Reevaluation of Systematic Relationships in Triticum L. and Aegilops L

Total Page:16

File Type:pdf, Size:1020Kb

Reevaluation of Systematic Relationships in Triticum L. and Aegilops L AN ABSTRACT OF THE THESIS OF Laura A. Morrison for the degree of Doctor of Philosophy in Botany and Plant Pathology presented on October 21, 1994. Title: Reevaluation of Systematic Relationships in Triticum L. and Aegilops L. Based on Comparative Morphological and Anatomical Investigations of Dispersal Mechanisms Redacted for Privacy Abstract approved: Kenton L. Chambers Comparative morphological and anatomical studies of the dispersal mechanisms characterizing the wheat complex (Triticum L. and Aegilops L.) have documented patterns of adaptive radiation which may have significance for evolutionary relationships. These patterns, which form an array of diverse types of diaspores among the diploid taxa, appear conceptually to have a starting point in the dimorphic inflorescence of Ae. speltoides. Separate dispersal trends, centered primarily in features of rachis disarticulation, lead in the direction of novel diaspore types for Aegilops and in the direction of domestication for Triticum. With respect to the taxonomy, this structural evidence supports the traditional Linnaean generic circumscriptions and suggests a need for a monographic revision of Triticum. In documenting the dispersal mechanisms, these studies have clarified conventional interpretations and have offered new insights on the developmental relationships linking the wild and domesticated taxa of the wheat complex. Although genetic studies were not encompassed within this research, a consideration of the genetic explanations for rachis disarticulation and glume closure suggests that the phenotypic traits typically used in genetic studies are not well understood. Given that the reticulate nature of genomic relationships in the wheats is coupled with intergrading variation and polymorphic species, a proposal is made for a broader evolutionary view than is found in the strict cladistic concept. This proposal emphasizes the need of an improved understanding of fundamental structural traits and an inclusion of these traits in evolutionary analyses. °Copyright by Laura A. Morrison October 21, 1994 All Rights Reserved Reevaluation of Systematic Relationships in Triticum L. and Aegilops L. Based on Comparative Morphological and Anatomical Investigations of Dispersal Mechanisms by Laura A. Morrison A THESIS submitted to Oregon State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy Completed October 21, 1994 Commencement June 1995 Doctor of Philosophy thesis of Laura A. Morrison presented on October 21, 1994 APPROVED: Redacted for Privacy Major Professor, representing Botany and Plant Pathology Redacted for Privacy LIVHead of Department of Botany & P1 t o ogy Redacted for Privacy Dean of Graduate Sc I understand that my thesis will become part of the permanent collection of Oregon State University libraries. My signature below authorizes release of my thesis to any reader upon request. Redacted for Privacy thor ACKNOWLEDGEMENTS The research reported in this thesis would not have been possible without the assistance, guidance, and encouragement of faculty and staff members associated with Oregon State University and members of the international wheat research community. I am particularly grateful to those individuals who provided germplasm material, answered the many questions I posed in correspondence or in meetings at international conferences, and encouraged my alternative approach to modern systematic studies in the wheat complex. I offer a special note of appreciation to the following people who were instrumental in guiding my work: to Kenton L. Chambers, my major professor, for the freedom which he provided in my pursuit of the mysteries of wheat evolution; to Robert J. Metzger (Oregon State University), for