Posted 07/15

Total Page:16

File Type:pdf, Size:1020Kb

Posted 07/15 FINAL REPORT Understanding and Combating the Fire-Enhancing Impact of Non-Native Annuals in Desert Scrub through the Tools of Population and Landscape Ecology SERDP Project RC-1721 MAY 2015 Claus Holzapfel Rutgers University, Newark Kirk A. Moloney Iowa State University Distribution Statement A This report was prepared under contract to the Department of Defense Strategic Environmental Research and Development Program (SERDP). The publication of this report does not indicate endorsement by the Department of Defense, nor should the contents be construed as reflecting the official policy or position of the Department of Defense. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the Department of Defense. Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) 27-05-2015 Final Report 2/2010 -- 5/2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Understanding and Combating the Fire-Enhancing Impact of W912HQ-10-C-0008 Non-Native Annuals in Desert Scrub through the Tools of 5b. GRANT NUMBER Population and Landscape Ecology 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Holzapfel, Claus RC-1721 Moloney, Kirk A. 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT Rutgers University Newark NUMBER 195 University Avenue Newark, NJ 07102 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) S trategic Environmental SERDP R esearch and Development Program 4800 Mark Center Drive 11. SPONSOR/MONITOR’S REPORT S uite 17D08 A lexandria, VA 22350 NUMBER(S) RC-1721 12. DISTRIBUTION / AVAILABILITY STATEMENT Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT This project examined the hypothesis that some of the now dominant and problematic non-native invasive annuals are able to spread into the areas between the shrubs by employing population strategies that sharply contrast with those of native species. This greatly increases the fuel load in the matrix, which has historically produced a natural firebreak between shrubs. Our particular aims were to: (1) gain an understanding of the landscape-scale population dynamics of fire promoting and fire retarding plant species; (2) test the hypothesis that once fire becomes important, naturally formed islands of fertility will break down and a negative feedback will enhance fire even further; (3) apply the results to aid management practices that will help restore the original environmental pattern of islands of fertility in a low-nutrient matrix and therefore prevent future wildfires; and (4) understand the effects of non-native invasive plant species on fire regimes. The results derived from this project’s experimental and simulation modeling approaches facilitate a better understanding of the association between annual plants and desert shrubs with respect to key interactions and the development of spatial pattern that may influence fire risk. It also provides insights into the different role the exotic species Schismus arabicus plays in fire spread within the Mojave and Sonora Desert sites. This understanding is a first step in characterizing the interaction of fire and soil disturbance in changing the likelihood of future fire occurrences through the direct influence on the creosote shrub plant community. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON OF ABSTRACT OF PAGES Claus Holzapfel a. REPORT b. ABSTRACT c. THIS PAGE UU 19b. TELEPHONE NUMBER (include area code) U U U 68 973-353-5385 Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18 Table of Contents List of Tables ................................................................................................................................. 3 List of Figures ................................................................................................................................ 4 Keywords ....................................................................................................................................... 5 Acknowledgements ....................................................................................................................... 5 Abstract .......................................................................................................................................... 6 1. Objective .................................................................................................................................... 9 2. Background ............................................................................................................................. 10 3. Site Selection and Setup.......................................................................................................... 13 3.1: Team buildup and division of tasks and responsibility .............................................................. 13 3.2: Initial site selection ........................................................................................................................ 13 3.3: Site setup ........................................................................................................................................ 14 3.4: Selection of target species and seed collection ............................................................................ 17 4. Pre-treatment Site Characterization ..................................................................................... 20 4.1: Climate ........................................................................................................................................... 20 4.2: Present disturbance regime and soil crusts ................................................................................. 21 4.3: Seed bank characterization .......................................................................................................... 22 4.4: Soil nutrient distribution .............................................................................................................. 24 4.5: Soil water distribution and microclimate .................................................................................... 25 4.6 Annual plant populations in association with shrubs .................................................................. 26 4.7 Shrub-size distribution ................................................................................................................... 30 4.8: Discussion of Pre-treatment Site Characterization ................................................................... 24 5. Effects of Experimental Treatments ..................................................................................... 33 5.1 Site Treatments ............................................................................................................................... 33 5.2 Treatment effects on annual plant populations ........................................................................... 36 5.3 Quantification of treatment effects on soil crusts and differentiation of physical and biotic soil crusts ...................................................................................................................................................... 41 5.4: Discussion of Effects of Experimental Treatment ..................................................................... 34 6. Model Development, Validation and Experiments .............................................................. 43 6.1 Modeling Philosophy ...................................................................................................................... 43 6.2 The FireGrid Blueprint: Basic Model Structure .......................................................................... 44 6.3 Linking to Percolation Theory ...................................................................................................... 46 Experiments on a simple binary landscape ........................................................................................ 48 General conclusions of the percolation analysis ................................................................................ 50 6.4 Fire spread from a single ignition point ....................................................................................... 51 6.5 Adding realism: plant (fuel) density ............................................................................................
