Interaction of Lifecycle Properties in High Speed Rail Systems Operation

Total Page:16

File Type:pdf, Size:1020Kb

Interaction of Lifecycle Properties in High Speed Rail Systems Operation Interaction of Lifecycle Properties in High Speed Rail Systems Operation by Tatsuya Doi M.E., Aeronautics and Astronautics, University of Tokyo, 2011 B.E., Aeronautics and Astronautics, University of Tokyo, 2009 Submitted to the Institute for Data, Systems, and Society in partial fulfillment of the requirements for the degree of Master of Science in Engineering Systems at the Massachusetts Institute of Technology June 2016 © 2016 Tatsuya Doi. All rights reserved. The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created. Signature of Author: ____________________________________________________________________ Institute for Data, Systems, and Society May 6, 2016 Certified by: __________________________________________________________________________ Joseph M. Sussman JR East Professor of Civil and Environmental Engineering and Engineering Systems Thesis Supervisor Certified by: __________________________________________________________________________ Olivier L. de Weck Professor of Aeronautics and Astronautics and Engineering Systems Thesis Supervisor Accepted by: _________________________________________________________________________ John N. Tsitsiklis Clarence J. Lebel Professor of Electrical Engineering IDSS Graduate Officer 1 2 Interaction of Lifecycle Properties In High Speed Rail Systems Operation by Tatsuya Doi Submitted to the Institute for Data, Systems, and Society on May 6, 2016 in Partial Fulfillment of the Requirements for the Degree of Master of Science in Engineering Systems ABSTRACT High-Speed Rail (HSR) has been expanding throughout the world, providing various nations with alternative solutions for the infrastructure design of intercity passenger travel. HSR is a capital-intensive infrastructure, in which multiple subsystems are closely integrated. Also, HSR operation lasts for a long period, and its performance indicators are continuously altered by incremental updates. With this background, design and monitoring of lifecycle properties, or “ilities”, is an important factor to achieve long-term successful operation. This thesis aims to analyze and evaluate dynamic behaviors of “ilities” and their interactions in HSR operation. After the literature review and the study of industrial trends about HSR “ilities”, safety, availability and profitability are chosen as key “ilities” which should be monitored in HSR operation. The Tokaido Shinkansen in Japan, and Amtrak’s service in the US Northeast Corridor (NEC) are chosen as cases to study “ilities” trends. In the Tokaido Shinkansen, three “ilities” form a positive feedback loop to make HSR operation successful. The NEC shows high profitability, but it does not perform as well in terms of safety and availability due to several systemic factors. System Dynamics (SD) is applied to visualize interactions of “ilities” and other variables of interest. Qualitative causal loop diagrams (CLD) reveal several feedback loops affecting “ilities”. In particular, the integration of train operation and infrastructure / rolling stock management results in the emergence of major feedback loops which cannot easily be captured by other methodologies. Qualitative SD models are converted into quantitative SD models, and numerical simulations are run to further understand the structure of causal loop diagrams. Estimated parameters in the Tokaido and the NEC suggest the different relationships among “ilities” and other variables. Further, sensitivity analyses are conducted to evaluate how different policies affect “ilities” in future HSR operations. Thesis Supervisor: Joseph M. Sussman Title: JR East Professor of Civil and Environmental Engineering and Engineering Systems Thesis Supervisor: Olivier L. de Weck Title: Professor of Aeronautics and Astronautics and Engineering Systems 3 4 ACKNOWLEDGEMENTS Two years ago, when I started my MIT life, I was totally overwhelmed by intensive classes and a tremendous amount of homework. At that time, I could not imagine at all that I could finish my journey at MIT with this master’s thesis. I thank you all who supported my life here at Cambridge. I could not finished this work without your support. First of all, I would like to express my great appreciation to my thesis advisor, Joe Sussman for your kindness, intelligence and enthusiastic support. Our weekly meeting and your consistent feedback in the last two semesters greatly shaped this thesis, and you always led me to the right direction. I would like to show my sincere thanks to another thesis advisor, Oli de Weck. Your idea about “ilities”, and our first meeting at Oli’s office were the starting point of this thesis. Thanks for letting me pursue such an exciting research topic and giving me a lot of insightful feedback. Thank you, members in R/HSR research group: Maite, Bruno, Sam, Tolu, Alex, Ryan, Rebecca, Joanna, Patton, Tommy, Matt, Taka, Scott and Rakesh. Your insightful perspectives about transportation shaped my ideas about high speed rail. Thank you, Strategic Engineering Research Group. Our diverse discussion about various topics such as space systems, network optimization, system architecture/engineering and lifecycle properties gave me a lot of novel insight how to deal with today’s engineering systems. Especially, thank you Koki, my friend from our childhood, for your introduction to this fascinating research group. In addition, I would like to appreciate my company, JR Central for giving me such a great opportunity to broaden my perspectives. Your support was indispensable for me to finish my work here. I also thank all the readers, for your interest in this thesis, and we hope that it has offered you some useful perspectives to consider long-term HSR operation from systemic standpoints. Finally, I would like to say great thanks to my family: Koichiro and Yurimi, my parents, for always supporting me to pursue my career. Fumie, my dearest wife, for your selfless love and giving me an opportunity to be a father. Reina, our precious daughter, for your birth and healthy growth. I love you all. Tatsuya Doi Cambridge, Massachusetts May 2016 5 6 TABLE OF CONTENTS LIST OF TABLES ...................................................................................................................................... 