Section J7: FET Amplifier Design

Total Page:16

File Type:pdf, Size:1020Kb

Section J7: FET Amplifier Design Section J7: FET Amplifier Design The expressions for amplifier characteristics developed in the previous section will now be used in the design process. Remember that for design, it is fundamentally important to understand what it is that you are designing by defining the operational conditions, any constraints (physical or operational) that may exist, what is known and what is unknown. Only after a complete understanding has been achieved can the design process be implemented effectively – say it with me now, don’t just grab equations! The CS and SR Amplifier The circuit for a SR amplifier using an n-channel JFET is given in Figure 6.40a and is reproduced to the right Note that your text describes this amplifier circuit as a common source configuration. The only difference between the SR and CS is the addition of a bypass capacitor (CS) across RS. As you go through your text, don’t let this confuse you – when your author refers to this configuration as common source, he is implying common source with source resistance. The following discussion on the design procedure of an SR amplifier holds for JFET and MOSFET devices. It is assumed that a device has been selected and that its characteristics are known. Also assumed is that sufficient information as to the supply voltage(s), load resistance, voltage gain, current gain, and/or input resistances are provided and that the gain requirements are within the range of the transistor being used. This is the same thing we did in our study of BJT amplifier design – and just like then, it is our job as designers to determine the remaining circuit components to satisfy specifications. As we did for BJT design, the first step is to define a Q-point. For convenience, the Thevenin equivalent voltage and resistance and the Q- point relationships developed in Section J4 are repeated here (remember that the assumption |λvDS|<<1 in the derivation of these equations): R1 R2 RG = R1 || R2 = R1 + R2 VDD R1 VGG = R1 + R2 2 2 ⎛ V ⎞ ⎛ V ⎞ I = K(V −V )2 (1+ λV ) ≅ K(V −V )2 = KV 2 ⎜1− GSQ ⎟ = I ⎜1− GSQ ⎟ (MOSFET) DQ GSQ T DSQ GSQ T T ⎜ ⎟ DSS ⎜ ⎟ ⎝ VT ⎠ ⎝ VT ⎠ 2 2 ⎛ V ⎞ ⎛ V ⎞ I = I ⎜1− GSQ ⎟ (1+ λV ) ≅ I ⎜1− GSQ ⎟ (JFET) DQ DSS ⎜ ⎟ DSQ DSS ⎜ ⎟ ⎝ VP ⎠ ⎝ VP ⎠ VGG = VGSQ + I DQ RS VDD = I DQ RD +VDSQ + I DQ RS = VDSQ + I DQ (RD + RS ) 2I ⎛ V ⎞ g DSS ⎜1 GSQ ⎟ Note :V V for JFETs m = − ⎜ − ⎟ T = P VT ⎝ VT ⎠ A generic family of characteristic curves for an n-channel device is shown to the right. This figure is based on Figure 6.40 of your text, but all specifics as to identifying numbers have been removed. Note that the Q-point must be in the saturation region of the curves. As illustrated, definition of the Q-point identifies the operational conditions VDSQ, VGSQ and IDQ. Assuming we have been given sufficient information as to VDD, RL, gain(s) and Rin, our task is to define RS, RD, R1 and R2. R1 and R2 are defined once VGG and RG are determined, so we’ll go along with your author and solve for RS and RD first. We will be (somewhat) following your text’s derivations, since it cannot be stressed enough that the resulting equations may have assumptions and/or constraints that must be followed. Writing the dc KVL around the drain source loop in the figure above (assuming IS•ID) and solving for the unknown resistors RS and RD yield one equation in two unknowns: VDD −VDS RS + RD = = K1 , (Equation 6.59) I D where the constant K1 is introduced to simplify future notation. Note that we need another equation to solve for the resistances (two unknowns requires two independent equations). For our second equation, we can use either the voltage gain or current gain expression derived in the previous section: − g m (RD || RL ) − (RD || RL ) − RG RD AV = = Ai = (1+ g m RS ) RS +1/ g m RS +1/ g m RD + RL The trick here is to realize that RS = K1 − RD or RD = K1 − RS and substitute into one of the gain equations (where K1=(VDD-VDS)/ID from Equation 6.59). When this approach is taken, the gain equation has only one unknown and may be solved. To follow your text, if we use the voltage gain equation and substitute for RS, the resulting equation becomes: − (RD || RL ) AV = . (Equation 6.60) (K1 − RD ) +1/ g m Solving this equation for RD results in the quadratic equation 2 RD − (K1 + 1 / gm − RL − RL / Av )RD − (K1 + 1 / gm)RL = 0. There