Recommended publications
  • Molecular Phylogeny of Tribolium (Danthonioideae: Poaceae) and Its Taxonomic Implications
    BOLUS LIBRARY C24 0007 9273 MOLECULAR PHYLOGENY OF TRIBOLIUM (DANTHONIOIDEAE: POACEAE) AND ITS TAXONOMIC IMPLICATIONS REFILOE NTSOHI NTSREF002 SYSTEMATICS HONOURS PROJECT, 2003 SUPERVISOR: TONY VERBOOM University of Cape Town The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town ABSTRACT Molecular sequence data from two noncoding regions of D A (ITS AND TRNL-F) Were used to produce a phylogeny for the genus Tribolium and its African and Australasian allies. Topological comparisons of the combined molecular data with th e appended existing morphological tree were made. A significant incongruence was I revealed. Molecular data indicate that Tribolium is paraphyletic. The formally defined sections: Uniolae, Acutiflorae and Tribolium have been retrieved by the molecular data. The analysis retrieved Karroochloa as polyphyletic. Monophyly of Schismus is strongly supported. The Australasian species form a monophyletic clade. Data support early divergence of the Merxmuellera species and Pseudopentameris macrantha. I I I I 2 INTRODUCTION Tribolium is a genus of annual and perennial temperate, C3 grasses, currently comprising a total of ten species (Linder and Davidse, 1997). The genus is restricted to southern Africa, where the species are endemic to the winter rainfall region of the western Cape, which includes the Cape Floristic and Namaqualand regions. Here it forms part of the fynbos and succulent Karoo floras, with marginal populations of the most widespread species occurring in the neighbouring biomes.
    [Show full text]
  • Mitteilungen Der Botanischen Staatssammlung München
    © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.biologiezentrum.at Mitt. Bot. Staatssamml. München © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.biologiezentrum.at well within their lowermost leaf-sheaths. Besides these characters another can be observed in South American species, namely tufts of hairs in a trans- verse line across the back of the lemma just beneath the Insertion of the cen- tral awn. Species, which exhibit this character, are, however, not confined to South America but occur also in the Easter-Island, in New Zealand, Austra- lia, Tasmania, Indonesia and in the Himalayas. ZoTOV has based his genus Notodanthonia on species from New Zealand. It remains to be decided whether or not this genus should be retained. Only the study of the South American species can elucidate this problem. None of the groups mentioned so far occurs in southern Africa. None- theless, not fewer than 121 Danthonia species have been described from the- re. It goes without saying that many of these names are synonyms. More- over, over the years, quite a number of these species have been separated into different genera which have been recognized by most students of African Gramineae. These include well-known generic names such as Pentameris, Pentaschistis, Strehlochaete, Chaetohromus, Alloeochaete as well as Phacnan- thoecium. But, even so, 36 species remain in Danthonia as can be seen in C. E. Hubbard's treatment of this group in the Flora of Tropical Africa and in Miss Chippindall's cursory guide to South African grasses. In the following account these remaining species of Danthonia will be considered: The first 4 taxa described as Danthonia can be distinguished from typical Danthonia at a first glance by having a long pungent callus at the base of each floret.
    [Show full text]
  • 1 Supplementary Information for Invasive Grasses Increase
    Supplementary Information For Invasive grasses increase fire occurrence and frequency across U.S. ecoregions Emily J. Fusco1*, John T. Finn2, Jennifer K. Balch3,4, R. Chelsea Nagy3, Bethany A. Bradley1,2 Affiliations: 1 Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts- Amherst, Amherst, Massachusetts, 01003, USA 2 Department of Environmental Conservation, University of Massachusetts- Amherst, Amherst, Massachusetts, 01003, USA 3 Earth Lab, University of Colorado- Boulder, Boulder, Colorado, 80309, USA 4 Department of Geography, University of Colorado-Boulder, Boulder, Colorado, 80309, USA Correspondence to: [email protected] This PDF file includes: Figure S1 Tables S1 to S4 SI References 1 www.pnas.org/cgi/doi/10.1073/pnas.1908253116 Supplemental Table S1: A list of 176 non-native invasive grass and other graminoid species as listed by the Invasive Plant Atlas of the United States (1). For each species, we conducted a Web of Science (WOS) search and recorded whether there was literature suggesting the species altered fire regimes (Yes/No). For each fire promoting species in WOS, we supplemented our determination of whether that species was a fire promoter using the Fire Effects Information System (FEIS; 2). For each species designated as a fire promoter, we searched for available spatial data, and kept only species that were both fire-promoting with spatial data for our analysis. Final species used are highlighted in yellow. WOS FEIS Fire Data Keep for Scientific Name Common Name(s) Search Database Promoter Available Analysis Achnatherum punagrass No - No - No brachychaetum Godr. Barkworth Aegilops cylindrica Host jointed goatgrass No - No - No Aegilops ovate goatgrass No - No - No geniculata Roth Aegilops triuncialis L.