11 LIST OF FIGURES .................................................................................................................................... 13 LIST OF ACRONYMS AND ABBREVIATIONS .................................................................................... 17 Chapter 1 Introduction ................................................................................................................................ 19 Motivation ......................................................................................................................................... 19 Research Objective ........................................................................................................................... 22 Thesis Outline ................................................................................................................................... 22 Chapter 2 Overview of HSR Systems ......................................................................................................... 25 Definition of HSR ............................................................................................................................. 25 HSR around the World ...................................................................................................................... 26 Characteristics of HSR ...................................................................................................................... 28 2.3.1 System Development ................................................................................................................. 28 2.3.2 System Operation ....................................................................................................................... 30 2.3.3 Comparison with Conventional Rail .......................................................................................... 33 2.3.4 Comparison with Other Transportation Modes .......................................................................... 35 Conclusion ........................................................................................................................................ 37 Chapter 3 Lifecycle Properties - “ilities” ................................................................................................... 39 Definition .......................................................................................................................................... 40 HSR and “ilities” ............................................................................................................................... 43 3.2.1 Literature Review ....................................................................................................................... 43 3.2.2 Industrial Trends ........................................................................................................................ 47 Key “ilities” ...................................................................................................................................... 53 3.3.1 Safety ........................................................................................................................................
Recommended publications
  • GAO-02-398 Intercity Passenger Rail: Amtrak Needs to Improve Its
    United States General Accounting Office Report to the Honorable Ron Wyden GAO U.S. Senate April 2002 INTERCITY PASSENGER RAIL Amtrak Needs to Improve Its Decisionmaking Process for Its Route and Service Proposals GAO-02-398 Contents Letter 1 Results in Brief 2 Background 3 Status of the Growth Strategy 6 Amtrak Overestimated Expected Mail and Express Revenue 7 Amtrak Encountered Substantial Difficulties in Expanding Service Over Freight Railroad Tracks 9 Conclusions 13 Recommendation for Executive Action 13 Agency Comments and Our Evaluation 13 Scope and Methodology 16 Appendix I Financial Performance of Amtrak’s Routes, Fiscal Year 2001 18 Appendix II Amtrak Route Actions, January 1995 Through December 2001 20 Appendix III Planned Route and Service Actions Included in the Network Growth Strategy 22 Appendix IV Amtrak’s Process for Evaluating Route and Service Proposals 23 Amtrak’s Consideration of Operating Revenue and Direct Costs 23 Consideration of Capital Costs and Other Financial Issues 24 Appendix V Market-Based Network Analysis Models Used to Estimate Ridership, Revenues, and Costs 26 Models Used to Estimate Ridership and Revenue 26 Models Used to Estimate Costs 27 Page i GAO-02-398 Amtrak’s Route and Service Decisionmaking Appendix VI Comments from the National Railroad Passenger Corporation 28 GAO’s Evaluation 37 Tables Table 1: Status of Network Growth Strategy Route and Service Actions, as of December 31, 2001 7 Table 2: Operating Profit (Loss), Operating Ratio, and Profit (Loss) per Passenger of Each Amtrak Route, Fiscal Year 2001, Ranked by Profit (Loss) 18 Table 3: Planned Network Growth Strategy Route and Service Actions 22 Figure Figure 1: Amtrak’s Route System, as of December 2001 4 Page ii GAO-02-398 Amtrak’s Route and Service Decisionmaking United States General Accounting Office Washington, DC 20548 April 12, 2002 The Honorable Ron Wyden United States Senate Dear Senator Wyden: The National Railroad Passenger Corporation (Amtrak) is the nation’s intercity passenger rail operator.