are two possible solutions to the quadratic equation, one negative and one positive. Since RD must be greater than zero, only the positive solution is used. However, it’s not quite that simple and we must get through checkpoint #1… ¾ If the positive solution of the quadratic results in RD > K1 (recall that RS=K1-RD and K1=(VDD-VDS)/ID), a negative value for RS results. If this happens, a new Q-point must be selected (i.e., start all over). ¾ If the positive solution results in a positive RS, we’re good to go and can proceed as follows. With RS and RD known, the remaining unknowns are R1 and R2. Directly analogous to our work with BJT amplifiers, the first thing we do is write the general dc KVL for the gate source loop to solve for VGG: VGG = VGS + I D RS . (Equation 6.62) Once a value for VGG is obtained, we hit checkpoint #2…if VGG has the same polarity as VDD, use either the equation for input resistance or current gain (reproduced below) to solve for RG. − RG RD Rin = RG = R1 || R2 Ai = RS +1/ g m RD + RL Using the expressions for the Thevenin equivalent voltage and resistance, we can now solve for R1 and R2: RG RGVDD R1 = R2 = . (Equation 6.63) 1−VGG /VDD VGG And we’re done! Otherwise, if VGG has the opposite polarity of VDD, it is not possible to directly solve for R1 and R2 (since both R1 and R2 must be positive and greater than RG). In this case, a rule of thumb is to let VGG=0V. This means that R2 → ∞ (reference the equation above), and R1 = RG . However, the value of RS now needs to be modified to ensure that Equation 6.62 is equal to zero, which is direct contradiction to the solution of the quadratic we started with! Oh well, can’t do it right? Come now, you’ve been at this long enough to know that there’s a trick involved! The solution to these conflicting requirements is illustrated in Figure 6.41 of your text and is shown to the right. This is the same n- channel JFET CS amplifier we started with, but now the source resistance is split and part of it is bypassed by the capacitor CD. Using our standard assumption that the capacitor is open to dc and a short for the operational frequency range, we get RS dc = RS1 + RS2 ; RS ac = RS1 . Going back to our dc KVL equation for the gate-source loop and setting VGG equal to zero, we can define RSdc: VGG = 0= VGS + I D RSdc , and (Equation 6.64) −VGS RSdc = . I D Once we have defined RSdc, we must back up and revise other values in the design. The dc KVL equation for the drain-source loop (Equation 6.59) now becomes: VDD −VDS RS dc + RD = = K1 , I D yielding RD = K1 − RSdc ( where K1 is still (VDD-VDS)/ID). To find the ac portion of the source resistance (RSac=RS1), we repeat the step that uses the either the voltage or current gain and solve the resulting equation. To follow the earlier procedure, we use the voltage gain and Equation 6.60 becomes: − (RD || RL ) AV = . (Equation 6.66) RSac +1/ g m Note that, in this case, RSac is the only unknown. Solving for RSac, we get − (RD || RL ) 1 RSac = RS1 = − . (Equation 6.67) AV gm If we’re taking this route, we’ve got yet one more checkpoint to encounter! If RSac is positive and ¾ less than RSdc, we can solve for RS2 (RS2 = RSdc − RSac ) and the design is complete; or ¾ greater than RSdc. If this happens, the amplifier cannot be designed with the gain specified and the Q-point selected. If the gain specification is reasonable, a new Q-point should be chosen and the design process repeated. However, if the gain specified is too high, the amplifier cannot be designed with a single stage and/or with the transistor chosen – which, after all this work, is a total bummer! The CD (SF) Amplifier The two-source n-channel JFET implementation of the CD configuration is reproduced to the right (note that this is a corrected version of Figure 6.39a of your text). As usual, before we start the specifics of this design process, keep in mind that the important part of this discussion is how the theory (device and circuit) is used to develop a sequence of logical steps – not the exact equations that we’re going to come up with! The characteristic relationships developed for the CD amplifier in the previous section are reproduced below. Keep in mind that these expressions were derived using assumptions such as rO very large and |λvDS|<<1. If this condition does not hold, all bets are off and these equations must be revised before the design process is begun.