his sharing of an encyclopedic knowledge of the wheats; to Dr. J. Giles Waines (University of California, Riverside), for his support from afar; to Dr. Joachim Kummerow (Oregon State University), for the many hours of his time devoted to translating an obscure, but important German literature; to the organizers of the 1992 ICARDA International Workshop on Evaluation and Utilization of Biodiversity in Wild Relatives and Primitive Forms for Wheat Improvement and the 8th International Wheat Genetics Symposium (1993) for arranging my attendance at these two international conferences; and to Lynda M. Ciuffetti and Donald J. Armstrong (Department of Botany and Plant Pathology) for their wise advice and counsel, particularly on matters of teaching. I am also grateful to the administrative staff of the Department. A sincere expression of appreciation to Diane Simpson and Blaine Baker for all the significant ways in which they helped with my journey through a PhD program; to Lewis Tate and his assistants for their cooperation and accommodation of my unusual agronomic needs for the research field at the Botany and Plant Pathology Field Lab; and to Kevin Currans and Galen Krokum of the College of Science Biocomputing Consortium for their patient assistance with computer matters. Funding for this research was obtained from the Tyson Fellowship Fund of the Woman's National Farm and Garden Association, Inc., the Northwest Scientific Association, and the Bonnie Templeton Fund (Department of Botany and Plant Pathology). Trips to the International Triticeae Symposia (1991, 1993), the ICARDA International Workshop (1992), and the 8th International Wheat Genetics Symposium (1993) were funded with donations from private and public sources. I appreciate the efforts of all those who assisted in large and small ways with the financial arrangements for these trips. In this regard, I am deeply grateful to Kenton L. Chambers, Stella M. Coakley (Head, Department of Botany and Plant Pathology), J. Giles Waines, Warren E. Kronstad and the Oregon Wheat Commission, Ardeshir Damania (formerly of ICARDA), and my parents, Robert L. and Marion W. Morrison. The botanical illustrations contained in Chapters 4 and 5 proved an essential part of this thesis. For her daring entry into the pictorial world of wheat, I am indebted to Christine Roberts to whom I wish a prosperous career as an illustrator should graduate school no longer offer an option. I also appreciate the supplementary support offered by Pablo Rosso who contributed three illustrations while emersed in the last stages of his masters degree in Plant Pathology. To a warm and caring community of friends--Tina Dreisbach, Frank Gecina, Catharina Coenen, Chris Lundberg, Kyoung-Hee Kim, Jolene and Steven Broich, Hillary Egna, Marty Fitzpatrick, Robin Wagers, Carolyn Wright, David Gross, and Barbara Wilson--my sincere gratitude. And to Raan Young, a multitude of thanks for midnight assistance at the scanner. TABLE OF CONTENTS Page I. INTRODUCTION 1 II. TAXONOMY OF THE WHEATS: A COMMENTARY 4 Abstract 4 Introduction 5 The Taxonomy 7 Taxonomic Deficiencies and Evolutionary Considerations 13 Triticum urartu Thumanjan ex Gandilian 14 Aegilops speltoides Tausch 16 Anomalous Wheat Taxa 18 Conclusion 20 Acknowledgements 21 References 22 III. A MONOGRAPHIC PROJECT TO REVISE THE TAXONOMY OF TRITICUM L. 26 References 33 IV. DISPERSAL MECHANISMS IN THE WHEAT COMPLEX (TRITICUM L. AND AEGILOPS L.): ADAPTIVE RADIATION 35 Abstract 35 Introduction 36 Materials and Methods 42 Clarification of Terminology 43 Inflorescence Structure 63 Page Historical Perspective 63 Deficiencies in Current Interpretations of Dispersal Mechanisms 70 Developmental Relationships of Diaspore Types 73 A Reinterpretation of the Adaptive Radiation 75 Wedge Diaspore Class 75 Synaptospermic Diaspore Class 89 Anomalous Dispersal Strategies 101 Spike let Dispersal 101 