    [Show full text]
  • Harrisburg Line Capacity Improvements Upgrade of Track 2 from Glen Interlocking to Thorn Interlocking
    HARRISBURG LINE CAPACITY IMPROVEMENTS UPGRADE OF TRACK 2 FROM GLEN INTERLOCKING TO THORN INTERLOCKING FEDERAL RAILROAD ADMINISTRATION FEDERAL-STATE PARTNERSHIP FOR STATE OF GOOD REPAIR PROGRAM GRANT APPLICATION Lead Applicant: Southeastern Pennsylvania Transportation Authority (SEPTA) Joint Applicant: Pennsylvania Department of Transportation (PennDOT) FEDERAL FUNDING REQUESTED: $8,337,500 (50%) PROPOSED NON-FEDERAL MATCH: $8,337,500 (50%) TOTAL PROJECT COST: $16,675,000 PROJECT LOCATION: Caln Township, Downingtown Borough, East Caln Township, West Whiteland Township, & East Whiteland Township in Chester County, Pennsylvania - 6th Congressional District No Federal Grant Application Previously Submitted for this Project Table of Contents I. Project Summary .................................................................................................................................. 1 II. Project Funding ..................................................................................................................................... 2 III. Applicant Eligibility ............................................................................................................................... 3 IV. NEC Project Eligibility ........................................................................................................................... 3 V. Detailed Project Description ................................................................................................................ 5 VI. Project Location .................................................................................................................................
    [Show full text]
  • Yamanaka Onsen Niigata Fukushima
    Tourist map of Yamanaka Onsen Niigata Fukushima and Hokuriku area Nagaoka Joetsumyoko Sta. Itoigawa Echigoyuzawa Sta. Shintakaoka Sta. Iiyama Kurobe Kanazawa Unazukionsen Sta. Nagano Toyama Tateyama/Kurobe Kaga Onsen Sta. Komatsu Annakaharuna Sta. Utsunomiya Kenrokuen Garden Ueda Tojinbo Takasaki Awaraonsen Sta. Shirakawago Sakudaira Sta. Karuizawa Fukui Yamanaka Onsen Omiya The aroma of the Onsen has been healing travelers Nanjo Eiheiji Temple Tokyo since its inauguration 1300 years ago. Tsuruga Maibara Tottori Nagoya Kyoto Shizuoka Kobe Okayama Shinosaka Sta. Access to Yamanaka Onsen Train To JR Line Kaga Onsen Station ◎ Tokyo – Hokuriku Shinkansen (Kagayaki or Hakutaka) – Kanazawa – Hokuriku line express (Shirasagi or underbird) – Kaga Onsen station Approx 2 hours 55 minutes ◎ Tokyo – Tokaido Shinkansen (Hikari) – Maibara – Hokuriku line express (Shirasagi) – Kaga Onsen station Approx 3 hours 50 minutes ◎ Kyoto – Hokuriku line express (underbird) – Kaga Onsen station Approx 1 hour 45 minutes ◎ Osaka – Hokuriku line express (underbird) – Kaga Onsen station Approx 2 hours 20 minutes ◎ Nagoya – Tokaido Shinkansen (Hikari) – Maibara – Hokuriku line express (Shirasagi) – Kaga Onsen station Approx 2 hours 10 minutes ◎ Kanazawa – Hokuriku line express (Shirasagi or underbird) – Kaga Onsen station Approx 25 minutes * Time calculated for the fastest trains available. * Transportation services available from Kaga Onsen Station. * 20 minutes from Kaga Onsen Station by taxi. Hokuriku Shinkansen running between Kanazawa and Tokyo was put into service on March 14th 2015. Hokuriku Shinkansen made it 1 hour and 20 minutes faster to travel from Tokyo to Kanazawa. Airplane To Komatsu airport ◎ From Haneda Approx 1 hour ◎ From Narita Approx 1 hour 20 minutes ◎ From Sapporo Approx 1 hour 45 minutes ◎ From Sendai Approx 1 hour 10 minutes ◎ From Fukuoka Approx 1 hour 30 minutes * Approx 30 minutes by Can Bus from Komatsu airport to Kaga Onsen.