Recommended publications
  • LSK489 Application Note
    LSK489 Application Note Low Noise Dual Monolithic JFET Bob Cordell Introduction For circuits designed to work with high impedance sources, ranging from electrometers to microphone preamplifiers, the use of a low-noise, high-impedance device between the input and the op amp is needed in order to optimize performance. At first glance, one of Linear Systems’ most popular parts, the LSK389 ultra-low-noise dual JFET would appear to be a good choice for such an application. The part’s high input impedance (1 T Ω) and low noise (1 nV/ √Hz at 1kHz and 2mA drain current) enables power transfer while adding almost no noise to the signal. But further examination of the LSK389’s specification shows an input capacitance of over 20pF. This will cause intermodulation distortion as the circuit’s input signal increases in frequency if the source impedance is high. This is because the JFET junction capacitances are nonlinear. This will be especially the case where common source amplifier arrangements allow the Miller effect to multiply the effective value of the gate-drain capacitance. Further, the LSK389’s input impedance will fall to a lower value as the frequency increases relative to a part with lower input capacitance. A better design choice is Linear Systems’ new offering, the LSK489. Though the LSK489 has slightly higher noise (1.5 nV/ √Hz vs. 1.0 nV/ √Hz) its much lower input capacitance of only 4pF means that it will maintain its high input impedance as the frequency of the input signal rises. More importantly, using the lower-capacitance LSK489 will create a circuit that is much less susceptible to intermodulation distortion than one using the LSK389.
    [Show full text]
  • A GUIDE to USING FETS for SENSOR APPLICATIONS by Ron Quan
    Three Decades of Quality Through Innovation A GUIDE TO USING FETS FOR SENSOR APPLICATIONS By Ron Quan Linear Integrated Systems • 4042 Clipper Court • Fremont, CA 94538 • Tel: 510 490-9160 • Fax: 510 353-0261 • Email: [email protected] A GUIDE TO USING FETS FOR SENSOR APPLICATIONS many discrete FETs have input capacitances of less than 5 pF. Also, there are few low noise FET input op amps Linear Systems that have equivalent input noise voltages density of less provides a variety of FETs (Field Effect Transistors) than 4 nV/ 퐻푧. However, there are a number of suitable for use in low noise amplifier applications for discrete FETs rated at ≤ 2 nV/ 퐻푧 in terms of equivalent photo diodes, accelerometers, transducers, and other Input noise voltage density. types of sensors. For those op amps that are rated as low noise, normally In particular, low noise JFETs exhibit low input gate the input stages use bipolar transistors that generate currents that are desirable when working with high much greater noise currents at the input terminals than impedance devices at the input or with high value FETs. These noise currents flowing into high impedances feedback resistors (e.g., ≥1MΩ). Operational amplifiers form added (random) noise voltages that are often (op amps) with bipolar transistor input stages have much greater than the equivalent input noise. much higher input noise currents than FETs. One advantage of using discrete FETs is that an op amp In general, many op amps have a combination of higher that is not rated as low noise in terms of input current noise and input capacitance when compared to some can be converted into an amplifier with low input discrete FETs.
    [Show full text]
  • Junction Field Effect Transistor (JFET)
    Junction Field Effect Transistor (JFET) The single channel junction field-effect transistor (JFET) is probably the simplest transistor available. As shown in the schematics below (Figure 6.13 in your text) for the n-channel JFET (left) and the p-channel JFET (right), these devices are simply an area of doped silicon with two diffusions of the opposite doping. Please be aware that the schematics presented are for illustrative purposes only and are simplified versions of the actual device. Note that the material that serves as the foundation of the device defines the channel type. Like the BJT, the JFET is a three terminal device. Although there are physically two gate diffusions, they are tied together and act as a single gate terminal. The other two contacts, the drain and source, are placed at either end of the channel region. The JFET is a symmetric device (the source and drain may be interchanged), however it is useful in circuit design to designate the terminals as shown in the circuit symbols above. The operation of the JFET is based on controlling the bias on the pn junction between gate and channel (note that a single pn junction is discussed since the two gate contacts are tied together in parallel – what happens at one gate-channel pn junction is happening on the other). If a voltage is applied between the drain and source, current will flow (the conventional direction for current flow is from the terminal designated to be the gate to that which is designated as the source). The device is therefore in a normally on state.