Floret Dispersal 104 Seed Dispersal 105 Dispersal and Seedling Establishment 109 Passive Dispersal 109 Penetration in the Soil 112 Seedling Establishment 113 Developmental Relationships Within the Tribe Triticeae 118 Conclusion 121 References 122 V. DISPERSAL MECHANISMS IN THE WHEAT COMPLEX (TRITICUM L. AND AEGILOPS L.): RACHIS DISARTICULATION AND GLUME CLOSURE 130 Abstract 130 Introduction 131 Materials and Methods 134 Rachis Disarticulation 135 Page Morphology of the Fracture Zone 138 Anatomy of the Fracture Zone 142 Development of the Tough Rachis 157 Glume Closure 159 The Glume Base 164 A Glume Pulvinus 166 The Wu 1st 168 Glume Texture 170 Implications for Genetic Studies 171 Genetics of Rachis Disarticulation and Glume Closure 171 Misinterpretation of Phenotypic Characters 178 Conclusions 182 References 184 VI. REINTERPRETATION OF DISPERSAL STRATEGIES IN TRIT7CUM L. AND AEGILOPS L 192 Abstract 192 Introduction 193 Adaptive Radiation 193 Significance of Aegilops Speltoides 196 An Alternative Interpretation 198 References 200 VII. CHARACTER ANALYSES IN THE WHEAT COMPLEX 203 Genetic Connections and Within-Species Variability 208 An Alternative Evolutionary Concept 213 Page Conclusion 218 References 218 BIBLIOGRAPHY 225 APPENDICES 243 Appendix A Workshop on Triticum Systematics: Need for a Monographic Revision of Triticum 244 Appendix B Accessions of Wheat and Non-Wheat Species Used in Comparative Morphological Investigations 246 Appendix C Attribution for Translations 266 Appendix D Zhukovsky Classification of Aegilops (1928) 267 Appendix E Eig Classification of Aegilops (1929) 268 Appendix F Kihara Genomic Classification of Aegilops (1954) 269 Appendix G Letter to Dr. Stephen Jury 270 LIST OF FIGURES Page Figure 4.1. Wedge diaspores of Ae. speltoides ssp. ligustica showing their sequential position of disarticulation 45 Figure 4.2. Barrel diaspores of Ae. tauschii showing their
Recommended publications
  • "National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
    Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment.
    [Show full text]
  • Genome Sequence of the Progenitor of the Wheat D Genome Aegilops Tauschii Ming-Cheng Luo1*, Yong Q
    OPEN LETTER doi:10.1038/nature24486 Genome sequence of the progenitor of the wheat D genome Aegilops tauschii Ming-Cheng Luo1*, Yong Q. Gu2*, Daniela Puiu3*, Hao Wang4,5,6*, Sven O. Twardziok7*, Karin R. Deal1, Naxin Huo1,2, Tingting Zhu1, Le Wang1, Yi Wang1,2, Patrick E. McGuire1, Shuyang Liu1, Hai Long1, Ramesh K. Ramasamy1, Juan C. Rodriguez1, Sonny L. Van1, Luxia Yuan1, Zhenzhong Wang1,8, Zhiqiang Xia1, Lichan Xiao1, Olin D. Anderson2, Shuhong Ouyang2,8, Yong Liang2,8, Aleksey V. Zimin3, Geo Pertea3, Peng Qi4,5, Jeffrey L. Bennetzen6, Xiongtao Dai9, Matthew W. Dawson9, Hans-Georg Müller9, Karl Kugler7, Lorena Rivarola-Duarte7, Manuel Spannagl7, Klaus F. X. Mayer7,10, Fu-Hao Lu11, Michael W. Bevan11, Philippe Leroy12, Pingchuan Li13, Frank M. You13, Qixin Sun8, Zhiyong Liu8, Eric Lyons14, Thomas Wicker15, Steven L. Salzberg3,16, Katrien M. Devos4,5 & Jan Dvořák1 Aegilops tauschii is the diploid progenitor of the D genome of We conclude therefore that the size of the Ae. tauschii genome is about hexaploid wheat1 (Triticum aestivum, genomes AABBDD) and 4.3 Gb. an important genetic resource for wheat2–4. The large size and To assess the accuracy of our assembly, sequences of 195 inde- highly repetitive nature of the Ae. tauschii genome has until now pendently sequenced and assembled AL8/78 BAC clones8, which precluded the development of a reference-quality genome sequence5. contained 25,540,177 bp in 2,405 unordered contigs, were aligned to Here we use an array of advanced technologies, including ordered- Aet v3.0. Five contigs failed to align and six extended partly into gaps, clone genome sequencing, whole-genome shotgun sequencing, accounting for 0.25% of the total length of the contigs.
