane@abo.fi (R.B.); parthiban.marimuthu@abo.fi (P.M.); atefeh.saadabadi@abo.fi (A.S.) 2 Structural Bioinformatics Laboratory (Biochemistry), Åbo Akademi University, Tykistökatu 6 A, Biocity, FI-20520 Turku, Finland 3 Faculty of Science-Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands; [email protected] 4 Swedish Drug Delivery Forum (SDDF), Department of Pharmacy, Uppsala Biomedical Center, Uppsala University, 751 23 Uppsala, Sweden; [email protected] (S.H.); [email protected] (A.K.) 5 Biocenter Oulu & Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7 A, FI-90014 Oulu, Finland; andre.juffer@oulu.fi 6 School of Pharmacy, University of Eastern Finland, FI-70210 Kuopio, Finland; maija.lahtela-kakkonen@uef.fi (M.L.-K.); tatu.pantsar@uef.fi
    [Show full text]
  • An Explicit-Solvent Conformation Search Method Using Open Software
    An explicit-solvent conformation search method using open software Kari Gaalswyk and Christopher N. Rowley Department of Chemistry, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada ABSTRACT Computer modeling is a popular tool to identify the most-probable conformers of a molecule. Although the solvent can have a large effect on the stability of a conformation, many popular conformational search methods are only capable of describing molecules in the gas phase or with an implicit solvent model. We have developed a work-flow for performing a conformation search on explicitly-solvated molecules using open source software. This method uses replica exchange molecular dynamics (REMD) to sample the conformational states of the molecule efficiently. Cluster analysis is used to identify the most probable conformations from the simulated trajectory. This work-flow was tested on drug molecules a-amanitin and cabergoline to illustrate its capabilities and effectiveness. The preferred conformations of these molecules in gas phase, implicit solvent, and explicit solvent are significantly different. Subjects Biophysics, Pharmacology, Computational Science Keywords Conformation search, Explicit solvent, Cluster analysis, Replica exchange molecular dynamics INTRODUCTION Many molecules can exist in multiple conformational isomers. Conformational isomers have the same chemical bonds, but differ in their 3D geometry because they hold different torsional angles (Crippen & Havel, 1988). The conformation of a molecule can affect Submitted 5 April 2016 chemical reactivity, molecular binding, and biological activity (Struthers, Rivier & Accepted 6May2016 Published 31 May 2016 Hagler, 1985; Copeland, 2011). Conformations differ in stability because they experience different steric, electrostatic, and solute-solvent interactions. The probability, p,ofa Corresponding author Christopher N.
    [Show full text]
  • The Impact of Density Functional Theory on Materials Research
    www.mrs.org/bulletin functional. This functional (i.e., a function whose argument is another function) de- scribes the complex kinetic and energetic interactions of an electron with other elec- Toward Computational trons. Although the form of this functional that would make the reformulation of the many-body Schrödinger equation exact is Materials Design: unknown, approximate functionals have proven highly successful in describing many material properties. Efficient algorithms devised for solving The Impact of the Kohn–Sham equations have been imple- mented in increasingly sophisticated codes, tremendously boosting the application of DFT methods. New doors are opening to in- Density Functional novative research on materials across phys- ics, chemistry, materials science, surface science, and nanotechnology, and extend- ing even to earth sciences and molecular Theory on Materials biology. The impact of this fascinating de- velopment has not been restricted to aca- demia, as DFT techniques also find application in many different areas of in- Research dustrial research. The development is so fast that many current applications could Jürgen Hafner, Christopher Wolverton, and not have been realized three years ago and were hardly dreamed of five years ago. Gerbrand Ceder, Guest Editors The articles collected in this issue of MRS Bulletin present a few of these suc- cess stories. However, even if the compu- Abstract tational tools necessary for performing The development of modern materials science has led to a growing need to complex quantum-mechanical calcula- tions relevant to real materials problems understand the phenomena determining the properties of materials and processes on are now readily available, designing a an atomistic level.
    [Show full text]