    [Show full text]
  • EE-202 Electronics-I- Field-Effect Transistors JFET
    EE-202 Electronics-I- Chapter 10 Field-Effect Transistors JFET 1 FET FET (Field-Effect Transistors) - BJTs (Bipolar Junction Transistors). Similarities: • Amplifiers • Switching devices • Impedance matching circuits Differences: • FETs are voltage controlled devices, BJTs are current controlled devices. • FETs have a higher input impedance, BJTs have higher gains. • FETs are less sensitive to temperature variations and they are more easily integrated on ICs. • FETs are generally more sensitive to static than BJTs. 2 FET Types •JFET–– Junction Field-Effect Transistor •MOSFET –– Metal-Oxide Field-Effect Transistor .D-MOSFET –– Depletion MOSFET .E-MOSFET –– Enhancement MOSFET 3 JFET Construction There are two types of JFETs •n-channel •p-channel The n-channel is more widely used. There are three terminals. •Drain (D) and source (S) are connected to the n-channel •Gate (G) is connected to the p-type material 4 JFET Operating Characteristics Three basic operating conditions for a JFET: • VGS = 0, VDS increasing to some positive value • VGS < 0, VDS at some positive value • Voltage-controlled resistor 5 JFET Operating Characteristics VGS = 0, VDS increasing to some positive value When VGS = 0 and VDS is increased from 0 to a more positive voltage; • The depletion region between p-gate and n-channel increases • Increasing the depletion region, decreases the size of the n-channel • Increasing in the n-channel resistance, the ID current increases. 6 JFET Operating Characteristics VGS = 0, VDS increasing to some positive value: Pinch Off VGS = 0 and VDS is increased to a more positive voltage, the depletion zone gets so large that it pinches off the n-channel.
    [Show full text]
  • ECE 255, MOSFET Basic Configurations
    ECE 255, MOSFET Basic Configurations 8 March 2018 In this lecture, we will go back to Section 7.3, and the basic configurations of MOSFET amplifiers will be studied similar to that of BJT. Previously, it has been shown that with the transistor DC biased at the appropriate point (Q point or operating point), linear relations can be derived between the small voltage signal and current signal. We will continue this analysis with MOSFETs, starting with the common-source amplifier. 1 Common-Source (CS) Amplifier The common-source (CS) amplifier for MOSFET is the analogue of the common- emitter amplifier for BJT. Its popularity arises from its high gain, and that by cascading a number of them, larger amplification of the signal can be achieved. 1.1 Chararacteristic Parameters of the CS Amplifier Figure 1(a) shows the small-signal model for the common-source amplifier. Here, RD is considered part of the amplifier and is the resistance that one measures between the drain and the ground. The small-signal model can be replaced by its hybrid-π model as shown in Figure 1(b). Then the current induced in the output port is i = −gmvgs as indicated by the current source. Thus vo = −gmvgsRD (1.1) By inspection, one sees that Rin = 1; vi = vsig; vgs = vi (1.2) Thus the open-circuit voltage gain is vo Avo = = −gmRD (1.3) vi Printed on March 14, 2018 at 10 : 48: W.C. Chew and S.K. Gupta. 1 One can replace a linear circuit driven by a source by its Th´evenin equivalence.
