Breeze\Lilacs.Wpd
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Research Article Vein Distribution on the Deformation Behavior And
Hindawi Applied Bionics and Biomechanics Volume 2020, Article ID 8792143, 12 pages https://doi.org/10.1155/2020/8792143 Research Article Vein Distribution on the Deformation Behavior and Fracture Mechanisms of Typical Plant Leaves by Quasi In Situ Tensile Test under a Digital Microscope Jingjing Liu,1 Wei Ye ,1 Zhihui Zhang ,2 Zhenglei Yu,2 Hongyan Ding,1 Chao Zhang,1 and Sen Liu1 1Faculty of Mechanical & Material Engineering, Huaiyin Institute of Technology, Huai’an 223003, China 2The Key Laboratory of Engineering Bionic (Ministry of Education, China) and the College of Biological and Agricultural Engineering, Jilin University, 5988 Renmin Street, Changchun 130025, China Correspondence should be addressed to Wei Ye; [email protected] and Zhihui Zhang; [email protected] Received 12 December 2019; Revised 7 June 2020; Accepted 12 June 2020; Published 1 July 2020 Academic Editor: Raimondo Penta Copyright © 2020 Jingjing Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Angiosperm leaf venation is based on two major patterns, typically dicotyledonous branching and monocotyledonous parallel veins. The influence of these patterns on deformation and fracture properties is poorly understood. In this paper, three species of dicotyledons with netted venation and three species of monocots with parallel venation were selected, and the effect of vein distribution of leaves on their mechanical properties and deformation behavior was investigated. Whole images of leaves were captured using a digital camera, and their vein traits were measured using the image processing software Digimizer. -
Classificatie Van Planten – Nieuwe Inzichten En Gevolgen Voor De Praktijk
B268_dendro_bin 03-11-2009 10:32 Pagina 4 Classificatie van planten – nieuwe inzichten en gevolgen voor de praktijk Ir. M.H.A. Hoffman Er zijn ongeveer 300.000 verschillende (hogere) plantensoorten, die onderling veel of weinig op elkaar lijken. Vroeger werden alle planten- soorten afzonderlijk benaamd, en was niet duidelijk hoe deze soorten ver- want waren. Tegenwoordig worden soorten conform het systeem van Lin- naeus ingedeeld in geslachten. Soorten die sterk verwant zijn aan elkaar hebben dezelfde geslachtsnaam. Geslachten worden op hun beurt weer ingedeeld in families en die op hun beurt weer in ordes, enzovoort. Op deze manier kent het plantenrijk een hiërarchisch indelingsysteem, met verwantschap als basis. Sterke verwantschap is meestal ook zicht- baar aan de uiterlijke gelijkenis. Soorten die veel op elkaar lijken en verwant zijn zitten in dezelfde groep.Verre verwanten zitten ver uit elkaar in het systeem. Om een plant goed te kunnen benamen, moet dus eerst uitgezocht worden aan welke andere soorten deze verwant is. Tot voor kort werd de gelijkenis van planten zen. Deze nieuwe ontwikkeling is van grote voornamelijk bepaald aan uiterlijke kenmerken invloed op de taxonomie en op het classificatie- van bijvoorbeeld bloem en blad. De afgelopen systeem van het plantenrijk. Dit heeft bijvoor- decennia kwamen daar al aanvullende criteria beeld invloed op de familie-indeling en de plaats zoals houtanatomie, pollenmorfologie, chemi- van de familie in het systeem. Maar ook op sche inhoudsstoffen en chromosoomaantallen geslachts- en soortniveau zijn er de nodige ver- bij. De afgelopen jaren hebben DNA-technie- schuivingen. Dit artikel gaat in op de ontstaans- ken een grote vlucht genomen. -
FALL 2012 the Butterfly Garden Unfolds by THERESA ARIAL, BOTANIC GARDENS MANAGER