    [Show full text]
  • 5.3.1 Flora and Vegetation
    Flora and fauna assessment for the Calingiri study area Prepared for Muchea to Wubin Integrated Project Team (Main Roads WA, Jacobs and Arup) 5.3 FIELD SURVEY 5.3.1 Flora and vegetation A total of 296 plant taxa (including subspecies and varieties) representing 154 genera and 55 families were recorded in the study area. This total is comprised of 244 (82.4%) native species and 52 (17.6%) introduced (weed) species, and included 60 annual, 223 perennial species, one species that is known to be either annual or perennial and 12 unknown life cycles (Appendix 8). The current survey recorded a similar number of species to previous flora surveys conducted along GNH and higher average diversity (average number of taxa per km) (Table 5-7). Table 5-7 Comparison of floristic data from the current survey with previous flora surveys of GNH between Muchea and Wubin Survey Road Vegetation Taxa Av. taxa Families Genera Weeds length types (no.) per km (no.) (no.) (no.) (km) (no.) Current survey 19 25 296 16 55 154 52 Worley Parsons (2013) 21 12 197 9 48 114 29 ENV (ENV 2007) 25 18 357 14 59 171 44 Western Botanical (2006) 68 34 316 5 52 138 26 Ninox Wildlife Consulting (1989) 217 19 300 1 59 108 40 The most prominent families recorded in the study area were Poaceae, Fabaceae, Proteaceae, Myrtaceae, Asteraceae and Iridaceae (Table 5-8). The dominant families recorded were also prominent in at least some of the previous flora surveys. Table 5-8 Comparison of total number of species per family from the current survey with previous flora surveys Family Current survey Worley Parsons ENV (2007) Western Botanical Ninox Wildlife (2013) (2006) Consulting (1989) Poaceae 40 N/A1 42 4 15 Fabaceae 36 31 50 64 60 Proteaceae 30 N/A1 38 48 43 Myrtaceae 23 30 29 64 40 Asteraceae 19 N/A1 22 5 7 Iridaceae 14 N/A1 6 3 - 1 data not available.
    [Show full text]
  • Establishment of a Global Network for the in Situ Conservation of Crop Wild Relatives: Status and Needs
    THEMATIC BACKGROUND STUDY Establishment of a Global Network for the In Situ Conservation of Crop Wild Relatives: Status and Needs Nigel Maxted and Shelagh Kell BACKGROUND STUDY PAPER NO. 39 October 2009 COMMISSION ON GENETIC RESOURCES FOR FOOD AND AGRICULTURE ESTABLISHMENT OF A GLOBAL NETWORK FOR THE IN SITU CONSERVATION OF CROP WILD RELATIVES: STATUS AND NEEDS by *By Nigel Maxted and Shelagh Kell The content of this document is entirely the responsibility of the authors, and does not .necessarily represent the views of the FAO, or its Members 2 * School of Biosciences, University of Birmingham. Disclaimer The content of this document is entirely the responsibility of the authors, and does not necessarily represent the views of the Food and Agriculture Organization of the United Nations (FAO), or its Members. The designations employed and the presentation of material do not imply the expression of any opinion whatsoever on the part of FAO concerning legal or development status of any country, territory, city or area or of its authorities or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed by FAO in preference to others of a similar nature that are not mentioned. CONTENTS SUMMARY 6 ACKNOWLEDGEMENTS 7 PART 1: INTRODUCTION 8 1.1 Background and scope 8 1.2 The global and local importance of crop wild relatives 10 1.3 Definition of a crop wild relative 12 1.4 Global numbers of crop
    [Show full text]
  • Taxonomy, Morphology and Palynology of Aegilops Vavilovii (Zhuk.) Chennav
