Contribution of Chloroplast DNA in the Biodiversity of Some Aegilops Species
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
This Article Is from the March 2013 Issue Of
This article is from the March 2013 issue of published by The American Phytopathological Society For more information on this and other topics related to plant pathology, we invite you to visit APSnet at www.apsnet.org Identifying New Sources of Resistance to Eyespot of Wheat in Aegilops longissima H. Sheng and T. D. Murray, Department of Plant Pathology, Washington State University, Pullman 99164-6430 Abstract Sheng, H., and Murray, T. D. 2013. Identifying new sources of resistance to eyespot of wheat in Aegilops longissima. Plant Dis. 97:346-353. Eyespot, caused by Oculimacula yallundae and O. acuformis, is an substitution lines containing chromosomes 1Sl, 2Sl, 5Sl, and 7Sl, and a economically important disease of wheat. Currently, two eyespot re- 4Sl7Sl translocation were resistant to O. yallundae. Chromosomes 1Sl, sistance genes, Pch1 and Pch2, are used in wheat breeding programs 2Sl, 4Sl, and 5Sl contributed to resistance to O. acuformis more than but neither provides complete control or prevents yield loss. Aegilops others. Chromosomes 1Sl, 2Sl, 5Sl, and 7Sl provided resistance to both longissima is a distant relative of wheat and proven donor of genes pathogens. This is the first report of eyespot resistance in A. longis- useful for wheat improvement, including disease resistance. Forty A. sima. These results provide evidence that genetic control of eyespot longissima accessions and 83 A. longissima chromosome addition or resistance is present on multiple chromosomes of the Sl genome. This substitution lines were evaluated for resistance to eyespot. Among the research demonstrates that A. longissima is a potential new source of 40 accessions tested, 43% were resistant to O. -
Supernumerary B Chromosomes of Aegilops Speltoides Undergo Precise Elimination in Roots Early in Embryo Development
ARTICLE https://doi.org/10.1038/s41467-020-16594-x OPEN Supernumerary B chromosomes of Aegilops speltoides undergo precise elimination in roots early in embryo development Alevtina Ruban 1,2,6, Thomas Schmutzer 1,3,6, Dan D. Wu1,4, Joerg Fuchs1, Anastassia Boudichevskaia 1,2, Myroslava Rubtsova1,5, Klaus Pistrick 1, Michael Melzer1, Axel Himmelbach1, Veit Schubert1, Uwe Scholz 1 & ✉ Andreas Houben 1 1234567890():,; Not necessarily all cells of an organism contain the same genome. Some eukaryotes exhibit dramatic differences between cells of different organs, resulting from programmed elimina- tion of chromosomes or their fragments. Here, we present a detailed analysis of programmed B chromosome elimination in plants. Using goatgrass Aegilops speltoides as a model, we demonstrate that the elimination of B chromosomes is a strictly controlled and highly efficient root-specific process. At the onset of embryo differentiation B chromosomes undergo elimination in proto-root cells. Independent of centromere activity, B chromosomes demonstrate nondisjunction of chromatids and lagging in anaphase, leading to micro- nucleation. Chromatin structure and DNA replication differ between micronuclei and primary nuclei and degradation of micronucleated DNA is the final step of B chromosome elimination. This process might allow root tissues to survive the detrimental expression, or over- expression of B chromosome-located root-specific genes with paralogs located on standard chromosomes. 1 Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland OT Gatersleben, Germany. 2 KWS SAAT SE & Co. KGaA, 37574 Einbeck, Germany. 3 Martin Luther University Halle-Wittenberg, Institute for Agricultural and Nutritional Sciences, 06099 Halle (Saale), Germany. 4 Triticeae Research Institute, Sichuan Agricultural University, 611130 Wenjiang, China. -
Physiological and Agronomic Characterization of Post-Flowering Heat Stress in Wild Wheat Species and Robertsonian Translocation Lines
