Mainframe Hardware Course: Mainframe’S Processors
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1 ICT Fundamentals Lesson 1: Computing Fundamentals
ICT Fundamentals - Lesson 1: Computing Fundamentals 1-1 1 ICT Fundamentals Lesson 1: Computing Fundamentals LESSON SKILLS After completing this lesson, you will be able to: Define "computer" and explain how computers work. Describe functions of the computing cycle (i.e. input, processing, output, storage). Describe uses of computers (i.e. home, school, business). Identify the main types of computers (i.e. supercomputer, mainframe, microcomputer, notebook, tablet, handheld). Describe the four parts of a computer (i.e. hardware, software, data, user). List computer input and output devices (i.e. monitor, printer, projector, speakers, mice, keyboards) and describe their uses. Define "network," and explain network usage (i.e. home, school, work). Identify types of networks (i.e. LAN, WAN, MAN, VPN, intranet, extranet, the internet). KEY TERMS computer intranet server computer network mainframe computers software data microcomputers storage extranet notebook computers supercomputers handheld computers output tablet computer hardware processing user input SAMPLE © 2021 Certification Partners, LLC. — All Rights Reserved. Version 1.0 ICT Fundamentals - Lesson 1: Computing Fundamentals 1-2 Overview In this lesson, you will explain computing functions, systems and devices. You will also explain networking types and uses at home, school and work. What Is a Computer? Objectives 1.1.1: Define "computer" and explain how computers work. 1.1.2: Describe functions of the computing cycle (i.e. input, processing, output, storage). According to Dictionary.com (2016) a computer is, "a programmable electronic device designed to accept data, perform prescribed mathematical and logical operations at high speed and display the results of these operations. Mainframes, desktop and laptop computers, tablets, and smartphones are some of the different types of computers." As we can see from this definition, there are many different kinds of computers that are used in today’s world. -
Introduction to Mainframe Networking TCP/IP Problem Determination
z/OS Basic Skills Information Center Networking on z/OS z/OS Basic Skills Information Center Networking on z/OS Note Before using this information and the product it supports, read the information in “Notices” on page 251. This edition applies to z/OS (product number 5694-A01). We appreciate your comments about this publication. Comment on specific errors or omissions, accuracy, organization, subject matter, or completeness of this book. The comments you send should pertain to only the information in this manual or product and the way in which the information is presented. For technical questions and information about products and prices, please contact your IBM branch office, your IBM business partner, or your authorized remarketer. When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use the personal information that you supply to contact you about the issues that you state on this form. Send your comments through this web site: http://publib.boulder.ibm.com/infocenter/zoslnctr/v1r7/index.jsp?topic=/com.ibm.zcontact.doc/webqs.html © Copyright IBM Corporation 2006, 2010. US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents Before you begin the topic about Coupling channels ...........40 networking on z/OS .........vii Open Systems Adapter (OSA) .......40 HiperSockets ..............46 The I/O cage ..............48 Part 1. Introduction to networking on the mainframe...........1 Chapter 4. Sample network configuration ............49 Chapter 1. -
IBM System Z Functional Matrix
IBM System z July 2013 IBM System z Functional Matrix IBM System z This functional matrix consists of a list of features and functions that are supported on IBM System z® servers (this includes the IBM zEnterprise ® EC12 (zEC12), IBM zEnterprise BC12 (zBC12), IBM zEnterprise 196 (z196), IBM zEnterprise 114 (z114), IBM System z10 ® Enterprise Class (z10 ™ EC), IBM System z10 Business Class ™ (z10 BC), IBM System z9 ® Enterprise Class (z9 ® EC), and IBM System z9 Business Class (z9 BC). It is divided into nine functional areas; – Application Programming Interfaces, – Cryptographic features, – I/O, – Business On Demand, – Parallel Sysplex ®, – Performance, – Processor Resource Systems Manager (PR/SM ™) – Reliability, Availability, Serviceability (RAS) – IBM zEnterprise BladeCenter ® Extension (zBX) There is also a legend at the end of the matrix to identify the symbols that are being used. Note: This matrix is not intended to include services, RPQs or specific quantities or measurements related performance, memory size, bandwidth, etc. The intention of this matrix is to provide a comparison of the standard and optional features for the various System z servers. For further details on the features and functions listed in the tables, refer to the system specific reference guide documentation. This document is available from the Library area of Resource Link ™ at: www.ibm.com/servers/resourcelink Key: S = standard O = optional - = not supported zEnterprise System z10 System z9 ™ Application Programming Interface (API) ™ zEC12 zBC12 z196 z114 -