    African Journal of Agricultural Research Vol. 5(20), pp. 2841-2849, 18 October, 2010 Available online at http://www.academicjournals.org/AJAR ISSN 1991-637X ©2010 Academic Journals Full Length Research Paper Taxonomy, morphology and palynology of Aegilops vavilovii (Zhuk.) Chennav. (Poaceae: Triticeae) Evren Cabi1* Musa Doan1 Hülya Özler2, Galip Akaydin3 and Alptekin Karagöz4 1Department of Biological Sciences, Faculty of Arts and Sciences, Middle East Technical University, Ankara, Turkey. 2Department of Biology, Faculty of Arts and Sciences, Sinop University, Sinop Turkey. 3Department of Biology Education, Hacettepe University, 06800 Ankara, Turkey. 4Department of Biology, Aksaray University, Aksaray, Turkey. Accepted 23 September, 2010 Aegilops vavilovii (Zhuk.) Chennav., a rare species, was collected from Southeast Anatolia, Turkey. During the field studies of the project “Taxonomic revision of Tribe Triticeae in Turkey”, Ae. vavilovii was accidentally recollected from three localities in anliurfa and Mardin provinces in 2007 and 2008, respectively. The main objective of this study is to shed light on the diagnostic characteristics of this rare species including its morphological, palynological and micro morphological features. Moreover, an emended and expanded description, distribution, phenology and ecology of this rare species are also provided. A. vavilovii and A. crassa are naturally found in the Southeastern part of Turkey and they share similar morphological features that caused a confused taxonomy. Pollen grains of A. vavilovii are heteropolar, monoporate and spheroidal (A/B: 1,13) typically as Poaceous. However, it generally, prefers clayish loam soils that are slightly alkaline (pH 7.7) with low organic content (1.54%). Although it is a rare species with very narrow area of distribution, very few samples have been represented in ex situ collections and the species has not been involved in any in situ conservation activities to save its genetic resources in Turkey.
    [Show full text]
  • Evaluation of Agro-Morphological Diversity in Wild Relatives of Wheat Collected in Iran
    J. Agr. Sci. Tech. (2017) Vol. 19: 943-956 Evaluation of Agro-Morphological Diversity in Wild Relatives of Wheat Collected in Iran A. Pour-Aboughadareh1*, J. Ahmadi1, A. A. Mehrabi2, M. Moghaddam3, and A. Etminan4 ABSTRACT In this study, a core collection of 180 Aegilops and Triticum accessions belonging to six diploid (T. boeoticum Bioss., T. urartu Gandilyan., Ae. speltoides Tausch., Ae. tauschii Coss., Ae. caudata L. and Ae. umbellulata Zhuk.), five tetraploid (T. durum, Ae. neglecta Req. ex Bertol., Ae. cylindrica Host. and Ae. crassa Boiss) and one hexaploid (T. aestivum L.) species collected from different regions of Iran were evaluated using 20 agro- morphological characters. Statistical analysis showed significant differences among accessions. The Shannon-Weaver (HʹSW) and Nei’s (HʹN) genetic diversity indices disclosed intermediate to high diversity for most characters in both Aegilops and Triticum core sets. In factor analysis, the first five components justified 82.17% of the total of agro- morphological variation. Based on measured characters, the 180 accessions were separated into two major groups by cluster analysis. Furthermore, based on the 2D-plot generated using two discriminant functions, different species were separated into six groups, so that distribution of species accorded with their genome construction. Overall, our results revealed considerable levels of genetic diversity among studied Iranian Aegilops and Triticum accessions, which can open up new avenues for rethinking the connections between wild relatives to explore valuable agronomic traits for the improvement and adaptation of wheat. Keywords: Aegilops, Multivariate analysis, Phenotypic diversity, Triticum. INTRODUCTION traits, such as disease- or pest-resistance and even yield improvement.