Physiological and agronomic characterization of post-flowering heat stress in wild wheat species and Robertsonian translocation lines by Carlos Bustamante B.S., Kansas State University, 2018 A THESIS submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE Department of Agronomy College of Agriculture KANSAS STATE UNIVERSITY Manhattan, Kansas 2020 Approved by: Major Professor S. V. Krishna Jagadish Copyright © Carlos Bustamante 2020. Abstract Heat stress during flowering and grain-fill stages is a major environmental factor affecting winter wheat production in the Great Plains of the United States. Wild emmer wheat (Triticum diccocoides) is an annual grass species native to the Fertile Crescent and is hypothesized to have a large genetic diversity for improving cultivated wheat. Similarly, Aegilops speltoides is known to possess a higher level of tolerance to abiotic stresses, including heat. The hypothesis is that the chromosomal segment from A. speltoides incorporated into commercial wheat varieties will help enhance heat stress tolerance in winter wheat. The potential of wild wheat species in helping address heat stress damage in cultivated wheat has not been fully explored. Therefore, the major objective of this research project was to capture the genetic variability for post- flowering heat tolerance and asses the physiological and agronomic responses in wild emmer wheat and Robertsonian translocation lines. Chromosomal segments from A. speltoides were incorporated into adapted wheat background, creating Robertsonian translocation lines (RobT’s) (Triticum aestivum-Aegilops speltoides). In the first study, 28 different wild wheat entries were grown under control treatment (25°C) and transferred to high day temperature treatment (35°C) at first signs of flowering and exposed to heat stress for 21 days. -
Sequence Diversity and Copy Number Variation of Mutator-Like Transposases in Wheat
Genetics and Molecular Biology, 31, 2, 539-546 (2008) Copyright © 2008, Sociedade Brasileira de Genética. Printed in Brazil www.sbg.org.br Research Article Sequence diversity and copy number variation of Mutator-like transposases in wheat Nobuaki Asakura1, Shinya Yoshida2, Naoki Mori3, Ichiro Ohtsuka1 and Chiharu Nakamura3 1Laboratory of Biology, Faculty of Engineering, Kanagawa University, Yokohama, Japan. 2Hyogo Institute of Agriculture, Forestry & Fisheries, Kasai, Japan. 3Laboratory of Plant Genetics, Graduate School of Agricultural Science, Kobe University, Kobe, Japan. Abstract Partial transposase-coding sequences of Mutator-like elements (MULEs) were isolated from a wild einkorn wheat, Triticum urartu, by degenerate PCR. The isolated sequences were classified into a MuDR or Class I clade and di- vided into two distinct subclasses (subclass I and subclass II). The average pair-wise identity between members of both subclasses was 58.8% at the nucleotide sequence level. Sequence diversity of subclass I was larger than that of subclass II. DNA gel blot analysis showed that subclass I was present as low copy number elements in the genomes of all Triticum and Aegilops accessions surveyed, while subclass II was present as high copy number ele- ments. These two subclasses seemed uncapable of recognizing each other for transposition. The number of copies of subclass II elements was much higher in Aegilops with the S, Sl and D genomes and polyploid Triticum species than in diploid Triticum with the A genome, indicating that active transposition occurred in S, Sl and D genomes be- fore polyploidization. DNA gel blot analysis of six species selected from three subfamilies of Poaceae demonstrated that only the tribe Triticeae possessed both subclasses. -
Identify New Resistant Genes for Eyespot Diseases of Wheat In
IDENTIFICATION AND MAPPING OF RESISTANCE GENES FOR EYESPOT OF WHEAT IN AEGILOPS LONGISSIMA By HONGYAN SHENG i A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy WASHINGTON STATE UNIVERSITY Department of Plant Pathology May 2011 © Copyright by HONGYAN SHENG, 2011 All Rights Reserved To the Faculty of Washington State University: The members of the Committee appointed to examine the dissertation of HONGYAN SHENG find it satisfactory and recommend that it be accepted. _________________________________________ Timothy D. Murray, Ph. D., Chair _________________________________________ Xianming Chen, Ph. D. _________________________________________ Scot H. Hulbert, Ph. D. _________________________________________ Tobin L. Peever, Ph. D. _________________________________________ Stephen S. Jones, Ph. D. ii ACKNOWLEDGMENT I would like to express my sincere gratitude and appreciation to my mentor and major advisor, Dr. Timothy D. Murray, for all his guidance, support, patience, and encouragement throughout my entire Ph. D. process at Washington State University. I am grateful to Dr. Murray for sharing his knowledge of plant pathology, providing insight into this dissertation, and leading me to the complex and fascinating world of genetics. My grateful appreciation goes to my committee members, Dr. Tobin L. Peever, Dr. Xianming Chen, Dr. Scot H. Hulbert, and Dr. Stephen S. Jones for their helpful advice and guidance during my graduate work and critical review of my dissertation. I would especially like to thank Dr. Deven R. See (USDA-ARS Regional Small Grains Genotyping Laboratory at Pullman, WA) for providing techniques and equipments for marker analysis work. Most of all, I am grateful for his critical suggestion leading to successful results. -