    [Show full text]
  • Field Effect Transistors
    Module www.learnabout-electronics.org 4 Field Effect Transistors Module 4.1 Junction Field Effect Transistors What you´ll learn in Module 4 Field Effect Transistors Section 4.1 Field Effect Transistors. Although there are lots of confusing names for field • FETs JFETs, JUGFETs, and IGFETS effect transistors (FETs) there are basically two main • The JFET. types: • Diffusion JFET Construction. • Planar JFET Construction. 1. The reverse biased PN junction types, the JFET or • JFET Circuit Symbols. Junction FET, (also called the JUGFET or Junction Unipolar Gate FET). Section 4.2 How a JFET Works. • Operation Below Pinch Off. 2. The insulated gate FET devices (IGFET). • Operation Above Pinch Off. • JFET Output Characteristic. All FETs can be called UNIPOLAR devices because • JFET Transfer Characteristic. the charge carriers that carry the current through the • JFET Video. device are all of the same type i.e. either holes or electrons, but not both. This distinguishes FETs from Section 4.3 The Enhancement Mode MOSFET. the bipolar devices in which both holes and electrons • The IGFET (Insulated Gate FET). • MOSFET(IGFET) Construction. are responsible for current flow in any one device. • MOSFET(IGFET) Operation. The JFET • MOSFET (IGFET) Circuit Symbols. • Handling Precautions for MOSFETS This was the earliest FET device available. It is a voltage-controlled device in which current flows Section 4.4 The Depletion Mode MOSFET. from the SOURCE terminal (equivalent to the • Depletion Mode MOSFET Operation. emitter in a bipolar transistor) to the DRAIN • MOSFE (IGFET) Circuit Symbols. (equivalent to the collector). A voltage applied • Applications of MOSFETS • High Power MOSFETS between the source terminal and a GATE terminal (equivalent to the base) is used to control the source - Section 4.5 Power MOSFETs.
    [Show full text]
  • JFE150 Ultra-Low Noise, Low Gate Current, Audio, N-Channel JFET Datasheet
    JFE150 SLPS732 – JUNE 2021 JFE150 Ultra-Low Noise, Low Gate Current, Audio, N-Channel JFET 1 Features and yields excellent noise performance for currents from 50 μA to 20 mA. When biased at 5 mA, the • Ultra-low noise: device yields 0.8 nV/√Hz of input-referred noise, – Voltage noise: giving ultra-low noise performance with extremely high input impedance (> 1 TΩ). The JFE150 also • 0.8 nV/√Hz at 1 kHz, IDS = 5 mA features integrated diodes connected to separate • 0.9 nV/√Hz at 1 kHz, IDS = 2 mA – Current noise: 1.8 fA/√Hz at 1 kHz clamp nodes to provide protection without the addition • Low gate current: 10 pA (max) of high leakage, nonlinear external diodes. • Low input capacitance: 24 pF at VDS = 5 V The JFE150 can withstand a high drain-to-source • High gate-to-drain and gate-to-source breakdown voltage of 40-V, as well as gate-to-source and gate- voltage: –40 V to-drain voltages down to –40 V. The temperature • High transconductance: 68 mS range is specified from –40°C to +125°C. The device • Packages: Small SC70 and SOT-23 (Preview) is offered in 5-pin SOT-23 and SC-70 packages. 2 Applications Device Information • Microphone inputs PART NUMBER PACKAGE(1) BODY SIZE (NOM) • Hydrophones and marine equipment SOT-23 (5) - Preview 2.90 mm × 1.60 mm JFE150 • DJ controllers, mixers, and other DJ equipment SC-70 (5) 2.00 mm × 1.25 mm • Professional audio mixer or control surface • Guitar amplifier and other music instrument (1) For all available packages, see the package option addendum at the end of the data sheet.
    [Show full text]
  • Notes on BJT & FET Transistors
    Phys2303 L.A. Bumm [ver 1.1] Transistors (p1) Notes on BJT & FET Transistors. Comments. The name transistor comes from the phrase “transferring an electrical signal across a resistor.” In this course we will discuss two types of transistors: The Bipolar Junction Transistor (BJT) is an active device. In simple terms, it is a current controlled valve. The base current (IB) controls the collector current (IC). The Field Effect Transistor (FET) is an active device. In simple terms, it is a voltage controlled valve. The gate-source voltage (VGS) controls the drain current (ID). Regions of BJT operation: Cut-off region: The transistor is off. There is no conduction between the collector and the emitter. (IB = 0 therefore IC = 0) Active region: The transistor is on. The collector current is proportional to and controlled by the base current (IC = βIC) and relatively insensitive to VCE. In this region the transistor can be an amplifier. Saturation region: The transistor is on. The collector current varies very little with a change in the base current in the saturation region. The VCE is small, a few tenths of volt. The collector current is strongly dependent on VCE unlike in the active region. It is desirable to operate transistor switches will be in or near the saturation region when in their on state. Rules for Bipolar Junction Transistors (BJTs): • For an npn transistor, the voltage at the collector VC must be greater than the voltage at the emitter VE by at least a few tenths of a volt; otherwise, current will not flow through the collector-emitter junction, no matter what the applied voltage at the base.