THE UNIVERSITY OF CALIFORNIA, RIVERSIDE BOTANIC GARDENS UCRBG Newsletter VOLUME 22, NUMBER 3 • FALL 2012 The Butterfly Garden Unfolds BY THERESA ARIAL, BOTANIC GARDENS MANAGER HE DEVELOPMENT OF any processes that have contributed to our adjusted the drainage swale to the garden, small and quaint to large unfolding garden. north end of the garden, blending Tand palatial, is a process. An idea is the Initially, we were very fortunate to form and function by incorporating begin ning of that process, and we have have a flat site for the Butterfly rocks specified by the original design. Ann Platzer to thank for that. Her Garden. With help from UCR’s To provide delineation and a form vision of devel oping a butterfly garden Agricultural Operations, we graded the that allowed the Passiflora to climb, we here at the UCRBG was the beginning area just before rains moved through. installed a four foot fence, running the of some thing beautiful. In fact, her This gave us the perfect opportunity to length of west side. Ten yards of idea was my inspiration to create a observe water movement, and make amend ment were delivered and incor - butterfly garden that would unfold any adjust ments. In the porated into the existing soil at a depth before our eyes. winter of 2010, we There are many factors to be consider ed when planning a garden. Among these are accessibility, design, plant selection, grading, drainage, and irrigation. To achieve our end goal has taken time and patience. The garden has been plant - ed since early May of 2012. -
Diseases of Trees in the Great Plains
United States Department of Agriculture Diseases of Trees in the Great Plains Forest Rocky Mountain General Technical Service Research Station Report RMRS-GTR-335 November 2016 Bergdahl, Aaron D.; Hill, Alison, tech. coords. 2016. Diseases of trees in the Great Plains. Gen. Tech. Rep. RMRS-GTR-335. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 229 p. Abstract Hosts, distribution, symptoms and signs, disease cycle, and management strategies are described for 84 hardwood and 32 conifer diseases in 56 chapters. Color illustrations are provided to aid in accurate diagnosis. A glossary of technical terms and indexes to hosts and pathogens also are included. Keywords: Tree diseases, forest pathology, Great Plains, forest and tree health, windbreaks. Cover photos by: James A. Walla (top left), Laurie J. Stepanek (top right), David Leatherman (middle left), Aaron D. Bergdahl (middle right), James T. Blodgett (bottom left) and Laurie J. Stepanek (bottom right). To learn more about RMRS publications or search our online titles: www.fs.fed.us/rm/publications www.treesearch.fs.fed.us/ Background This technical report provides a guide to assist arborists, landowners, woody plant pest management specialists, foresters, and plant pathologists in the diagnosis and control of tree diseases encountered in the Great Plains. It contains 56 chapters on tree diseases prepared by 27 authors, and emphasizes disease situations as observed in the 10 states of the Great Plains: Colorado, Kansas, Montana, Nebraska, New Mexico, North Dakota, Oklahoma, South Dakota, Texas, and Wyoming. The need for an updated tree disease guide for the Great Plains has been recog- nized for some time and an account of the history of this publication is provided here. -
Rock Garden Plants
RICAN APRIL 1982 ORfICULTURlSf lue Hollies combine the superb as a hedge, they serve as a barrier to Angel (PI. Pat. 3662), a medium sized performonce of a rugged w ind and animals. It's the I'\ind of red berried beauty for smaller land Bshrub w ith the classic good lool~ engineering achievement you'd scapes; the Glue Princess (PI. Pat. of Eng lish Holly. The result is an expect to be introduced by Conard 3675) a popular, highly ornamental extraordinarily versatile plant that Pyle. variety with a profl,Jsion of bright red responds beautifully to all conditions In short, when it comes to meeting berries; and the Glue Prince ( PI. Pat. from narmal to extreme. From the most demanding landscape 3517), a rapid growing male that sun bol"ed hills and arid plains, to rocl"Y challenges, the Glue Hollies are the best insures pollination for Glue Angel and soil and the snowy North, the Glue thing to come down the road in Glue Princess. Hollies go anywhere, in any w eather. a long time. Naturally, all three come with the They can be sheared and shaped Find out more aboutthe Glue Hollies built-in hardiness and rich lustrous foli to any size from full to compact. at leading nurseries and garden age that's standard eqUipment on Use them as foundation plantings centers through out the U.S. They're all Glue Hollies. or fit them in any space. Formed available in three models: the Glue RICAN VOLUME 61 NUMBER 4 ORTICULTlIRIST Florists' strain of Primula X polyantha. -
Intraspecific, Interspecific, and Interseries Cross-Compatibility in Lilac