Rewiring the Wheat Reproductive System to Harness Heterosis for the Next Wave of Yield Improvement Piotr Gornickia,1 and Justin D
COMMENTARY Rewiring the wheat reproductive system to harness heterosis for the next wave of yield improvement Piotr Gornickia,1 and Justin D. Farisb aDepartment of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637; and bCereal Crops Research Unit, Northern Crop Science Laboratory, Agricultural Research Service, US Department of Agriculture, Fargo, ND 58102 Bread wheat (hexaploid Triticum aestivum) emmer that hybridized with goatgrass about provides an extraordinary 10,000-y story of 8,000 y ago (3), probably southeast of the a new species, established by early farmers, Caspian Sea, that resulted in the first hexa- selecting for simple agronomical traits to fa- ploid bread wheat (4). cilitate efficient and plentiful grain harvest. During most of the last 10,000 y, farmers The genetic changes underlying wheat domes- grew wheat in heterogenic stands consisting of tication over thousands of years, however, mixed genotypes and ploidy levels. The first included not just a collection of beneficial bread wheat captured genetic variation from single gene mutations, but also introgres- the two progenitors, but subsequent hybrid sions and whole genome duplication. The swarms allowing for gene flow and increased hexaploidization event occurred spontane- genetic variation occurred in such stands. ously in nature, but the resulting wild spe- During this time, the geographical range of cies did not survive; it is known only in wheat expanded dramatically as it acquired its domesticated form. Evolutionary bottle- adaptation to extreme environments and ad- neck(s) reduced genetic variation of the spe- ditional competitive traits such as increased cies, and it was introduced broadly outside tillering, increased height, and wide leaves (5). -
Acc Homoeoloci and the Evolution of Wheat Genomes
Acc homoeoloci and the evolution of wheat genomes D. Chalupska*, H. Y. Lee*, J. D. Faris†, A. Evrard‡, B. Chalhoub‡, R. Haselkorn*§, and P. Gornicki*§ *Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637; †United States Department of Agriculture, Agricultural Research Service, Cereal Crops Research Unit, Northern Crop Science Laboratory, Fargo, ND 58105; and ‡Unite´de Recherche en Ge´nomique Ve´ge´ tale, Institut National de la Recherche Agronomique, Organization and Evolution of Plant Genomes, 2 Rue Gaston Cre´mieux, F91150 Evry, France Contributed by R. Haselkorn, April 25, 2008 (sent for review January 30, 2008) The DNA sequences of wheat Acc-1 and Acc-2 loci, encoding the partially processed pseudogene has been found in all Triticeae plastid and cytosolic forms of the enzyme acetyl-CoA carboxylase, species tested (1). Acc-2 genes are located on the long arm of group were analyzed with a view to understanding the evolution of these 3 chromosomes (5, 6). genes and the origin of the three genomes in modern hexaploid The wheat Acc genes, because of their large size and the wheat. Acc-1 and Acc-2 loci from each of the wheats Triticum urartu availability of functional information, provide an excellent starting (A genome), Aegilops tauschii (D genome), Triticum turgidum (AB point for comparative genome analysis. The transcribed part of the genome), and Triticum aestivum (ABD genome), as well as two wheat Acc-1 gene is Ϸ13.5kbwithϷ6.9 kb of coding sequence Acc-2-related pseudogenes from T. urartu were sequenced. The 2.3– (2,311 amino acids including the putative chloroplast transit pep- 2.4 Mya divergence time calculated here for the three homoeologous tide) and has 33 introns with a total length of Ϸ6.3 kb. -
Development of Wheat–Aegilops Speltoides Recombinants and Simple PCR-Based Markers for Sr32 and a New Stem Rust Resistance Gene on the 2S#1 Chromosome