    [Show full text]
  • Recovery Plan for the Sonoran Pronghorn (Antilocapra Americana Sonoriensis) Second Revision
    U.S. Fish & Wildlife Service Recovery Plan for the Sonoran Pronghorn (Antilocapra americana sonoriensis) Second Revision Sonoran pronghorn. Photograph by Jim Atkinson, U.S. Fish and Wildlife Service. November 2016 DISCLAIMER Recovery plans delineate such reasonable actions as may be necessary, based upon the best scientific and commercial data available, for the conservation and survival of listed species. Plans are published by the U.S. Fish and Wildlife Service (FWS) and sometimes prepared with the assistance of recovery teams, contractors, state agencies and others. Recovery plans do not necessarily represent the views, official positions or approval of any individuals or agencies involved in the plan formulation, other than FWS. They represent the official position of FWS only after they have been signed by the Regional Director. Recovery plans are guidance and planning documents only; identification of an action to be implemented by any public or private party does not create a legal obligation beyond existing legal requirements. Nothing in this plan should be construed as a commitment or requirement that any federal agency obligate or pay funds in any one fiscal year in excess of appropriations made by Congress for that fiscal year in contravention of the Anti-Deficiency Act, 31 U.S.C. 1341, or any other law or regulation. Approved recovery plans are subject to modification as dictated by new findings, changes in species status, and the completion of recovery actions. LITERATURE CITATION SHOULD READ AS FOLLOWS: U. S. Fish and Wildlife Service. 2016. Recovery Plan for the Sonoran pronghorn (Antilocapra americana sonoriensis), Second Revision. U.S. Fish and Wildlife Service, Southwest Region, Albuquerque, New Mexico, USA.
    [Show full text]
  • Distribution of the Native Grasses of California
    HILGARDIA A Journal of Agricultural Science Published by the California Agricultural Experiment Station VOLUME 17 APRIL, 1947 NUMBER 9 CONTENTS DISTRIBUTION OF THE NATIVE GRASSES OF CALIFORNIA ALAN A. BEETLE UNIVERSITY OF CALIFORNIA • BERKELEY, CALIFORNIA HILGARDIA A Journal of Agricultural Science Published by the California Agricultural Experiment Station VOL. 17 APRIL, 1947 NO. 9 DISTRIBUTION OF THE NATIVE GRASSES OF CALIFORNIA1 ALAN A. BEETLE2 THE grasses, supplemented by certain legumes, form the principal basis for range wealth. The natural forage value of the Gramineae as a whole makes an intensive study of their characteristics important, for the broader the knowledge concerning them the more readily may any problem be met. The following paper presents a picture of the current distributions of grasses in California, together with evidences of their floral origins by migration from other regions. Vegetation has many characteristics which are not always apparent at first glance. For instance, certain elements of the vegetation are native in their location, some are native elsewhere and have only recently been introduced. Some are old species often representative of a primitive condition in their genus, still others appear to be recently evolved. Some of the migrants arrived in California from the north during glacial periods, some crossed the ocean, and others came from the south during interglacial periods. Some plants are distributionally restricted for a number of reasons, including: (1) specialization as to habitat or environmental repression, as the species of vernal pools; (2) recent origin (plants sometimes referred to as neoendemics or initiates), as the endemic varieties of Distichlis spicata; (3) ancient origin (paleoendemics or relics); and (4) genotypic specialization (genetic endemics).
