bioRxiv preprint doi: https://doi.org/10.1101/2021.05.29.446303; this version posted May 30, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. The haplotype-based analysis of Aegilops tauschii introgression into hard red winter wheat and its impact on productivity traits 1 Moses Nyine1, Elina Adhikari1, Marshall Clinesmith2, Robert Aiken2, Bliss Betzen1, Wei 2 Wang1, Dwight Davidson1, Zitong Yu1, Yuanwen Guo1, Fei He1, Alina Akhunova3, Katherine 3 W Jordan1,4, Allan K Fritz2, Eduard Akhunov1*. 4 5 1 Department of Plant Pathology, Kansas State University, Manhattan, USA 6 2 Department of Agronomy, Kansas State University, Manhattan, USA 7 3 Integrated Genomics Facility, Kansas State University, Manhattan, USA 8 4 USDA-ARS Hard Winter Wheat Genetics Research Unit, Manhattan, USA 9 *Corresponding author: 10 Eduard Akhunov 11 Email:
[email protected] 12 13 Keywords: wheat, Aegilops tauschii, wild relative introgression, whole genome sequencing, 14 haplotypes, genotype imputation, grain yield, yield component traits. 15 16 Abstract 17 Introgression from wild relatives have a great potential to broaden beneficial allelic diversity 18 available for crop improvement in breeding programs. Here, we assessed the impact of introgression 19 from 21 diverse accessions of Aegilops tauschii, the diploid ancestor of the wheat D genome, into six 20 hard red winter wheat cultivars on yield and yield component traits. We used 5.2 million imputed D 21 genome SNPs identified by whole-genome sequencing of parental lines and the sequence-based 22 genotyping of introgression population including 351 BC1F3:5 lines.