Theor Appl Genet (2013) 126:2943–2955 DOI 10.1007/s00122-013-2184-8 ORIGINAL PAPER Development of wheat–Aegilops speltoides recombinants and simple PCR-based markers for Sr32 and a new stem rust resistance gene on the 2S#1 chromosome Rohit Mago · Dawn Verlin · Peng Zhang · Urmil Bansal · Harbans Bariana · Yue Jin · Jeffrey Ellis · Sami Hoxha · Ian Dundas Received: 25 April 2013 / Accepted: 16 August 2013 / Published online: 30 August 2013 © Springer-Verlag Berlin Heidelberg 2013 Abstract undescribed gene SrAes1t on the long arm of chromosome Key message Wheat–Aegilops speltoides recombinants 2S#1. Recombinants with substantially shortened alien carrying stem rust resistance genes Sr32 and SrAes1t chromatin were produced for both genes, which confer effective against Ug99 and PCR markers for marker- resistance to stem rust races in the TTKSK (Ug99) lineage assisted selection. and representative races of all Australian stem rust lineages. Abstract Wild relatives of wheat are important resources Selected recombinants were back crossed into adapted Aus- for new rust resistance genes but underutilized because the tralian cultivars and PCR markers were developed to facili- valuable resistances are often linked to negative traits that tate the incorporation of these genes into future wheat vari- prevent deployment of these genes in commercial wheats. eties. Our recombinants and those from several other labs Here, we report ph1b-induced recombinants with reduced now show that Sr32, Sr39, and SrAes7t on the short arm alien chromatin derived from E.R. Sears’ wheat–Aegilops and Sr47 and SrAes1t on the long arm of 2S#1 form two speltoides 2D-2S#1 translocation line C82.2, which car- linkage groups and at present no rust races are described ries the widely effective stem rust resistance gene Sr32. -
D) Appear to Have Originated from Triticum Monococcum, Aegilops Speltoides, and Aegilops Squarcssa, Respectively (Mcfaddenand SEARS1944; RILEY,UNRAU and CHAPMAN1958)
VARIATION ASSOCIATED WITH AN AEGILOPS UMBELLULATA CHROMOSOME SEGMENT INCORPORATED IN WHEAT. 11. PEROXIDASE AND LEUCINE AMINOPEPTIDASE ISOZYMES1 T. MACDONALD2 AND H. H. SMITH Department of Biology, Brookhaven National Laboratory, Upton, New York 11973 Manuscript received September 8, 1970 Revised copy received April 21,1972 ABSTRACT Zymograms were analyzed of a number of Triticum aestivum derivatives which incorporated a segment of the Aegilops umbellulata chromosome bearing resistance to leaf rust. Evidence has been presented which suggests that genes involved in the production of two peroxidases and a single peptidase are located on the short arm of wheat chromosome 6B. One peroxidase isozyme, attributed to the presence of the Aegilops segment, was seen in only one of the resistant lines (Transfer) and it was postulated that this peroxidase band was present in a suppressed state in a number of lines. Possible differences in the A and B genomes of T.aestivum and T. dicoccum were discussed. €€Ecommon hexaploid wheat (Triticum aestivum) has twenty-one pairs of Tchromosomes which have been classified into seven homoeologous (related) groups, each of three pairs representing three distinct genomes (SEARS1954, 1966; RILEY and CHAPMAN1966). The three genomes of the hexploid (A, B, and D) appear to have originated from Triticum monococcum, Aegilops speltoides, and Aegilops squarcssa, respectively (MCFADDENand SEARS1944; RILEY,UNRAU and CHAPMAN1958). A number of studies have been carried out in which com- parisons among zymograms of the proposed -
Developing a High-Throughput SNP-Based Marker System to Facilitate the Introgression of Traits from Aegilops Species Into Bread Wheat (Triticum Aestivum)
ORIGINAL RESEARCH published: 24 January 2019 doi: 10.3389/fpls.2018.01993 Developing a High-Throughput SNP-Based Marker System to Facilitate the Introgression of Traits From Aegilops Species Into Bread Wheat (Triticum aestivum) Alexandra M. Przewieslik-Allen 1*, Amanda J. Burridge 1, Paul A. Wilkinson 1, Mark O. Winfield 1, Daniel S. Shaw 1, Lorna McAusland 2, Julie King 2, Ian P. King 2, Keith J. Edwards 1 and Gary L. A. Barker 1 1 Life Sciences, University of Bristol, Bristol, United Kingdom, 2 Plant Sciences, Sutton Bonington Campus, Leicestershire, United Kingdom The genus Aegilops contains a diverse collection of wild species exhibiting variation Edited by: in geographical distribution, ecological adaptation, ploidy and genome organization. István Molnár, Centre for Agricultural Research Aegilops is the most closely related genus to Triticum which includes cultivated wheat, (MTA), Hungary a globally important crop that has a limited gene pool for modern breeding. Aegilops