Acrobat Distiller, Job 2
A BRIEF HISTORY OF THE IBM ES/9000, SYSTEM/390 AND zSERIES 1990 IBM makes its most comprehensive product announcement in 25 years by introducing the System/390 family consisting of 18 Enterprise System/9000 processors ranging from midrange computers for office environments to the most powerful computers IBM has ever offered. Featuring enhanced function and capability to manage information systems, the System/390 provides increased processing power, better network management, improved communication among multivendor systems and the Enterprise System/9000 processors. In many cases, customers currently using IBM Enterprise System/3090 systems can easily upgrade their systems to System/390 processors. Other 1990 announcements include: several networking products to make it easier for customers to use their midrange, desktop and System/390 computers to communicate with non-IBM computers. 1991 IBM unveils seven new Enterprise System/9000 processors and operating system software — Advanced Interactive Executive/Enterprise System Architecture (AIX/ESA) — for the System/390 family. AIX/ESA is a further step in IBM’s implementation of open-systems computing across its product line and is based on UNIX and the Open Software Foundation’s OSF/1 standards. The company begins shipping in volume and on schedule two top-of-the-line ES/9000 models that were announced in September 1990. IBM Japan says it will supply Enterprise System/9000 processors and operating system software to Mitsubishi Electric Corp. for remarketing. The agreement marks the first time IBM has sold large processors as an original equipment manufacturer for resale. 1992 IBM introduces two entry-level Enterprise System/9000 processors and ships five new Enterprise System/9000 water-cooled processors — Models 520, 640, 660, 740 and 860 — one-to-four months ahead of schedule. -
IBM Zenterprise BC12 (Zbc12) Enabling Enterprises of All Sizes to Build a Better Customer Experience with IBM Z Systems
IBM Systems and Technology Data Sheet IBM zEnterprise BC12 (zBC12) Enabling enterprises of all sizes to build a better customer experience with IBM z Systems Organizations around the world are recognizing the increasing role that Highlights technology plays in driving change as they shift investments from infra- structure maintenance towards new projects, such as cloud, data analytics ●● ●●Delivers increased performance, flexibility and mobile applications. To remain competitive, they must constantly and scale in a lower cost package adapt and respond with increased speed to deliver new services through ●● ●●Helps save money through consolidation multiple channels to customers, partners and employees. To capitalize on Linux® and an efficient cloud delivery on this opportunity, organizations must be able to tap into their valuable model data and energize applications without going over budget while keeping ●● ●●Enables workloads to be deployed where everything protected and secure to reduce organizational and reputation they run best and cost less with proven risk. This requires an optimized infrastructure that is integrated, agile, hybrid computing trusted and secure. ●● ●●Lets you secure it all with confidence on a trusted and resilient infrastructure The newest member of the IBM® zEnterprise® System family is the IBM zEnterprise BC12 (zBC12). Designed as an entry point for enterprise computing it embodies the same innovation and value, flexible growth options, industry-leading virtualization, trusted resiliency, secure cloud, enterprise mobility and operational analytics capabilities as the massively scalable IBM zEnterprise EC12. The zBC12 delivers a lower and more granular cost structure with significant improvements in pack- aging, performance and total system scalability over prior generations. -
Rising IBM Mainframe Software Costs
Rising IBM Mainframe Software Costs By Kim A. Eckert, Certified IT Architect Rising IBM mainframe software costs started getting the attention of high level executives some years ago. This was partially due to realizing the software inventories analysis was inefficient and limited. In addition, a third party company was hired to review IBM Strategic Outsourcing (SO) account’s inventory. In other words, IBM was paying "green" dollars to save "blue" dollars! In order for the team to become competitive and provide extra value to our Integrated Technology Delivery (ITD) accounts, I architected an automated system that merged data from several sources and made it easy for the technical support teams to verify the inventory. Once the reports were produced, my team would analyze the data and make recommendations for cost take out opportunities. There were several issues surrounding software licensing and validation: 1. IBM only had tools that would report on what was installed on a customer’s machine then that output would be matched up to what was actually licensed. This approach had benefits as in ensuring they are paying for what they use, but did not do the opposite - ensuring they are actually using what they are paying for. 2. The only place to find where a product was superseded by another was either Announcement letters or the Dawn report web page. The Dawn report lists all monthly license type software and their replacement if available. For example, it would show 5647-A01 OS/390 is replaced by 5694-A01 z/OS. 3. End of Support information was only available through Announcement letters or the Lifecycle Support web page. -