    [Show full text]
  • BJT JFET MOSFET Circa 1960 1970 1980 Gm/I (Signal Gain) Best Better Good
    • Crossover Distortion •FETS • Spec sheets • Configurations • Applications Acknowledgements: Neamen, Donald: Microelectronics Circuit Analysis and Design, 3rd Edition 6.101 Spring 2020 Lecture 6 1 Three Stage Amplifier – Crossover Distortion Hole Feedback 6.101 Spring 2020 Lecture 5 2 Crossover Distortion Analysis 6.101 Spring 2020 Lecture 5 3 Crossover Distortion Analysis 11 1 v v v e 10 in 10 out • The distortion 0.6v in each direction or 1.2v total vg 570ve resulting in a hole that is: 11 1 0.0172*1.2 ~ 0.02v vout 570 vin vout vn 10 10 • Increasing open loop gain 11 570 will reduce the crossover 1 v 10 v v 10.81v 0.0172v distortion. out 1 in 1 n in n 1 570 1 570 10 10 6.101 Spring 2020 Lecture 5 4 BJT ‐ FET Bipolar Junction Transistor Field Effect Transistor • Three terminal device • Three terminal device • Collector current controlled • Channel conduction by base current ib= f(Vbe) controlled by electric field • Think as current amplifier • No forward biased junction • NPN and PNP i.e. no current • JFETs, MOSFETs • Depletion mode, enhancement mode 6.101 Spring 2020 Lecture 6 5 BJT ‐ JFETS ‐ MOSFETS BJT JFET MOSFET Circa 1960 1970 1980 Gm/I (signal gain) Best Better Good Isolation PN Junction Metal Oxide* ESD Low Moderate Very sensitive Control Current Voltage Voltage Power YES No Yes *silicon dioxide 6.101 Spring 2020 Lecture 6 6 Voltage Noise * * Horowitz & Hill, Art of Electronics 3rd Edition p 170 6.101 Spring 2020 Lecture 6 7 FET Family Tree FET JFET depletion MOSFET n-channel p-channel depletion enhancement n-channel Vgs(off) gate source cutoff or n-channel p-channel Vp pinch-off voltage Vgs(th) gate source threshold voltage 6.101 Spring 2020 Lecture 6 8 Transistor Polarity Mapping* + output n-channel depletion n-channel enhancment n-channel JFET npn bjt input - + p-channel enhancment p-channel JFT pnp bjt - * Horwitz & Hill, the Art of Electronics, 3rd Edition 6.101 Spring 2020 Lecture 6 9 MOSFET & JFETS • MOSFETS – Much more finicky difficult process (to make) than JFET’s.
    [Show full text]
  • Fabrication and Characterization of Polymeric P-Channel Junction Fets Tianhong Cui, Yuxin Liu, and Kody Varahramyan
    IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 51, NO. 3, MARCH 2004 389 Fabrication and Characterization of Polymeric P-Channel Junction FETs Tianhong Cui, Yuxin Liu, and Kody Varahramyan Abstract—Polymer materials are attracting more and more polymer devices. The possibility of processing conducting attention for the applications to microelectronic/optoelectronic polymers based on coating techniques has enabled researchers devices due to their flexibility, lightweight, low cost, etc. In this to fabricate various electronic/optoelectronic devices such as paper, fabrication and characterization of a polymer junction field-effect transistor (JFET), using poly (3,4-ethylenedioxythio- thin film transistors, diodes, LEDs, capacitors, organic inte- phene) poly (styrenesulfonate) (PEDT/PSS) as the channel and grated circuits, organic wires, and electroluminescent devices poly (2,5-hexyloxy p-phenylene cyanovinylene) (CNPPV) as the [8]–[14]. Polymer thin films can be coated on substrates such gate layer, are reported. The all-polymer JFET was fabricated as glass, plastic, silicon, wood, or paper. by the conventional ultraviolet (UV) lithography techniques. The In this paper, a p-channel polymer JFET fabricated with ultra- fabricated device was measured and characterized electrically. In the meantime, the comparisons were listed between polymer violet (UV) lithography was presented, and its operation mech- JFET and analogous inorganic semiconductor counterparts. Its anism was discussed in detail. Based on the testing results, the pinch-off voltage reaches 1 V that is in the applicable range, and polymer JFET and the characteristics of conducting polymers the current is IQ V e at zero gate bias. It demonstrates that were analyzed. the device operates in a very similar fashion to its conventional counterparts.