    [Show full text]
  • About Suspension of Some Trains
    About suspension of some trains Some trains will be suspended considering the transport of passengers due to the outbreak of the Novel Coronavirus. *Please note that further suspension may be subject to occur. 【Suspended Kyushu Shinkansen】 (May 11 – 31) ○Kumamoto for Kagoshima-Chūō ※Service between Kumamoto and Shin-Osaka is available. Name of train Kumamoto Kagoshima-Chūō Day of suspension SAKURA 545 10:34 11:20 May 11~31 SAKURA 555 15:23 16:10 May 11~31 SAKURA 409 12:18 13:15 May 11~31 ○Kagoshima-Chūō for Kumamoto ※Service between Kumamoto and Shin-Osaka is available. Name of train Kagoshima-Chūō Kumamoto Day of suspension SAKURA 554 11:34 12:20 May 11~31 SAKURA 562 14:35 15:20 May 11~31 SAKURA 568 17:18 18:03 May 11~31 MIZUHO 612 18:04 18:48 May 11~31 【Suspended Hokuriku Shinkansen】 (May 1 – 31) ○Tōkyō for Kanazawa Name of train Tōkyō Kanazawa Day of suspension KAGAYAKI 521 8:12 10:47 May 1~31 KAGAYAKI 523 10:08 12:43 May 2. 9. 16. 23. 30 KAGAYAKI 525 10:48 13:23 May 1~4. 9. 16. 23. 30 KAGAYAKI 527 11:48 14:25 May 2. 3. 5. 6 KAGAYAKI 529 12:48 15:26 May 2~6 KAGAYAKI 531 13:52 16:26 May 1. 3~6. 8. 15. 22. 29. 31 KAGAYAKI 533 14:52 17:26 May 1. 8~10. 15~17. 22~24. 29~31 KAGAYAKI 535 17:04 19:41 May 2~6 KAGAYAKI 539 19:56 22:30 May 1~6.
    [Show full text]
  • Pioneering the Application of High Speed Rail Express Trainsets in the United States
    Parsons Brinckerhoff 2010 William Barclay Parsons Fellowship Monograph 26 Pioneering the Application of High Speed Rail Express Trainsets in the United States Fellow: Francis P. Banko Professional Associate Principal Project Manager Lead Investigator: Jackson H. Xue Rail Vehicle Engineer December 2012 136763_Cover.indd 1 3/22/13 7:38 AM 136763_Cover.indd 1 3/22/13 7:38 AM Parsons Brinckerhoff 2010 William Barclay Parsons Fellowship Monograph 26 Pioneering the Application of High Speed Rail Express Trainsets in the United States Fellow: Francis P. Banko Professional Associate Principal Project Manager Lead Investigator: Jackson H. Xue Rail Vehicle Engineer December 2012 First Printing 2013 Copyright © 2013, Parsons Brinckerhoff Group Inc. All rights reserved. No part of this work may be reproduced or used in any form or by any means—graphic, electronic, mechanical (including photocopying), recording, taping, or information or retrieval systems—without permission of the pub- lisher. Published by: Parsons Brinckerhoff Group Inc. One Penn Plaza New York, New York 10119 Graphics Database: V212 CONTENTS FOREWORD XV PREFACE XVII PART 1: INTRODUCTION 1 CHAPTER 1 INTRODUCTION TO THE RESEARCH 3 1.1 Unprecedented Support for High Speed Rail in the U.S. ....................3 1.2 Pioneering the Application of High Speed Rail Express Trainsets in the U.S. .....4 1.3 Research Objectives . 6 1.4 William Barclay Parsons Fellowship Participants ...........................6 1.5 Host Manufacturers and Operators......................................7 1.6 A Snapshot in Time .................................................10 CHAPTER 2 HOST MANUFACTURERS AND OPERATORS, THEIR PRODUCTS AND SERVICES 11 2.1 Overview . 11 2.2 Introduction to Host HSR Manufacturers . 11 2.3 Introduction to Host HSR Operators and Regulatory Agencies .
