Chapter 1- Overview of Computers MDRPUC, Hassan Chapter-1 OVERVIEW of COMPUTER Definition

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 1- Overview of Computers MDRPUC, Hassan Chapter-1 OVERVIEW of COMPUTER Definition Chapter 1- Overview of Computers MDRPUC, Hassan Chapter-1 OVERVIEW OF COMPUTER Definition: “Computer is an electronic machine that can store, recall and process data. It can perform tasks or complex calculation according to a set of instructions or programs. How does the computer work? It is as simple as making tea. To prepare tea, we add water, tea powder, milk, and sugar. These are all considered as input. After adding all, we have to boil. That boiling is called processing. After boiling, we get tea. That is called output. Similarly, the computer works based on the input, processing and output. Input-Process-Output cycle (IPO Cycle) Characteristics of Computer: Speed Versatility Storage Flexibility Accuracy Cost effectiveness Diligence Speed: The computer works very fast. The speed of Computer is measured in terms of MIPS (Million Instructions Per Second) or BIPS (Billion Instructions Per Second). For Example A money counting machine counts money faster than man. 1 | P a g e Chapter 1- Overview of Computers MDRPUC, Hassan Storage: The computer can store a large volume of data and information. The storage capacity of the computer is measured in terms of Bytes. A group of 8 Bits is called a Byte. Accuracy The computer generated results are exact and without any mistakes with high rate of consistency. Diligence Unlike human beings, a computer does not suffer from limitations like tiredness and lack of concentration. It can work for hours without making any errors. Versatility Computers are capable of performing any task. Multi-processing features of computer make it quite versatile in nature. The computer can be adapted to any field easily. It is used for scientific calculations, business processing, for playing games, teaching, training etc. Flexibility Flexibility would involve the number of things you can do with a computer. While some are best used for simple business tasks, and filing of tasks, others are good for multimedia, gaming, and so on. Cost effectiveness Computers reduce the amount of paper work and human effort, thereby reducing costs. Components of Computer system: There are four components in the computer system. They are: Hardware Data & Information Software User(s) Hardware The physical parts of a computer system called as hardware. The hardware components can be seen, touch and feel. The hardware components are fixed inside or outside the computer system. Example Keyboard, Mouse, Monitor, Printer, RAM, CPU etc. 2 | P a g e Chapter 1- Overview of Computers MDRPUC, Hassan Software A Set or collection of programs is known as software. The software is a computer program written using some computer programming languages to operate the computer. Software tells the hardware what to do. Unlike hardware, we can’t touch the software. Example Operating System, TUX Paint, Office Packages, Nudi, Adobe Reader, Computer Games etc. The software is broadly classified into two types. They are 1. System Software: It is a type of computer program that is designed to control and work with computer hardware, to run a computer's hardware and application programs. Example: Microsoft Windows, Linux, DOS etc. 2. Application software: It is a type of Software written by the user to perform a particular task like drawing a picture, playing computer games. Example: Paint, Nudi and Office Package etc. Difference between Hardware and Software Hardware Software Physical components of a computer are Set of programs is called Software. called Hardware. Hardware can touch, see and feel. The software can not touch and feel. Constructed using physical materials or Developed by the programming components. language. Not affected by computer viruses. Affected by computer viruses. User cannot make copies User can make copies Example: Monitor, Keyboard, RAM Example: OS, Text Editor, Nudi Data Data is a collection of unprocessed items, which can include text, numbers, audio or video. Data is the raw information or basic facts that computer can process. For Example: “PARAM” 16 The computer processed data is called information, which gives particular meaning. For Example: Name=“PARAM” Age=16. 