    [Show full text]
  • Interspecific Hybridization Between Durum Wheat and Aegilops Umbellulata (Zhuk.)
    713 Bulgarian Journal of Agricultural Science, 18 (No 5) 2012, 713-721 Agricultural Academy INTERSPECIFIC HYBRIDIZATION BETWEEN DURUM WHEAT AND AEGILOPS UMBELLULATA (ZHUK.) B. HADZHIIVANOVA, V. BOZHANOVA and D. DECHEV Field Crops Institute, BG - 6200 Chirpan, Bulgaria Abstract HADZHIIVANOVA, B., V. BOZHANOVA and D. DECHEV, 2012. Interspecific hybridization between durum wheat and Aegilops umbellulata (Zhuk.). Bulg. J. Agric. Sci., 18: 713-721 The possibility for obtaining of interspecific hybrids between three durum wheat genotypes (Triticum durum, 2n = 4x = 28, AABB genomes) and one accession of Aegilops umbellulata (2n = 2x = 18, UU genome) during two different seasons has been studied. A low crossability rate of 3% average for all genotypes over two years was achieved. The observed variation of crossability is due to a greatest extent to the genotype of durum wheat parent with 82.91% from total variation. Hybrid plants were obtained only by means of embryo rescue method. The ability for in vitro regeneration was still independent of crossability of used durum wheat genotypes. All received F1 hybrids plants were identical they exhibited good tillering ability and manifested traits from both parents. In spite of the observed partially fertility in F1 hybrids between durum wheat and Aegilops umbellulata no germination of the hybrid seeds was ascertained. BC1 seeds were obtained from F1 hybrids of hybrid combination Beloslava × Aegilops umbellulata after backcrossing to the durum wheat parent. An increase of crossability with advancing of backcross progenies – from 1.6% in BC1 hybrids to 26.2% in BC2 hybrids has been found. Meiotic abnormalities including dyads and triads at the end of microsporogenesis as well as uninucleate microspores with a different shape and size were observed suggesting production of unreduced gametes in this cross.
    [Show full text]
  • This Article Is from the March 2013 Issue Of
    This article is from the March 2013 issue of published by The American Phytopathological Society For more information on this and other topics related to plant pathology, we invite you to visit APSnet at www.apsnet.org Identifying New Sources of Resistance to Eyespot of Wheat in Aegilops longissima H. Sheng and T. D. Murray, Department of Plant Pathology, Washington State University, Pullman 99164-6430 Abstract Sheng, H., and Murray, T. D. 2013. Identifying new sources of resistance to eyespot of wheat in Aegilops longissima. Plant Dis. 97:346-353. Eyespot, caused by Oculimacula yallundae and O. acuformis, is an substitution lines containing chromosomes 1Sl, 2Sl, 5Sl, and 7Sl, and a economically important disease of wheat. Currently, two eyespot re- 4Sl7Sl translocation were resistant to O. yallundae. Chromosomes 1Sl, sistance genes, Pch1 and Pch2, are used in wheat breeding programs 2Sl, 4Sl, and 5Sl contributed to resistance to O. acuformis more than but neither provides complete control or prevents yield loss. Aegilops others. Chromosomes 1Sl, 2Sl, 5Sl, and 7Sl provided resistance to both longissima is a distant relative of wheat and proven donor of genes pathogens. This is the first report of eyespot resistance in A. longis- useful for wheat improvement, including disease resistance. Forty A. sima. These results provide evidence that genetic control of eyespot longissima accessions and 83 A. longissima chromosome addition or resistance is present on multiple chromosomes of the Sl genome. This substitution lines were evaluated for resistance to eyespot. Among the research demonstrates that A. longissima is a potential new source of 40 accessions tested, 43% were resistant to O.