J. AMER.SOC.HORT.SCI. 142(4):279–288. 2017. doi: 10.21273/JASHS04155-17 Intraspecific, Interspecific, and Interseries Cross-compatibility in Lilac Jason D. Lattier 1 and Ryan N. Contreras 2 Department of Horticulture, 4017 Agriculture and Life Sciences Building, Oregon State University, Corvallis, OR 97331-7304 ADDITIONAL INDEX WORDS. Syringa, Pubescentes, Villosae, in vitro germination, controlled crosses, wide hybridization ABSTRACT. Lilacs (Syringa sp.) are a group of ornamental trees and shrubs in the Oleaceae composed of 22–30 species from two centers of diversity: the highlands of East Asia and the Balkan-Carpathian region of Europe. There are six series within the genus Syringa: Pubescentes, Villosae, Ligustrae, Ligustrina, Pinnatifoliae, and Syringa. Intraspecific and interspecific hybridization are proven methods for cultivar development. However, reports of interseries hybridization are rare and limited to crosses among taxa in series Syringa and Pinnatifoliae. Although hundreds of lilac cultivars have been introduced, fertility and cross-compatibility have yet to be formally investigated. Over 3 years, a cross-compatibility study was performed using cultivars and species of shrub-form lilacs in series Syringa, Pubescentes, and Villosae. A total of 114 combinations were performed at an average of 243 ± 27 flowers pollinated per combination. For each combination, we recorded the number of inflorescences and flowers pollinated as well as number of capsules, seed, seedlings germinated, and albino seedlings. Fruit and seed were produced from interseries crosses, but no seedlings were recovered. A total of 2177 viable seedlings were recovered from interspecific and intraspecific combinations in series Syringa, Pubescentes, and Villosae. Albino progeny were produced only from crosses with Syringa pubescens ssp. -
Structural Diversity and Contrasted Evolution of Cytoplasmic Genomes in Flowering Plants :A Phylogenomic Approach in Oleaceae Celine Van De Paer
Structural diversity and contrasted evolution of cytoplasmic genomes in flowering plants :a phylogenomic approach in Oleaceae Celine van de Paer To cite this version: Celine van de Paer. Structural diversity and contrasted evolution of cytoplasmic genomes in flowering plants : a phylogenomic approach in Oleaceae. Vegetal Biology. Université Paul Sabatier - Toulouse III, 2017. English. NNT : 2017TOU30228. tel-02325872 HAL Id: tel-02325872 https://tel.archives-ouvertes.fr/tel-02325872 Submitted on 22 Oct 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. REMERCIEMENTS Remerciements Mes premiers remerciements s'adressent à mon directeur de thèse GUILLAUME BESNARD. Tout d'abord, merci Guillaume de m'avoir proposé ce sujet de thèse sur la famille des Oleaceae. Merci pour ton enthousiasme et ta passion pour la recherche qui m'ont véritablement portée pendant ces trois années. C'était un vrai plaisir de travailler à tes côtés. Moi qui étais focalisée sur les systèmes de reproduction chez les plantes, tu m'as ouvert à un nouveau domaine de la recherche tout aussi intéressant qui est l'évolution moléculaire (même si je suis loin de maîtriser tous les concepts...). Tu as toujours été bienveillant et à l'écoute, je t'en remercie. -
CHARACTERISTICS of BLOOMING and POLLEN in FLOWERS of TWO Syringa SPECIES (F
ACTA AGROBOTANICA Vol. 66 (4), 2013: 65–72 Original Research Paper DOI: 10.5586/aa.2013.052 CHARACTERISTICS OF BLOOMING AND POLLEN IN FLOWERS OF TWO Syringa SPECIES (f. Oleaceae) Bożena Denisow, Monika Strzałkowska-Abramek Department of Botany, Laboratory of Horticultural Plant Biology, University of Life Sciences in Lublin Akademicka 15, 20-950 Lublin, Poland e-mail: [email protected] Received: 12.06.2013 Abstract Asia and within the range of their origin are consid- The observations were conducted in long-term sequen- ered as insect pollinated [2]. Lilacs, due to delicious ce studies in the years 2006, 2009, 2013, in the Lublin area, fragrant and abundant blooming, are one of the most Poland (51o 16’ N, 22o 30’ E). The flowering phenology, diurnal widely cultivated ornamental trees and shrubs in tem- pattern of blooming, pollen production and insect visitation to perate regions of the world [3]. Several hundred culti- the shrubs of Syringa oblata Lindl. var. dilatata (Nakai) Rehd. vars have been developed through extensive hybridiza- and S. meyeri ‘Palibin’ Schn. were examined. tion and artificial selection [4]. The plants (e.g. Syrin- Syringa oblata var. dilatata and S. meyeri ‘Palibin’ blo- ga vulgaris) have been used ethnobotanically to reduce omed from the mid May till mid June. The species are characte- fever and treat malaria, as a perfume and a tonic, and ristic of early morning diurnal pattern of blooming, with approx. in homeopathy [5]. of 60% of daily instalment of flowers opened before 9.00 (GMT The flowers are tiny, from the basic single, and + 2h). -
Igutettix Oculatus.Pdf
Podsumowanie Analizy Zagrożenia Agrofagiem (Ekspres PRA) dla Igutettix oculatus Obszar PRA: Rzeczpospolita Polska Opis obszaru zagrożenia: Cały obszar PRA. Igutettix oculatus to niewielki owad z rodziny Cicadellidae, który rozwija się głównie na bzach lilakach, ale też na innych roślinach z rodziny oliwkowatych takich jak ligustr czy jesion wyniosły. Owad ten wysysa płynną zawartość komórek roślinnych z liści. W miejsce płynu dostaje się powietrze i w efekcie liście pokryte są licznymi, białymi plamami a ich brzegi mogą zasychać. Szkodnik powoduje pogorszenie kondycji zdrowotnej oraz utratę walorów dekoracyjnych roślin, szczególnie, jeżeli pojawi się w dużej liczebności. Igutettix oculatus znany jest już z krajów sąsiednich (Litwa, Białoruś) i wyraźnie powiększa swój zasięg w kierunku południowo-zachodnim. Szkodnik pojawił się na obszarze PRA w roku 2017 (pn.-wsch. część kraju), a jego ekspansja na pozostałą część obszaru PRA wydaje się kwestią niedalekiej przyszłości. Łagodniejszy klimat panujący na obszarze PRA może sprzyjać gatunkowi i być przyczyną nawet większej szkodliwości niż na obszarze aktualnego występowania. Po dostaniu się na obszar PRA, najprawdopodobniej zaaklimatyzuje się i stworzy stabilne oraz liczne populacje. Nie opracowano żadnych metod zwalczania szkodnika, co może być powodem znacznych uszkodzeń roślin, szczególnie w początkowej fazie inwazji, gdy elementy oporu środowiska (pasożyty, drapieżniki) nie będą przystosowane do tego agrofaga. Trudno przewidzieć jaki wpływ szkodnik będzie miał na jesiony wyniosłe rosnące na obszarze PRA. Jeżeli okaże się, że w znacznym stopniu osłabia te drzewa i dodatkowo jest wektorem 'Candidatus Phytoplasma fraxini', wówczas może dojść nawet do wydzielania się jesionów z siedlisk leśnych i nasadzeń. Ryzyko fitosanitarne dla zagrożonego obszaru (indywidualna ranga prawdopodobieństwa wejścia, Wysokie Średnie X Niskie zadomowienia, rozprzestrzenienia oraz wpływu w tekście dokumentu) Poziom niepewności oceny: (uzasadnienie rangi w punkcie 18. -
Disease and Insect Resistant Ornamental Plants: Syringa
nysipm.cornell.edu 2018 hdl.handle.net/1813/56377 Disease and Insect Resistant Ornamental Plants Mary Thurn, Elizabeth Lamb, and Brian Eshenaur New York State Integrated Pest Management Program, Cornell University SYRINGA Lilac pixabay.com Syringa is a genus of about 30 species of lilac trees and shrubs native to Europe and Asia and widely grown as an ornamental in North America. For many, “lilac” brings to mind the common lilac, Syringa vulgaris, known for its fragrant masses of purple, lavender and white blooms in May. However, the common lilac is susceptible to several diseases and insects, including powdery mildew, bacterial blight, scale and borers. Some disease-resistant cultivars have been reported, and there are other less susceptible species and hybrids available. DISEASES Powdery Mildew is a common disease of lilacs caused primarily by the fungus Erysiphe syringae. Leaves of infected plants develop a whitish coating during the summer, and while it does not usually cause permanent damage, aesthetic quality can be greatly diminished. Cultivars of S. vulgaris are more susceptible than those of most other lilacs (8), and plants in shady sites with poor air circulation are more likely to be severely affected. Powdery Mildew Reference Species/Hybrids Cultivar Resistant Intermediate Susceptible Syringa diversifolia 4 Syringa emodi 4 Syringa julianae 4 Syringa meyeri 2, 4, 5 Syringa meyeri Dwarf Korean 6 Palibin 1, 5, 6, 9 Syringa meyeri ‘Bailbelle’ Tinkerbelle® 1, 2 Syringa microphylla 4 Syringa oblata var. dilatata 4 Powdery Mildew Reference Species/Hybrids Cultivar Resistant Intermediate Susceptible Syringa oblata ssp. dilatata Cheyenne 1 Syringa patula 4 Syringa persica 4 Syringa pubescens 3 ssp. -