IBM System Z9 Enterprise Class
The server built to help optimize your resources throughout the enterprise IBM System z9 Enterprise Class A “classic” might just be the best Today’s market finds that business needs are changing, and having a com petitive advantage isn’t always about having more or being bigger, but more about being smarter and responding faster to change and to your clients. Often, being reactive to change has led to infrastructures with mixed technolo gies, spread across an enterprise, that are complex and difficult to control and costly to manage. Integration of appli cations and data is limited and difficult. Using internal information to make insightful decisions for the company Highlights can be difficult because knowing you are using the “best” data—that which is ■ Strengthening the role of the ■ Continued improvement in most current and complete—may not mainframe as the data hub of IBM FICON® performance and be possible. the enterprise throughput In many situations, investments have ■ New versatile capacity settings ■ On demand innovative tech been made in disparate technologies designed to optimize capacity nologies to help meet ever- that may fall short of meeting their and cost changing business demands goals. Merging information from one branch to another may not be possible ■ IBM System z9™ Integrated and so company direction is set with Information Processor (IBM zIIP) is designed to improve resource optimization and lower the cost of eligible work only a portion of the data at hand, and help achieve advanced I/O function and But data management can be a big in a global economy that can really hurt. -
Ist Das Z/OS (Objekt-) Relationale Datenbank-Produkt
Betriebssysteme it-Akademie Bayern z/OS und OS/390 Lehrgang 2009 Prof. Dr.-Ing. Wilhelm G. Spruth Teil 9b z/OS Subsysteme bs 0901 ww6 © copyright W. G. Spruth, 10-2000 wgs 03-95 Server Zugriff Unterschied zwischen Einzelplatzrechner und Client/Server Betriebssystemen. NT und Unix werden für beides eingesetzt. OS/390 ist ein reinrassiges Server Betriebssystem. Andere Beispiele für Server Betriebssysteme: Tandem Pathway, DEC Vax. Ein Server Zugriff benötigt spezielle Client Software. Möglichkeiten für selbstgeschriebene Klient-Anwendungen: Sockets, RPC, Corba, DCOM, RMI Zeilenorientierte Klienten: Unix Server Telnet Client OS/390 Server 3270 Client Vax Server VT 100 Client Klienten mit graphischer Oberfläche: NT Server Citrix Client WWW Server Browser Client SAP R/3 Server SAPGUI Client OS/390 Server Servlet, Java Server Page Client Client Server NT OS/390 LAN oder Internet Jedi 3270 Client Telnet, TN3270 es 0537 ww6 wgs 07-00 Typical online use Typical online use 1. A customer uses an ATM, which presents a user- friendly interface for various functions: Withdrawal, query account balance, deposit, transfer, or cash advance from a credit card account. 2. Elsewhere in the same private network, a bank employee in a branch office performs operations such as consulting, fund applications, and money ordering. 3. At the bank’s central office, business analysts tune transactions for improved performance. Other staff use specialized online systems for office automation to perform customer relationship management, budget planning, and stock control. 4. All requests directed to the mainframe computer for processing. 5. Programs running on the mainframe computer perform updates and inquires to the database management system (for example, DB2). -
Classification of Computers
Chapter-2 Classification of Computers Computers can be classified many different ways -- by size, by function, or by processing capacity. Functionality wise 4 types a) Micro computer b) Mini Computer c) Mainframe Computer d) Super Computer Microcomputers Microcomputers are connected to networks of other computers. The price of a microcomputer varies from each other depending on the capacity and features of the computer. Microcomputers make up the vast majority of computers. Single user can interact with this computer at a time. It is a small and general purpose computer. Mini Computer Mini Computer is a small and general purpose computer. It is more expensive than a micro computer. It has more storage capacity and speed. It designed to simultaneously handle the needs of multiple users. Mainframe Computer Large computers are called Mainframes. Mainframe computers process data at very high rates of speed, measured in the millions of instructions per second. They are very expensive than micro computer and mini computer. Mainframes are designed for multiple users and process vast amounts of data quickly. Examples: - Banks, insurance companies, manufacturers, mail-order companies, and airlines are typical users. Super Computers The largest computers are Super Computers. They are the most powerful, the most expensive, and the fastest. They are capable of processing trillions of instructions per second. It uses governmental agencies, such as:- Chemical analysis in laboratory Space exploration National Defense Agency National Weather Service Bio-Medical research Design of many other machines Limitations of Computer Computer cannot take over all activities simply because they are less flexible than humans. It does not hold intelligence of its own. -