3 | P a g e Chapter 1- Overview of Computers MDRPUC, Hassan User(s) People who use the computers are called users. These computer operators are called computer users. Functional components of a computer: Basically any computer is supposed to carry out the following functions. Accepts the data and program as input. Stores the data, program and retrieve as and when required. Process the data as per instructions given by the program and convert it into useful information. Communicate the information as output. Block diagram of a computer A computer is designed using four basic units. They are: 1. Input Unit 2. Central Processing Unit(CPU) Control Unit Arithmetic and Logic Unit (ALU) 3. Memory Unit 4. Output Unit Control Unit Input Unit Output Unit Arithmetic & Logic Unit CPU Memory Unit Primary Memory Secondary Memory Fig: Block Diagram of Computer 4 | P a g e Chapter 1- Overview of Computers MDRPUC, Hassan Input Unit Computers need to receive data and instructions in order to solve a problem. The Input unit performs this operation. The Input Unit basically links the external world or environment to the computer system. The input unit may consist of one or more input devices. The Keyboard and mouse of a computer are the most commonly used input devices. Central Processing Unit (CPU) It is the main part of a computer system like the heart of a human being. Most computers are identified by the type of CPU that is present in them. The function of the CPU is to interpret the instructions in the program and execute them one by one. It consists of two major units. 1. Control Unit: It controls and directs the transfer of program instructions and data between various units. The main activity is to maintain order and direct the operations of the entire system. 2. Arithmetic and Logic Unit (ALU): Arithmetic and Logic Unit performs arithmetic and logical operations and controls the speed of these operations. Arithmetic operations like addition, subtraction, multiplication and division (+,-,*, /) and logical operations like AND, OR, NOT and relational operations like (<,>, <=,>=) are being carried out in this unit. Memory Unit The data and the instructions required for processing have to be stored in the memory unit before the actual processing starts. In a similar manner, the results generated from processing have to be preserved before it is displayed. The memory units thus provide space to store input data, intermediate results and the final output generated. Secondary storage devices are additional memory (storage) devices such as floppy disks, magnetic tapes, Hard Disk Drive (HDD), Compact Disk (CD), Digital Versatile Disk (DVD) etc., which are used to store huge information for future use. Note: The input unit, an output unit, and secondary storage devices are together known as Peripheral Devices. Output Unit It is used to print or display the results, which are stored in the memory unit. The actual function of the output unit is just the reverse of the input unit. Thus, the output unit links the computer to the outside world. The Monitor and Printer are the most commonly used output devices. 5 | P a g e Chapter 1- Overview of Computers MDRPUC, Hassan Evolution of computer: Abacus Approximately 4,000 years ago, the Chinese invented the Abacus. It was the first machine used for counting and calculating. It is made of a wooden frame, metal rods, and wooden beads Abacus was mainly used for addition, subtraction and later for division and multiplication. Today, the abacus is still used widely in China and other Asian countries to count and calculate, just as we use calculators. Napier’s bones In the early 17th century, John Napier, a Scottish mathematician, invented another calculating tool. “Napier’s bones” was based upon manipulation of rods with printed digits. The rods were made of bone, ivory, wood or metal. The set consists of 10 rectangular blocks with multiples of a different digit on each of the four sides. The slide Rule The slide Rule was invented by William Oughtred. It is based on the principle that acutal distance from the starting point of the rule is directly proportional to the logarithm of the numbers printed on the rule. The slide rule is emboided by the two sets of scales that are joined together, with a marginal space between them. Adding Machine-Pascaline In 1642, at the age of 19, a French mathematician by the name of Biaise Pascal invented the Pascaline. The Pascaline is known as the first mechanical and automatic calculator. The Pascaline was a wooden box that could only add and subtract by means of a series of gears and wheels. It had a box with eight movable wheels called dials. When each wheel rotated one revolution, it would then turn the neighboring wheel. Leibniz Calculator Mathematician Gottfried Leibniz built a calculator in 1650 that could add, substract, multiply and divide the numbers. Jacquard loom In 1801, Joseph Mary Jacquard invented the Jacquard loom. A poweed loom that used punched wooden cards to automatically weave incredibly detailed patterns including pictures and text. This can be taken as the first “Read only Memory” device. 6 | P a g e Chapter 1- Overview of Computers MDRPUC, Hassan Difference and Analytical Engine In the early 1820s, an English mathematician by the name Charles Babbage designed a computing machine called the Difference Engine. This machine was to be used in the calculating and printing of simple math tables. In the 1830s, he designed a second computing machine called the Analytical Engine. This machine consited five units, which became the basic principle for the development of modern computer. Hence Charles Babbage is known as the "Father of Computers”.
