Electrochemistry Chem 35.5
Announcements Problems Chapter 21: 2,9,10,11,13,17,22,29,31,38,40,44,46,50,53,58,62,64,65,70, 72,73,82,85,87 Wonderful job with the presentations I was very impressed with all of them. Exam 3 March 17 Comprehensive Final Exam: March 24 7:30AM - 9:30 C114 This is an electrochemical cell, also called a voltaic or galvanic cell. Chemists name parts electrochemical cell names. Salt bridge with non-reacting Electron but conductive salt to replace - -------> lost electrons and reduced Anode (-): Flow e cations Oxidation always occurs here Cathode (+): Reduction always - + occurs here. Anode Cathode Electrolyte Electrolyte Example Problem: Making a Voltaic Cell Diagram Diagram, show balanced equations, and write the notation for a voltaic cell that consists of one half-cell with a Cr solid electrode in a Cr(NO3)3 solution, another half-cell with an Ag solid electrode in an AgNO3 solution, connected by a KNO3 salt bridge. What would the cell potential be under standard state conditions? 3+ 0.74 = Cr + 2 e− Cr(s) − −−→ Example Problem: Making a Voltaic Cell Diagram Cr(s) | Cr3+(aq) || Ag+(aq) | Ag(s) oxidation half-reaction: Cr(s) Cr3+(aq) + 3e- reduction half-reaction: Ag+(aq) + e- Ag(s) Cr(s) + Ag+(aq) Cr3+(aq) + Ag(s) Galvanic cells can also be made using “non-active electrode”, or electrodes that don’t undergo reaction directly in the cell. The non-active electrodes are typically carbon or platinum. reduction half-reaction: - + - MnO4 (aq) + 8H (aq) + 5e oxidation half-reaction: 2+ Mn (aq) + 4H2O(l) - - 2I (aq) I2(s) + 2e overall (cell) reaction: - + - 2+ 2MnO4 (aq) + 16H (aq) + 10I (aq) 2Mn (aq) + 5I2(s) + 8H2O(l) We have and use standard cell notation for non- active electrodes too as shown below.
[Show full text]