    [Show full text]
  • Taxonomy and Phylogeny in Triticeae: a Historical Review and Current Status
    Advances in Plants & Agriculture Research Review Article Open Access Taxonomy and phylogeny in Triticeae: a historical review and current status Abstract Volume 3 Issue 5 - 2016 The Triticeae is an economically important tribe within the Poaceae. Because a number of cereal crops and forage grasses belong to the tribe it has attracted much scientific Mohannad G Al–Saghir attention covering many species: taxonomy, phylogeny, genetics, cytogenetic, genome Department of Environmental and Plant Biology, Ohio analyses (crossing ability and chromosome pairing), isoenzymes, molecular biology University, USA (RFLP, RAPD, PCR sequencing) and breeding. This paper contains a brief historical outline of the taxonomy of the tribe. Phylogenetic hypotheses regarding this tribe Correspondence: Mohannad G Al–Saghir, Department of inferred from different methods, techniques and approaches, are reviewed. The Environmental and Plant Biology, Ohio University, Zanesville, different phylogenies are discussed and compared and conflicts are elucidated. Ohio, USA, Email al–[email protected] Keywords: triticeae, phylogeny, taxonomy, poaceae, perennial species, durum Received: April 23, 2016 | Published: May 10, 2016 wheat, phylogenies, genetic diversity, cytogenetics, molecular biology, chromosomes, perennial, caespitose, thizomatous species Introduction as cited above. We can therefore conclude that the most appropriate outgroup for the tribe will be Bromus. The tribe Triticeae Dum is economically the most important tribe in the grass family (Poaceae). It encompasses between 350 and 500 Definition annual or perennial species,1–3 including the important cereal crops wheat (Triticum aestivium L.), durum wheat (T. turgidum sup. durum The Triticeae encompasses annual and perennial, caespitose or (Desf. MacKay) barley (Hordeum vulgare L.), rye (Secale cereal L.) thizomatous species.
    [Show full text]
  • Large Trees, Supertrees, and Diversification of the Grass Family Trevor R
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 23 | Issue 1 Article 19 2007 Large Trees, Supertrees, and Diversification of the Grass Family Trevor R. Hodkinson Trinity College, Dublin, Ireland Nicolas Salamin University of Lausanne, Lausanne, Switzerland Mark W. Chase Royal Botanic Gardens, Kew, UK Yanis Bouchenak-Khelladi Trinity College, Dublin, Ireland Stephen A. Renvoize Royal Botanic Gardens, Kew, UK See next page for additional authors Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons, and the Ecology and Evolutionary Biology Commons Recommended Citation Hodkinson, Trevor R.; Salamin, Nicolas; Chase, Mark W.; Bouchenak-Khelladi, Yanis; Renvoize, Stephen A.; and Savolainen, Vincent (2007) "Large Trees, Supertrees, and Diversification of the Grass Family," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 23: Iss. 1, Article 19. Available at: http://scholarship.claremont.edu/aliso/vol23/iss1/19 Large Trees, Supertrees, and Diversification of the Grass Family Authors Trevor R. Hodkinson, Nicolas Salamin, Mark W. Chase, Yanis Bouchenak-Khelladi, Stephen A. Renvoize, and Vincent Savolainen This article is available in Aliso: A Journal of Systematic and Evolutionary Botany: http://scholarship.claremont.edu/aliso/vol23/iss1/ 19 Aliso 23, pp. 248–258 ᭧ 2007, Rancho Santa Ana Botanic Garden LARGE TREES, SUPERTREES, AND DIVERSIFICATION OF THE GRASS FAMILY TREVOR R. HODKINSON,1,5 NICOLAS SALAMIN,2 MARK W. CHASE,3 YANIS BOUCHENAK-KHELLADI,1,3 STEPHEN A. RENVOIZE,4
    [Show full text]