    [Show full text]
  • Chapter 6: Field-Effect Transistors Fets Vs
    www.getmyuni.com Chapter 6: Field-Effect Transistors www.getmyuni.com FETs vs . BJTsFETs BJTs Similarities:Similarities:Similarities: • Amplifiers • Switching devices • Impedance matching circuits Differences:Differences: • FETs are voltage controlled devices. BJTs are current controlled devices. • FETs have a higher input impedance. BJTs have higher gains. • FETs are less sensitive to temperature variations and are more easily integrated on ICs. • FETs are generally more static sensitive than BJTs. Electronic Devices and Circuit Theory, 10/e 22 Robert L. Boylestad and Louis Nashelsky www.getmyuni.com FET ypesTFET Types FET ypesT : JFET•• :Junction JFET FET ••MOSFET: Metal–Oxide–Semiconductor FET MOSFETDD--MOSFET: MOSFETDltiMOSFETDepletion MOSFET EE--MOSFET:MOSFET: Enhancement MOSFET Electronic Devices and Circuit Theory, 10/e 33 Robert L. Boylestad and Louis Nashelsky www.getmyuni.com JFET ConstructionJFET Construction There are two types of JFETs channel••nn- -channel channel••pp- -channel The n-chliidldhannel is more widely used. There are three terminals: Drain•• (D)DrainceSour and ceSour(S) are connected to the n-channel Gate•• Gate(G) is connected to the p-type material Electronic Devices and Circuit Theory, 10/e 44 Robert L. Boylestad and Louis Nashelsky www.getmyuni.comJFET Operation: The Basic IdeaJFET Idea JFET operation can be compared to a water spigot. The sourceThe source of water pressure is the accumulation of electrons at the negatilfhdiive pole of the drain-source voltage. The dra iThdin oftithltf water is the electron deficiency (or holes) at the positive pole of the applied voltage. The controlThe control of flow of water is the gate voltage that controls the width of the n -channel and , therefore , the flow of charges from source to drain.
    [Show full text]
  • Experiment #6- Part-1 the FET Common Source Amplifier
    University of Anbar Lab. Name: Electronic I Experiment no.: 7 College of Engineering Lab. Supervisor: Munther N. Thiyab Dept. of Electrical Engineering Experiment #6- Part-1 The FET Common Source Amplifier Object The purpose of this experiment is to test the performance of the common source amplifier using the self-bias circuit. Required Parts and Equipment's 1. Electronic Test Board. (M110) 2. Dual Polarity Variable DC Power Supply 3. Digital Multimeters. 4. Dual-Channel Oscilloscope. 5. Function Generator. 6. N-Channel JFET 2N3823 7. Resistors, R5=100KΩ, R6=10KΩ, R8=1KΩ, R7=2.2KΩ Theory The common source amplifier configuration is widely used amongst other JFET configurations and can provide both high voltages gain and large input impedance. In this configuration, the input signal is applied to the gate and the output signal is taken from the drain, while the source terminal being the reference or common. In order to work as an amplifier, the JFET should be properly biased by setting the gate-source voltage which results in the required drain current. The N-channel JFET requires that the gate-source voltage always be less negative than the pinch-off voltage, but less than zero. Since virtually no gate current flows due to the JFET’s high input impedance, the gate voltage is essentially at ground level. Consequently, using only a drain-supply voltage, the required negative quiescent gate-source voltage is developed by the voltage drop across the source resistor of the self-bias circuit shown in Fig.1. This circuit is one of the simplest and practical bias circuits for JFET amplifiers in which a single power supply is used.
    [Show full text]