Recommended publications
  • 1 ICT Fundamentals Lesson 1: Computing Fundamentals
    ICT Fundamentals - Lesson 1: Computing Fundamentals 1-1 1 ICT Fundamentals Lesson 1: Computing Fundamentals LESSON SKILLS After completing this lesson, you will be able to: Define "computer" and explain how computers work. Describe functions of the computing cycle (i.e. input, processing, output, storage). Describe uses of computers (i.e. home, school, business). Identify the main types of computers (i.e. supercomputer, mainframe, microcomputer, notebook, tablet, handheld). Describe the four parts of a computer (i.e. hardware, software, data, user). List computer input and output devices (i.e. monitor, printer, projector, speakers, mice, keyboards) and describe their uses. Define "network," and explain network usage (i.e. home, school, work). Identify types of networks (i.e. LAN, WAN, MAN, VPN, intranet, extranet, the internet). KEY TERMS computer intranet server computer network mainframe computers software data microcomputers storage extranet notebook computers supercomputers handheld computers output tablet computer hardware processing user input SAMPLE © 2021 Certification Partners, LLC. — All Rights Reserved. Version 1.0 ICT Fundamentals - Lesson 1: Computing Fundamentals 1-2 Overview In this lesson, you will explain computing functions, systems and devices. You will also explain networking types and uses at home, school and work. What Is a Computer? Objectives 1.1.1: Define "computer" and explain how computers work. 1.1.2: Describe functions of the computing cycle (i.e. input, processing, output, storage). According to Dictionary.com (2016) a computer is, "a programmable electronic device designed to accept data, perform prescribed mathematical and logical operations at high speed and display the results of these operations. Mainframes, desktop and laptop computers, tablets, and smartphones are some of the different types of computers." As we can see from this definition, there are many different kinds of computers that are used in today’s world.
    [Show full text]
  • Sun-Earth System Interaction Studies Over Vietnam: an International Cooperative Project
    Ann. Geophys., 24, 3313–3327, 2006 www.ann-geophys.net/24/3313/2006/ Annales © European Geosciences Union 2006 Geophysicae Sun-Earth System Interaction studies over Vietnam: an international cooperative project C. Amory-Mazaudier1, M. Le Huy2, Y. Cohen3, V. Doumbia4,*, A. Bourdillon5, R. Fleury6, B. Fontaine7, C. Ha Duyen2, A. Kobea4, P. Laroche8, P. Lassudrie-Duchesne6, H. Le Viet2, T. Le Truong2, H. Luu Viet2, M. Menvielle1, T. Nguyen Chien2, A. Nguyen Xuan2, F. Ouattara9, M. Petitdidier1, H. Pham Thi Thu2, T. Pham Xuan2, N. Philippon**, L. Tran Thi2, H. Vu Thien10, and P. Vila1 1CETP/CNRS, 4 Avenue de Neptune, 94107 Saint-Maur-des-Fosses,´ France 2Institute of Geophysics, Vietnamese Academy of Science and Technology , 18 Hoang Quoc Viet, Cau Giay, Hano¨ı, Vietnam 3IPGP, 4 Avenue de Neptune, 94107 Saint-Maur-des-Fosses,´ France 4Laboratoire de Physique de l’Atmosphere,` Universite´ d’Abidjan Cocody 22 B.P. 582, Abidjan 22, Coteˆ d’Ivoire 5Institut d’Electronique et de Tel´ ecommunications,´ Universite´ de Rennes Batˆ 11D, Campus Beaulieu, 35042 Rennes, cedex,´ France 6ENST, Universite´ de Bretagne Occidentale, CS 83818, 29288 Brest, cedex´ 3, France 7CRC , Faculte´ des Sciences, 6 Boulevard Gabriel, F 21004 Dijon cedex´ 04, France 8Unite´ de Recherche Environnement Atmospherique,´ ONERA, 92332 Chatillon, cedex,´ France 9University of Koudougou, Burkina Faso 10Laboratoire signaux et systemes,` CNAM, 292 Rue saint Martin, 75141 Paris cedex´ 03, France *V. Doumbia previously signed V. Doumouya **affiliation unknown Received: 15 June 2006 – Revised: 19 October 2006 – Accepted: 8 November 2006 – Published: 21 December 2006 Abstract. During many past decades, scientists from var- the E, F1 and F2 ionospheric layers follow the variation of ious countries have studied separately the atmospheric mo- the sunspot cycle.