  • Phytosiderophore Release in Aegilops Tauschii and Triticum Species Under Zinc and Iron Deficiencies
    Journal of Experimental Botany, Vol. 52, No. 358, pp. 1093±1099, May 2001 Phytosiderophore release in Aegilops tauschii and Triticum species under zinc and iron deficiencies I. Tolay1, B. Erenoglu1,2,V.RoÈ mheld2, H.J. Braun3 and I. Cakmak4,5 1 Cukurova University, Department of Soil Science and Plant Nutrition, 01330 Adana, Turkey 2 UniversitaÈ t Hohenheim, Institut fuÈ r PflanzenernaÈ hrung %330), 70593 Stuttgart, Germany 3 CIMMYT, POB 39, Emek 06511, Ankara, Turkey 4 Sabanci University, Faculty of Engineering and Natural Sciences, 81474 Tuzla, Istanbul, Turkey Received 2 August 2000; Accepted 27 November 2000 Abstract of PS release was around 14 mmol *30 plants)À1 *3 h)À1. Diploid wheats and Ae. tauschii accessions Using three diploid *Triticum monococcum, AA), behaved similarly in their capacity to release PS three tetraploid *Triticum turgidum, BBAA), two hexa- and intermediate between tetraploid and hexa- ploid *Triticum aestivum and Triticum compactum, ploid wheats regarding the PS release capacity. All BBAADD) wheats and two Aegilops tauschii *DD) Triticum and Aegilops species released more PS genotypes, experiments were carried out under under Fe than Zn deficiency, particularly when the controlled environmental conditions in nutrient solu- rate of PS release was expressed per unit dry weight tion *i) to study the relationships between the rates of roots. On average, the rates of PS release under Fe of phytosiderophore *PS) release from the roots and deficiency were 3.0, 5.7, 8.4, and 16 mmol *30 plants)À1 the tolerance of diploid, tetraploid, and hexaploid *3 h)À1 for Ae. tauschii, diploid, tetraploid and wheats and Ae.
    [Show full text]
  • A Comparative Study of Chromosome Morphology Among Some Accessions of Aegilops Crassa
    African Journal of Biotechnology Vol. 9(7), pp. 996-1000, 15 February, 2010 Available online at http://www.academicjournals.org/AJB DOI: 10.5897/AJB09.243 ISSN 1684–5315 © 2010 Academic Journals Full Length Research Paper A comparative study of chromosome morphology among some accessions of Aegilops crassa Hatami-Maleki Hamid 1, Samizadeh Habibollah 2, Asghari-Zakaria Rasool 3, Moshtaghi Nasrin 4 and Fazeli-Sangari Esmaeil 4 1Department of Agriculture and Plant Breeding, Faculty of Agriculture, Maragheh University, Maragheh, Iran. 2Department of Agriculture, Faculty of Agriculture, Guilan University, Rasht, Iran. 3Department of Agriculture and Plant Breeding, Faculty of Agriculture, Mohaghegh Ardebili University, Ardebil, Iran. 4Department of Biotechnology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran Accepted 10 April, 2009 In this study karyotype and chromosome characteristics of the nine accessions of Aegilops crassa species obtained from gene bank of Seed and Plant Improvement Research Institute (SPII) of Iran and one accession collected by authors were inspected. Aceto-iron-hematoxilin staining method was used to stain chromosomes. For each accession, chromosome characteristics including long and short arms, chromosome lengths, arm ratio index and relative chromosome lengths were measured using micro measure 3.3 software. Results revealed that all of the studied accessions were tetraploid (2n = 4x = 28) and consisted of 13 pairs of metacentric and one pair of submetacentric chromosomes, of which two pairs were satellite chromosomes. Karyotype formula for these accessions were 13 m + 1 sm. Arm ratio index value of chromosomes ranged from 1.11 in chromosome number 6 to 1.77 in chromosome number 12. The B chromosomes were not seen in any of the accessions.
    [Show full text]