Reviewed by: species are a potential future resource for wheat breeding for traits, such as adaptation Parveen Chhuneja, Punjab Agricultural University, India to different ecological conditions and pest and disease resistance. This study describes Kentaro Yoshida, the development and application of the first high-throughput genotyping platform Kobe University, Japan specifically designed for screening wheat relative species. The platform was used to Pilar Hernandez, Instituto de Agricultura Sostenible screen multiple accessions representing all species in the genus Aegilops. Firstly, the (IAS), Spain data was demonstrated to be useful for screening diversity and examining relationships *Correspondence: within and between Aegilops species. Secondly, markers able to characterize and track Alexandra M. -
Phenotypic Diversity in the Wheat Wild Relative Aegilops Longissima
PHENOTYPIC DIVERSITY IN THE WHEAT WILD RELATIVE AEGILOPS LONGISSIMA A THESIS SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY SHUYI HUANG IN PARTIAL FULFILLMENT OF REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE Adviser: Brian J. Steffenson November 2016 © Shuyi Huang 2016 Acknowledgements I would like to express my sincere gratitude and appreciation to my mentor and major advisor, Dr. Brian Steffenson, for all his guidance, support, patience, and encouragement throughout my study at University of Minnesota. I am grateful to Dr. Steffenson for sharing his knowledge of plant pathology, providing insight into this thesis, and leading me to the fascinating and meaningful world of crop improvement and research. My grateful appreciation also goes to Dr. James Kolmer and Dr. James Anderson, who served on my thesis committee. Dr. Kolmer and Dr. Anderson provided their helpful advice and guidance during my graduate work and a critical review of my thesis. From all of these individuals, I have gained the knowledge and experience to be a good and independent scientist. I extend my gratitude to Dr. Xianming Chen (USDA-ARS) at Pullman, Washington for providing the materials and guidance for working with the stripe rust pathogen. Dr. Hanan Sela and Dr. Eitan Millet of the Institute for Cereal Crops Improvement at Tel Aviv University (ICCI-TAU) generously shared their extensive knowledge about Aegilops longissima with me. I thank the ICCI-TAU in Tel Aviv, Israel and Leibniz-Institute für Pflanzengenetik und Kulturpflanzenforschung (IPK) in Gatersleben Germany for providing the Ae. longissima germplasm that made this project possible. -
Reevaluation of Systematic Relationships in Triticum L. and Aegilops L
AN ABSTRACT OF THE THESIS OF Laura A. Morrison for the degree of Doctor of Philosophy in Botany and Plant Pathology presented on October 21, 1994. Title: Reevaluation of Systematic Relationships in Triticum L. and Aegilops L. Based on Comparative Morphological and Anatomical Investigations of Dispersal Mechanisms Redacted for Privacy Abstract approved: Kenton L. Chambers Comparative morphological and anatomical studies of the dispersal mechanisms characterizing the wheat complex (Triticum L. and Aegilops L.) have documented patterns of adaptive radiation which may have significance for evolutionary relationships. These patterns, which form an array of diverse types of diaspores among the diploid taxa, appear conceptually to have a starting point in the dimorphic inflorescence of Ae. speltoides. Separate dispersal trends, centered primarily in features of rachis disarticulation, lead in the direction of novel diaspore types for Aegilops and in the direction of domestication for Triticum. With respect to the taxonomy, this structural evidence supports the traditional Linnaean generic circumscriptions and suggests a need for a monographic revision of Triticum. In documenting the dispersal mechanisms, these studies have clarified conventional interpretations and have offered new insights on the developmental relationships linking the wild and domesticated taxa of the wheat complex. Although genetic studies were not encompassed within this research, a consideration of the genetic explanations for rachis disarticulation and glume closure suggests that the phenotypic traits typically used in genetic studies are not well understood. Given that the reticulate nature of genomic relationships in the wheats is coupled with intergrading variation and polymorphic species, a proposal is made for a broader evolutionary view than is found in the strict cladistic concept.