    [Show full text]
  • A PROFILE Dr. Vijay Bhatkar Is One of Most Acclaimed and Internationally Acknowledged
    DR. VIJAY BHATKAR: A PROFILE www.vijaybhatkar.org Dr. Vijay Bhatkar is one of most acclaimed and internationally acknowledged scientists of India. He is presently the Chancellor of Nalanda University. In this responsibility, he has committed himself to resurrecting the glory of ancient Nalanda, in the context of 21st century. Prior to Nalanda responsibility, he was the Chairman of Board of Governors of IIT Delhi from 2012 to 2017. He is best known as the architect of India’s national initiative in supercomputing, where he led the development of India’s first supercomputer Param in 1990, under the technology denial regime. Currently he is steering the National Supercomputing Mission of developing Exascale Architecture Supercomputing for India. Dr. Bhatkar is also widely known for bringing ICT to the masses through a wide range of path-breaking initiatives, such as the celebrated GIST multilingual technology covering India’s 22 official languages with 10 diverse scripts that has dissolved the language barrier on computers once for all; MKCL’s computer literacy programme that made a world mark by creating 10 million computer literates within a decade; Education to Home (ETH) initiative for bringing the benefits of ICT to school education. In the 80’s, Dr Bhatkar substantially contributed to the ushering of electronics revolution in India. He is also credited with the creation of several national research labs and institutions, notably amongst them being C-DAC, ER&DC Trivandrum, IIITM-K, TechnoPark, MKCL, IsquareIT, ETH Research Lab and Multiversity. Simultaneously, he has mentored several innovation-based start-ups. Dr. Bhatkar has served as a member of the Scientific Advisory Committee to PM, Member of the Governing Council of CSIR and a member of the IT Task Force constituted by PM in 1998.
    [Show full text]
  • Classification of Computers
    Chapter-2 Classification of Computers Computers can be classified many different ways -- by size, by function, or by processing capacity. Functionality wise 4 types a) Micro computer b) Mini Computer c) Mainframe Computer d) Super Computer Microcomputers Microcomputers are connected to networks of other computers. The price of a microcomputer varies from each other depending on the capacity and features of the computer. Microcomputers make up the vast majority of computers. Single user can interact with this computer at a time. It is a small and general purpose computer. Mini Computer Mini Computer is a small and general purpose computer. It is more expensive than a micro computer. It has more storage capacity and speed. It designed to simultaneously handle the needs of multiple users. Mainframe Computer Large computers are called Mainframes. Mainframe computers process data at very high rates of speed, measured in the millions of instructions per second. They are very expensive than micro computer and mini computer. Mainframes are designed for multiple users and process vast amounts of data quickly. Examples: - Banks, insurance companies, manufacturers, mail-order companies, and airlines are typical users. Super Computers The largest computers are Super Computers. They are the most powerful, the most expensive, and the fastest. They are capable of processing trillions of instructions per second. It uses governmental agencies, such as:- Chemical analysis in laboratory Space exploration National Defense Agency National Weather Service Bio-Medical research Design of many other machines Limitations of Computer Computer cannot take over all activities simply because they are less flexible than humans. It does not hold intelligence of its own.