    [Show full text]
  • European Biotech and Pharma Partnering Conference, Osaka 2019
    European Biotech and Pharma partnering Conference, Osaka 2019 Partnering Conference Schedule, 8 October, 2018 8:30 – 9:00 Registration 9:00 – 9:15 Welcome and Opening Remarks 9:20 – 10:20 B2B meeting – Session 1 9:20 – 11:50 B2B meeting – Session 2 12:00 – 13:20 Networking lunch 13:30 – 15:00 B2B meeting – Session 3 15:00 – 16:00 B2B meeting – Session 4 Venue Senri Hankyu Hotel Senjyu, West Building 2F *Address: Senri Hankyu Hotel, 2-1 Shinsenri Higashimachi, Toyonaka-shi, Ōsaka-fu, 560-0082, Japan *Address in Japanese: 大阪府豊中市新千里東町2丁目1番 Access to the venue Nearest station: Senri-Chuo Station How to get there? from Kansai International Airport about 80 minutes by Limousine Bus, (get off at Itami Airport) transfer to Osaka Monorail from Itami Airport, take Osaka Monorail at Osaka Airport Station to Senri-Chuo for about 12 min. (get off at Senri-Chuo Station) From Shin-Osaka Station (Shinkansen Station) about 15 min. by Subway Midosuji Line via Esaka Station to Senri-Chuo Station from Umeda Station about 20 min. by Subway Midosuji Line via Esaka Station to Senri-Chuo Station 1 Senri Chuo Station Senri Hankyu Hotel Senju Hall, West Building 2F Floor layout Poster Spaces Registration (Japanese Participants) Registration (European Participants) Partnering Platform Please accept or reject any pending requests as soon as possible, because other participants will not be able to send requests anymore if their list of pending requests gets too long. See your meeting’s status Meeting requests can only be made until October 1st, 2019. Browse participants Confirmations of preliminary schedules are planned to be sent by October 3, 2019.
    [Show full text]
  • Masters Village Hyogo Duo Kobe “Duo Dome” (JR Kobe Sta
    Transport Information Guide Venue Hyogo pref. Kobe City Masters Village Hyogo Duo Kobe “Duo Dome” (JR Kobe Sta. basement) 2-1 Aioicho, Chuoku, Kobe City, Hyogo http://www.duokobe.com/ ■Access to Masters Village Hyogo From Kansai International Airport Airport Kobe-Sannomiya Sannomiya Kobe Bus Airport Bus Sta. Sta. JR Kobe Line Sta. Directly 【65min.】 【3min.】 Connected JR Osaka Kobe JR Kansai-airport Line Sta. JR Kobe Line Sta. Directly 【60min.】 【26min.】 Connected ※ Transport passes can be used for JR train from Osaka to Kobe. They will be delivered to Games Check-in at Center Village located near JR Osaka Station if you have applied in advance. From Osaka International Airport ( Itami Airport) Duo Airport Kobe-Sannomiya Sannomiya Kobe Dome Bus Airport Bus Sta. Sta. JR Kobe Line Sta. Directly 【40min.】 【3min.】 Connected From Shin-Kobe Station Kobe City Sannomiya Sannomiya Kobe Subway Subway Seishin-Yamate Line Sta. Sta. JR Kobe Line Sta. Directly 【2min.】 【3min.】 Connected Kobe Airport Port Sannomiya Sannomiya Kobe Liner Port Liner Sta. Sta. JR Kobe Line Sta. Directly 【18min.】 【3min.】 Connected Osaka International Airport (Itami Airport) for Okayama Shinkansen for Kyoto Shin-Kobe Shin-Osaka Sta. Sta. for Seishin-Cyuo Subway Seishin-Yamate Line for Nishi-Akashi Kobe Sannomiya Osaka Sta. Sta. Sta. JR Kobe Line Port Liner 【Masters Village Hyogo】 Duo Kobe “Duo Dome” Kobe Airport JR Line JR Shinkansen Kansai Subway International Seishin-Yamate Line Airport PortLiner Airport Bus Transport Information Guide ■ Access map to Masters Village Hyogo ■ Transportation information to Masters Village Hyogo (Duo Dome) From JR Kobe Station, exit out of Central Gate, go down to the basement floor using the escalator at the south exit.