International Register and Checklist of Cultivar Names in the Genus Syringa L
Last updated: March 30, 2018 ©FV & RBG International Register and Checklist of Cultivar Names in the Genus Syringa L. (Oleaceae) (“Work-in-Progress” Lilac Register) For information on title, copyright, address, table of content, acknowledgements, historical overview and introduction see Introductory Pages. Introductory notes concerning the entries in the Register and Checklist. The Register and Checklist contains all cultivar names known to the Registrar, and many designations that may be interpreted erroneously as being cultivar names. The name of a cultivar or Group consists of the name of the genus or lower taxonomic unit to which it is assigned together with a cultivar or Group epithet. The name may be written in a variety of equivalent ways (ICNCP-2009, Article 8.1)1. Syringa ‘Excel’, Syringa ×hyacinthiflora ‘Excel’, lilac ‘Excel’, sering ‘Excel’ (in Dutch), lilas ‘Excel’ (in French), and Flieder ‘Excel’ (in German) are names for the same cultivar. A trade designation is not a name but is a device that is usually used for marketing a cultivar or Group in place of its accepted name when the accepted name is not considered suitable for marketing purposes (ICNCP-2009, Article 13.1). Trade designations, including trademarks, appear in small capital letters (e.g. LUDWIG SPAETH). Trade designations, including trademarks, are always to be cited together with, or in juxtaposition to, the accepted name (ICNCP-2009, Article 17.2) (e.g. Syringa LUDWIG SPAETH [‘Andenken an Ludwig Späth’], or TINKERBELLE™ [‘Bailbelle’]). Diacritical marks are integral part of certain languages such as French, German, Latvian and Swedish, where they affect pronunciation. Neglecting umlauts is simply an orthographic error and changes the pronunciation of a name or word; neglecting diacritical marks is unnecessary and awkward. -
4. SYRINGA Linnaeus, Sp. Pl. 1: 9. 1753. 丁香 属 Ding Xiang Shu Shrubs Or Small Trees, Deciduous
Flora of China 15: 280–286. 1996. 4. SYRINGA Linnaeus, Sp. Pl. 1: 9. 1753. 丁香 属 ding xiang shu Shrubs or small trees, deciduous. Branchlets terete or 4-angled; pith solid; winter buds scaly, terminal buds often absent. Leaves opposite, simple or rarely pinnate, petiolate; leaf blade entire, pinnatisect or occasionally lobed. Inflorescences paniculate, terminal or lateral, generally composed of small cymes. Flowers bisexual, sessile or pedicellate. Calyx campanulate, regularly or irregularly 4-toothed or subtruncate, persistent. Corolla funnelform, salverform, or rotate; lobes 4, spreading or upright, valvate, usually cucullate and beaked at apex. Stamens 2, included or exserted. Ovules 2 in each locule, pendulous. Style filiform, shorter than stamens; stigma 2-cleft. Fruit a loculicidal capsule, slightly compressed. Seeds 2 in each locule, flat, narrowly winged; endosperm present; radicle erect. About 20 species: Afghanistan, India, Japan, Kashmir, Korea, Nepal, Pakistan, Sikkim; SW Asia, SE Europe; 16 species in China. Most species of Syringa are cultivated as ornamental plants, a few are medicinal. 1a. Corolla tube as long as calyx or slightly longer; filament exserted from corolla tube; corolla white or cream colored ............................................................................................. 16. S. reticulata 1b. Corolla tube 2.5–8 × longer than calyx; anthers wholly or partly included, occasionally exserted. 2a. Panicles terminal, or terminal and lateral. 3a. Anthers entirely exserted from corolla tube; flowers white ................................ 1. S. tibetica 3b. Anthers wholly or partly included in corolla tube; flowers red, purple, lilac, pink, or sometimes white. 4a. Leaf blade abaxially glabrous ................................................................. 2. S. yunnanensis 4b. Leaf blade abaxially ± hairy. 5a. Corolla tube funnelform, gradually enlarged above middle; corolla lobes usually upright.