Oracle® Database Gateway for APPC Installation and Configuration Guide
Oracle® Database Gateway for APPC Installation and Configuration Guide 19c for IBM AIX on POWER Systems (64-Bit), Linux x86-64, Oracle Solaris on SPARC (64-Bit), and HP- UX Itanium F18241-01 April 2019 Oracle Database Gateway for APPC Installation and Configuration Guide, 19c for IBM AIX on POWER Systems (64-Bit), Linux x86-64, Oracle Solaris on SPARC (64-Bit), and HP-UX Itanium F18241-01 Copyright © 2002, 2019, Oracle and/or its affiliates. All rights reserved. Primary Author: Rhonda Day Contributing Authors: Vira Goorah, Govind Lakkoju, Peter Wong, Juan Pablo Ahues-Vasquez, Peter Castro, Charles Benet This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited. The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing. If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable: U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. -
Audit Report No.: 2007-DP-0004
Issue Date February 22, 2007 Audit Report Number 2007-DP-0004 TO: Lisa Schlosser, Chief Information Officer, Q Joseph A. Neurauter, Chief Procurement Officer, N Keith A. Nelson, Assistant Secretary, Administration, A FROM: Hanh Do, Director, Information Systems Audit Division, GAA SUBJECT: Fiscal Year 2006 Review of Information Systems Controls in Support of the Financial Statements Audit HIGHLIGHTS What We Audited and Why We reviewed general and application controls for selected information systems to assess management controls over HUD’s computing environments as part of the Office of Inspector General’s (OIG) audit of the U.S. Department of Housing and Urban Development’s (HUD) financial statements for fiscal year 2006 under the Chief Financial Officer’s Act of 1990. What We Found HUD did not ensure that its general and application controls over its financial systems conformed to federal requirements and guidelines. Proper configuration management controls for software and document changes are not always employed, and access controls and support for the IBM mainframe operating system console are inadequate. Physical security controls over computing operations facilities are weak, and personnel security practices continue to pose the risk of unauthorized access to HUD systems. As a result, HUD’s financial systems are at risk of compromise. What We Recommend We recommend that the chief information officer, chief procurement officer, and assistant secretary for the Office of Administration ensure that Office of Management and Budget requirements, Federal Information Security Management Act requirements, National Institute of Standards and Technology guidelines, and HUD’s own internal policies and procedures are implemented. For each recommendation without a management decision, please respond and provide status reports in accordance with HUD Handbook 2000.06, REV-3. -
Introduction to Embedded Systems EHB326E Lectures
Introduction to Embedded Systems EHB326E Lectures Prof. Dr. M¨u¸stakE. Yal¸cın Istanbul Technical University [email protected] Prof. Dr. M¨u¸stakE. Yal¸cın (IT_ U)¨ EHB326E (V: 0.1) September, 2018 1 / 14 Embedded system Billions of computing systems which are built every year for a very different purpose are embedded within larger electronic devices, repeatedly carrying out a particular function, often going completely unrecognized by the device's user! An embedded system is nearly any computing system other than a desktop, laptop, or mainframe computer. Prof. Dr. M¨u¸stakE. Yal¸cın (IT_ U)¨ EHB326E (V: 0.1) September, 2018 2 / 14 Embedded system The Dozens of Computers That Make Modern Cars Go (and Stop) The New York Times, 2010. Link ... \It would be easy to say the modern car is a computer on wheels, but it's more like 30 or more computers on wheels," said Bruce Emaus, the chairman of SAE International's embedded software standards committee. ... IEEE Spectrum reported that electronics, as a percentage of vehicle costs, climbed to 15 percent in 2005 from 5 percent in the late 1970s | and would be higher today. Prof. Dr. M¨u¸stakE. Yal¸cın (IT_ U)¨ EHB326E (V: 0.1) September, 2018 3 / 14 Embedded system Some common characteristics of embedded systems; Single-functioned Executes a single program, repeatedly Tightly-constrained Low cost, low power, small, fast, etc. Reactive and real-time Continually reacts to changes in the system's environment Must compute certain results in real-time without delay Prof. Dr. M¨u¸stakE.