    [Show full text]
  • Introduction to Embedded Systems EHB326E Lectures
    Introduction to Embedded Systems EHB326E Lectures Prof. Dr. M¨u¸stakE. Yal¸cın Istanbul Technical University [email protected] Prof. Dr. M¨u¸stakE. Yal¸cın (IT_ U)¨ EHB326E (V: 0.1) September, 2018 1 / 14 Embedded system Billions of computing systems which are built every year for a very different purpose are embedded within larger electronic devices, repeatedly carrying out a particular function, often going completely unrecognized by the device's user! An embedded system is nearly any computing system other than a desktop, laptop, or mainframe computer. Prof. Dr. M¨u¸stakE. Yal¸cın (IT_ U)¨ EHB326E (V: 0.1) September, 2018 2 / 14 Embedded system The Dozens of Computers That Make Modern Cars Go (and Stop) The New York Times, 2010. Link ... \It would be easy to say the modern car is a computer on wheels, but it's more like 30 or more computers on wheels," said Bruce Emaus, the chairman of SAE International's embedded software standards committee. ... IEEE Spectrum reported that electronics, as a percentage of vehicle costs, climbed to 15 percent in 2005 from 5 percent in the late 1970s | and would be higher today. Prof. Dr. M¨u¸stakE. Yal¸cın (IT_ U)¨ EHB326E (V: 0.1) September, 2018 3 / 14 Embedded system Some common characteristics of embedded systems; Single-functioned Executes a single program, repeatedly Tightly-constrained Low cost, low power, small, fast, etc. Reactive and real-time Continually reacts to changes in the system's environment Must compute certain results in real-time without delay Prof. Dr. M¨u¸stakE.
    [Show full text]
  • Mainframe Computer Conversions: Buyer & Seller Beware, 5 Computer L.J
    The John Marshall Journal of Information Technology & Privacy Law Volume 5 Issue 4 Computer/Law Journal - Spring 1985 Article 2 Spring 1985 Mainframe Computer Conversions: Buyer & Seller Beware, 5 Computer L.J. 469 (1985) Arthur Fakes Follow this and additional works at: https://repository.law.uic.edu/jitpl Part of the Computer Law Commons, Internet Law Commons, Privacy Law Commons, and the Science and Technology Law Commons Recommended Citation Arthur Fakes, Mainframe Computer Conversions: Buyer & Seller Beware, 5 Computer L.J. 469 (1985) https://repository.law.uic.edu/jitpl/vol5/iss4/2 This Article is brought to you for free and open access by UIC Law Open Access Repository. It has been accepted for inclusion in The John Marshall Journal of Information Technology & Privacy Law by an authorized administrator of UIC Law Open Access Repository. For more information, please contact [email protected]. MAINFRAME COMPUTER CONVERSIONS: BUYER AND SELLER BEWAREt By ARTHUR FAKES* TABLE OF CONTENTS I. MAINFRAME COMPUTERS AND THEIR SOFTWARE ... 471 II. CIRCUMSTANCES IN WHICH CONVERSIONS OCCUR.. 473 A. THE REPLACEMENT MAINFRAME ......................... 473 B. CONVERSION DELAY AND AVOIDANCE STRATEGIES ....... 474 III. LITIGATION ................................................. 475 A. FACTORS EXPLAINING THE DEARTH OF CONVERSION LITIGATION ............................................... 475 B. REPORTED CASES CONCERNING CONVERSIONS ............ 478 IV. THE PROPER APPROACH TO CONVERSION PR OJECTS ..................................................
    [Show full text]
  • Introduction-To-Mainframes.Pdf
    Mainframe The term ‘MainFrame’ brings to mind a giant room of electronic parts that is a computer, referring to the original CPU cabinet in a computer of the mid-1960’s. Today, Mainframe refers to a class of ultra-reliable large and medium-scale servers designed for carrier-class and enterprise-class systems operations. Mainframes are costly, due to the support of symmetric multiprocessing (SMP) and dozens of central processors existing within in a single system. Mainframes are highly scalable. Through the addition of clusters, high-speed caches and volumes of memory, they connect to terabyte holding data subsystems. Mainframe computer Mainframe is a very large and expensive computer capable of supporting hundreds, or even thousands, of users simultaneously. In the hierarchy that starts with a simple microprocessor at the bottom and moves to supercomputers at the top, mainframes are just below supercomputers. In some ways, mainframes are more powerful than supercomputers because they support more simultaneous programs. But supercomputers can execute a single program faster than a mainframe. The distinction between small mainframes and minicomputers is vague, depending really on how the manufacturer wants to market its machines. Modern mainframe computers have abilities not so much defined by their single task computational speed (usually defined as MIPS — Millions of Instructions Per Second) as by their redundant internal engineering and resulting high reliability and security, extensive input-output facilities, strict backward compatibility with older software, and high utilization rates to support massive throughput. These machines often run for years without interruption, with repairs and hardware upgrades taking place during normal operation.
