bioRxiv preprint doi: https://doi.org/10.1101/232678; this version posted December 13, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Phasic Activation of Ventral Tegmental, but not Substantia Nigra, Dopamine Neurons Promotes Model-Based Pavlovian Reward Learning R. Keiflin1*, H. J. Pribut1, N. B. Shah1, P. H. Janak1,2,3* 1 Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore MD 21218 USA 2 The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore MD 21205 USA 3 Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA *Correspondence: Patricia H. Janak, Ph.D. Johns Hopkins University 3400 N. Charles Street Dunning Hall, room 246 Baltimore, MD 21218
[email protected] ph: 415-509-1190 Ronald Keiflin, Ph.D. Johns Hopkins University 3400 N. Charles Street Dunning Hall, room 246 Baltimore, MD 21218
[email protected] ph: 510-501-4875 bioRxiv preprint doi: https://doi.org/10.1101/232678; this version posted December 13, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. ABSTRACT: Dopamine (DA) neurons in the ventral tegmental area (VTA) and substantia nigra (SNc) encode reward prediction errors (RPEs) and are proposed to mediate error-driven learning. However the learning strategy engaged by DA-RPEs remains controversial. Model-free associations imbue cue/actions with pure value, independently of representations of their associated outcome.