    [Show full text]
  • Shinkansen Bullet Train
    Jōetsu Shinkansen (333.9 km) Train Names: TOKI, TANIGAWA Max-TOKI, Max-TANIGAWA JAPAN RAIL PASS Can also be Used for Shinkansen Jōetsu Shinkansen "Max-TOKI"etc. “bullet train” Travel Akita Shinkansen "KOMACHI" Akita Shinkansen (662.6 km) Train Name: KOMACHI Akita Shin-Aomori Yamagata Shinkansen "TSUBASA" Hokuriku Shinkansen (450.5 km) Yamagata Shinkansen Train Names: KAGAYAKI, HAKUTAKA, (421.4 km) Shinjo¯ Morioka TSURUGI, ASAMA Train Name: TSUBASA Niigata Yamagata Sendai Kanazawa Toyama Nagano Hokuriku Shinkansen "KAGAYAKI"etc. Fukushima Takasaki Omiya¯ Sanyō & Kyūshū Shinkansen "SAKURA" Sanyō Shinkansen (622.3 km) Train Names: NOZOMI*, MIZUHO*, Tōhoku Shinkansen "HAYABUSA "etc. Tōkaidō & Sanyō Shinkansen "HIKARI" HIKARI (incl. HIKARI Rail Star), SAKURA, KODAMA Tōkaidō Shinkansen (552.6 km) (Tōkyō thru Hakata, 1,174.9km) Train Names: NOZOMI*, HIKARI, KODAMA Hakata Kokura Hiroshima Okayama Shin-Osaka¯ Kyōto Nagoya Shin-Yokohama Shinagawa Tokyo¯ ¯ * There are six types of train services, “NOZOMI,” “MIZUHO,” “HIKARI,” “SAKURA,” “KODAMA” and “TSUBAME” trains on the Tōkaidō, Sanyō and Kyūshū Shinkansen, and the stations at which trains stop vary with train types. The JAPAN RAIL PASS is only valid for “HIKARI,” “SAKURA,” “KODAMA” Tōhoku Shinkansen "HAYATE," "YAMABIKO,"etc. and “TSUBAME” trains, and not valid for any seats, reserved or non-reserved, on “NOZOMI” and “MIZUHO” trains. To travel on the Tōkaidō, Sanyō and Kyūshū Shinkansen, the pass holders must take Tōhoku Shinkansen (713.7 km) “HIKARI,” “SAKURA,” “KODAMA” or “TSUBAME” trains, or
    [Show full text]
  • Chicago-South Bend-Toledo-Cleveland-Erie-Buffalo-Albany-New York Frequency Expansion Report – Discussion Draft 2 1
    Chicago-South Bend-Toledo-Cleveland-Erie-Buffalo- Albany-New York Frequency Expansion Report DISCUSSION DRAFT (Quantified Model Data Subject to Refinement) Table of Contents 1. Project Background: ................................................................................................................................ 3 2. Early Study Efforts and Initial Findings: ................................................................................................ 5 3. Background Data Collection Interviews: ................................................................................................ 6 4. Fixed-Facility Capital Cost Estimate Range Based on Existing Studies: ............................................... 7 5. Selection of Single Route for Refined Analysis and Potential “Proxy” for Other Routes: ................ 9 6. Legal Opinion on Relevant Amtrak Enabling Legislation: ................................................................... 10 7. Sample “Timetable-Format” Schedules of Four Frequency New York-Chicago Service: .............. 12 8. Order-of-Magnitude Capital Cost Estimates for Platform-Related Improvements: ............................ 14 9. Ballpark Station-by-Station Ridership Estimates: ................................................................................... 16 10. Scoping-Level Four Frequency Operating Cost and Revenue Model: .................................................. 18 11. Study Findings and Conclusions: .........................................................................................................
    [Show full text]
  • Operating Results by Business Segment — —
    Introduction Business Strategy and Operating Results ESG Section Financial Section The President’s Message Medium-Term Management Plan Operating Results by Business Segment — — Operating Results by Business Segment Transportation Operations JR-West’s transportation operations segment consists of railway Railway Revenues operations and small-scale bus and ferry services. Its railway operations encompass 18 prefectures in the western half of Japan’s Sanyo Shinkansen main island of Honshu and the northern tip of Kyushu, covering a total service area of approximately 104,000 square kilometers. Other Conventional Lines The service area has a population of approximately 43 million people, equivalent to 34% of the population of Japan. The railway network comprises a total of 1,222 railway stations, with an operating route length of 5,015.7 kilometers, almost 20% of passenger railway kilometerage in Japan. This network includes the Sanyo Kansai Urban Area Shinkansen, a high-speed intercity railway line; the Kansai Urban (including the Urban Network) Area, serving the Kyoto–Osaka–Kobe metropolitan area; and other conventional railway lines (excluding the three JR-West branch offices in Kyoto, Osaka, and Kobe). The Sanyo Shinkansen is a high-speed intercity to the major stations of the Sanyo Shinkansen passenger service between Shin-Osaka Station in Line, such as Okayama, Hiroshima, and Hakata, Osaka and Hakata Station in Fukuoka in northern without changing trains. These services are Kyushu. The line runs through several major cities enabled by direct services with the services of Sanyo in western Japan, including Kobe, Okayama, the Tokaido Shinkansen Line, which Central Shinkansen Hiroshima, and Kitakyushu.