    [Show full text]
  • Mainframe Hardware Course: Mainframe’S Processors
    Mainframe hardware course: Mainframe’s processors z/OS Basic Skills: The mainframe’s processors Mainframe’s processors This hardware course introduces you to one model of IBM® mainframe computer, the IBM System z9™, to help you learn about the hardware parts that constitute the mainframe’s processor by comparing processing parts and functions to personal computers or notebooks. Time to complete: 10 - 15 minutes ¾The central processor complex ¾The multichip module ¾Memory cards ¾Input/output connections ¾The mainframe’s processing capacity © Copyright IBM Corp. 2006. All rights reserved. The central processor complex z/OS Basic Skills: The mainframe’s processors Mainframe’s processors > The central processor complex Mainframes have one or two metal frames that contain specialized cages, as well as other physical elements. This diagram shows the interior front view of an IBM System z9 Enterprise Class (z9 EC) model that has two frames. The z9 EC is slightly larger than a household refrigerator. The central processor complex, or CPC, resides in its own cage inside the mainframe, and consists of one to four book packages. Just like its personal-computer counterpart, the motherboard or system board, each book package consists of processors, memory, timers, and I/O connections. These collections of hardware parts are called “book packages” because you can slide them in or out of the CPC cage almost as easily as you can slide a book on or off a bookshelf. © Copyright IBM Corp. 2006. All rights reserved. z/OS Basic Skills: The mainframe’s processors Mainframe’s processors > The book package In the System z9, as well as earlier IBM mainframe models, the book package consists of three distinct areas, one each for: • The z9 EC's processors, which are inside one multichip module • Memory cards • Connections to input/output devices All of the book packages plug into a backplane in the z9 EC's frame.
    [Show full text]
  • ECEN 5623 RT Embedded Systems
    CEC 320 and 322 Microprocessor Systems Class and Lab Lecture 3 - Micros in Embedded Systems September 9, 2019 Sam Siewert Course Goals and Outline Textbook: Computers as Components – Principles of Embedded Computing System Design, 4th Edition, Marilyn Wolf, October 2016, 978-0128053874 (Amazon) View of Microprocessor as a Platform Through Chapter 4 for Embedded Systems Parts of Chapter 5 Mercury Website - cec320/ High Level Supplemented Current Syllabus Sam Siewert 2 Computers as Components Chapter 1 – Embedded Systems and Microprocessors - Basic ISA Concepts – Embedded System Design Process – Formalisms for System Design (UML) – Model Train Controller Example (see Book) – Textbook Overview Chapter 2 – ISA More in Depth - VLIW, ARM, PIC Micro, DSP, (MIPS, PowerPC) – Micro-parallelism, Multi-core, Co-processing Adapted From Computers as Components 3 Embedding a computer in an Application output DAC Actuators CPU input (ALU) ADC mem Sensors embedded computer Example by Brian Davis modified by Sam Siewert Examples Cell phone. Printer. Automobile: engine, brakes, dash, etc. Airplane: engine, flight controls, nav/comm. Digital television. Household appliances. 9-Sep-19 Early history Late 1940’s: MIT Whirlwind I computer was designed for real-time operations. – Originally designed to control an aircraft simulator. Jack St. Clair Kilby (November 8, 1923 – – Still a Large Mainframe computer. June 20, 2005) was an American electrical engineer who took part (along with Robert Noyce) in the realization of the first integrated circuit while First microprocessor was Intel 4004 in working at Texas Instruments (TI) in 1958. He was early 1970’s. awarded the Nobel Prize in Physics on December 10, 2000. HP-35 calculator used several chips to implement a microprocessor in 1972.
    [Show full text]
  • 2 CLASSIFICATION of COMPUTERS.Pdf
    CLASSIFICATION OF COMPUTERS Computers can be classified in the following methods: I . Computational Method I. Size and Capability I. Classification based on Computational method: Based on the way a system performs the computations, a computer can be classified as follows: • Digital • Analog • Hybrid Digital computer: A digital computer can count and accept numbers and letters through various input devices. The input devices convert the data into electronic pulses, and perform arithmetical operations on numbers in discrete form. In addition to performing arithmetical operations, they are also capable of:- 1. Storing data for processing 2. Performing logical operations 3. Editing or deleting the input data. One of the main advantages in the use of digital computers is that any desired level of accuracy can be achieved by considering as many places of decimal as are necessary and hence are most suitable for business application. The main disadvantage is their high cost, even after regular reductions in price and the complexity in programming. Example: To calculate the distance travelled by a car in a particular time interval, you might take the diameter of the tyre to calculate the periphery, take into consideration the number of revolutions of the wheel per minute, take the time in minutes and multiply them all to get the distance moved. This is called digital calculation. A computer using the principle of digital calculations can be called a digital computer. Analog Computer: Analog computers process data input in a continuous form. Data such as voltage, resistance or temperature are represented in the computer as a continuous, unbroken flow of information, as in engineering and scientific applications, where quantities to be processed exists as waveforms or continually rising and falling voltages, pressure and so on.
    [Show full text]
  • National Supercomputing Mission
    02 April, 2020 National Supercomputing Mission Part of: GS Prelims and GS-III- S&T India has produced just three supercomputers since 2015 under the National Supercomputing Mission (NSM). National Supercomputing Mission The National Supercomputing Mission was announced in 2015, with an aim to connect national academic and R&D institutions with a grid of more than 70 high-performance computing facilities at an estimated cost of ?4,500 crores over the period of seven years. It supports the government's vision of 'Digital India' and 'Make in India' initiatives. The mission is being implemented by the Department of Science and Technology (Ministry of Science and Technology) and Ministry of Electronics and Information Technology (MeitY), through the Centre for Development of Advanced Computing (C-DAC), Pune and Indian Institute of Science (IISc), Bengaluru. It is also an effort to improve the number of supercomputers owned by India. These supercomputers will also be networked on the National Supercomputing grid over the National Knowledge Network (NKN). The NKN connects academic institutions and R&D labs over a high-speed network. Under NSM, the long-term plan is to build a strong base of 20,000 skilled persons over the next five years who will be equipped to handle the complexities of supercomputers. Key Points Progress of NSM: NSM’s first supercomputer named Param Shivay has been installed in IIT-BHU, Varanasi, in 2019. It has 837 TeraFlop High-Performance Computing (HPC) capacity. The second supercomputer with a capacity of 1.66 PetaFlop has been installed at IIT-Kharagpur. The third system, Param Brahma, has been installed at IISER-Pune, which has a capacity of 797 TeraFlop.
    [Show full text]
  • COMPUTER Class 6 REVISION Chap 1- Categories of Computer and Computer Languages
    COMPUTER Class 6 REVISION Chap 1- Categories of computer and computer languages ANSWER THE FOLLOWING: 1. What are mobile computers? Give two examples. Mobile computers are the smallest computers designed to be carried around by users. Two examples are tablets and smartphones. 2. How are microcomputers different from mainframes? Microcomputers are single-user computer, whereas mainframes are multi-user computers. Microcomputers are comparatively smaller than mainframes. 3. What are the three types of computer languages? Following are the three types of computer languages: a. Machine language (low-level language) b. Assembly language (middle-level language) c. High-level language (fourth generation language) 4. Write the names of five high-level programming languages. Following are the names of 5 high-level programming languages: a. Java b. Python c. C d. C++ e. Visual Basic 5. Write any two points about machine language. Following are the two points about machine language: a. Each instruction is written in the form of a string of 0s and 1s. b. It is directly understood by the computer. 6.How would you classify computers based on their size? Based on size, we can classify computers as follows: a. Mobile Computers b. Microcomputers c. Minicomputers d. Mainframes e. Supercomputers 7.Give two examples of minicomputers. Following are the three examples of minicomputers: a. CDC 160A b. MicroVAX 3100 8.Give three examples of mainframes. Following are the three examples of mainframes: a. IBM 4381 b. DEC 10 c. NEC 610 9.What are supercomputers? Supercomputers are the biggest and most powerful computers. They often occupy whole rooms.They work on the concept of parallel processing.The speed of supercomputers are measured in FLOPS.
    [Show full text]