    [Show full text]
  • Transportation Planning for the Richmond–Charlotte Railroad Corridor
    VOLUME I Executive Summary and Main Report Technical Monograph: Transportation Planning for the Richmond–Charlotte Railroad Corridor Federal Railroad Administration United States Department of Transportation January 2004 Disclaimer: This document is disseminated under the sponsorship of the Department of Transportation solely in the interest of information exchange. The United States Government assumes no liability for the contents or use thereof, nor does it express any opinion whatsoever on the merit or desirability of the project(s) described herein. The United States Government does not endorse products or manufacturers. Any trade or manufacturers' names appear herein solely because they are considered essential to the object of this report. Note: In an effort to better inform the public, this document contains references to a number of Internet web sites. Web site locations change rapidly and, while every effort has been made to verify the accuracy of these references as of the date of publication, the references may prove to be invalid in the future. Should an FRA document prove difficult to find, readers should access the FRA web site (www.fra.dot.gov) and search by the document’s title or subject. 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. FRA/RDV-04/02 4. Title and Subtitle 5. Report Date January 2004 Technical Monograph: Transportation Planning for the Richmond–Charlotte Railroad Corridor⎯Volume I 6. Performing Organization Code 7. Authors: 8. Performing Organization Report No. For the engineering contractor: Michael C. Holowaty, Project Manager For the sponsoring agency: Richard U. Cogswell and Neil E. Moyer 9. Performing Organization Name and Address 10.
    [Show full text]
  • 'Camellia T'. Synonym for 'Donckelaeri'. (Masayoshi). TC Cole
    T. T. Fendig. 1951, American Camellia Yearbook, p.77 as ‘Camellia T’. Synonym for ‘Donckelaeri’. (Masayoshi). T.C. Cole. Trewidden Estate Nursery, 1995, Retail Camellia List, p.8. Abbreviation for Thomas Cornelius Cole. T.C. Patin. (C.japonica) SCCS., 1976, Camellia Nomenclature, p.147: Light red. Very large, full, semi- double with irregular, large petals and a spray of large stamens. Originated in USA by T.C. Patin, Hammond, Louisiana. Sport: T.C. Patin Variegated. T.C. Patin Variegated. (C.japonica), SCCS., 1976, Camellia Nomenclature, p.147 as ‘T.C. Patin Var.’: A virus variegated form of T.C. Patin - Light red blotched white. Originated in USA by T.C. Patin, Hammond, Louisiana. T.D. Wipper. Nagoya Camellia Society Bulletin, 1992, No.25. Synonym for Dave’s Weeper. T.G. Donkelari. Lindo Nurseries Price List, 1949, p.7. Synonym for ‘Donckelaeri’. (Masayoshi). T.K. Blush. (C.japonica) Wilmot, 1943, Camellia Variety Classification Report, 1943, p.14: A light pink sport of T.K. Variegated. Originated in USA. Synonym: ‘T.K. Pink’. T.K. Number 4. Florida Nursery and Landscaping Co. Catalogue, 1948 as ‘T.K. No.4’. Synonym for T.K. Variegated. T.K. Pink. Morris, 1954, RHS., The Rhododendron and Camellia Yearbook, p.113. Synonym for T.K. Blush. T.K. Red. Semmes Nursery Catalogue, 1942-1943, p.21. Synonym for T.K. Variegated Red. T.K. Variegata. Kiyono Nursery Catalogue, 1942-1943. Synonym for T.K. Variegated. T.K. Variegated. (C.japonica) Kiyono Overlook Nursery Catalogue, 1934, p.14: Semi-double. Light pink edged dark pink. Gerbing’s Azalea Gardens Catalogue, 1938-1939: Semi-double, white flowers striped pink, rose and lavender, some flowers solid colour, purple and pink.
    [Show full text]