    [Show full text]
  • Schismus.Pdf
    A WEED REPORT from the book Weed Control in Natural Areas in the Western United States This WEED REPORT does not constitute a formal recommendation. When using herbicides always read the label, and when in doubt consult your farm advisor or county agent. This WEED REPORT is an excerpt from the book Weed Control in Natural Areas in the Western United States and is available wholesale through the UC Weed Research & Information Center (wric.ucdavis.edu) or retail through the Western Society of Weed Science (wsweedscience.org) or the California Invasive Species Council (cal-ipc.org). Schismus arabicus Nees; Arabian mediterraneangrass Schismus Schismus Schismus barbatus (Loefl. ex L.) Thell.; common arabicus barbatus mediterraneangrass Mediterraneangrasses Family: Poaceae Range: Southwestern U.S., including California, Arizona, Nevada, New Mexico and Utah. Common mediterraneangrass is also found in Texas. Habitat: Open, disturbed and undisturbed areas, roadsides, desert and semi-desert shrubland, dry river beds, mud flats, waste places. Common mediterraneangrass is also found in coastal scrub. Origin: Both species are native to southern Europe, but some authorities believe they are also native to southwestern Asia and North Africa. Impacts: Mediterraneangrasses can displace native annual vegetation and help to increase the fire frequency in desert ecosystems. Fires fueled only by dried Schismus species are generally patchy and seldom burn hot enough to ignite small shrubs. However, in areas where larger exotics also grow around the bases of shrubs, Schismus species can carry fire across the open areas to ignite the larger exotics, which often burn with intensity great enough to kill the shrubs. In some areas, an abundance of Schismus species may contribute to the type conversion of desert shrubland into annual grassland.
    [Show full text]
  • Germination, Survivorship and Growth of an Invasive Desert Grass
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2018 Germination, survivorship and growth of an invasive desert grass, Schismus arabicus, under varied shade, moisture and soil-nitrogen regimes Sarah Elizabeth Emeterio Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Ecology and Evolutionary Biology Commons Recommended Citation Emeterio, Sarah Elizabeth, "Germination, survivorship and growth of an invasive desert grass, Schismus arabicus, under varied shade, moisture and soil-nitrogen regimes" (2018). Graduate Theses and Dissertations. 16347. https://lib.dr.iastate.edu/etd/16347 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Germination, survivorship and growth of an invasive desert grass, Schismus arabicus , under varied shade, moisture and soil-nitrogen regimes by Sarah E. Emeterio A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Ecology and Evolutionary Biology Program of Study Committee: Kirk A. Moloney, Major Professor W. Stanley Harpole Lee Burras The student author, whose presentation of the scholarship herein was approved by the program of study committee, is solely responsible for the content of this thesis. The Graduate College will ensure this thesis is globally accessible and will not permit alterations after a degree is conferred. Iowa State University Ames, Iowa 2018 Copyright © Sarah E.
    [Show full text]
  • Annotated Checklist of the Vascular Plant Flora of Grand Canyon-Parashant National Monument Phase II Report
    Annotated Checklist of the Vascular Plant Flora of Grand Canyon-Parashant National Monument Phase II Report By Dr. Terri Hildebrand Southern Utah University, Cedar City, UT and Dr. Walter Fertig Moenave Botanical Consulting, Kanab, UT Colorado Plateau Cooperative Ecosystems Studies Unit Agreement # H1200-09-0005 1 May 2012 Prepared for Grand Canyon-Parashant National Monument Southern Utah University National Park Service Mojave Network TABLE OF CONTENTS Page # Introduction . 4 Study Area . 6 History and Setting . 6 Geology and Associated Ecoregions . 6 Soils and Climate . 7 Vegetation . 10 Previous Botanical Studies . 11 Methods . 17 Results . 21 Discussion . 28 Conclusions . 32 Acknowledgments . 33 Literature Cited . 34 Figures Figure 1. Location of Grand Canyon-Parashant National Monument in northern Arizona . 5 Figure 2. Ecoregions and 2010-2011 collection sites in Grand Canyon-Parashant National Monument in northern Arizona . 8 Figure 3. Soil types and 2010-2011 collection sites in Grand Canyon-Parashant National Monument in northern Arizona . 9 Figure 4. Increase in the number of plant taxa confirmed as present in Grand Canyon- Parashant National Monument by decade, 1900-2011 . 13 Figure 5. Southern Utah University students enrolled in the 2010 Plant Anatomy and Diversity course that collected during the 30 August 2010 experiential learning event . 18 Figure 6. 2010-2011 collection sites and transportation routes in Grand Canyon-Parashant National Monument in northern Arizona . 22 2 TABLE OF CONTENTS Page # Tables Table 1. Chronology of plant-collecting efforts at Grand Canyon-Parashant National Monument . 14 Table 2. Data fields in the annotated checklist of the flora of Grand Canyon-Parashant National Monument (Appendices A, B, C, and D) .
    [Show full text]
  • The Naturalized Vascular Plants of Western Australia 1
    12 Plant Protection Quarterly Vol.19(1) 2004 Distribution in IBRA Regions Western Australia is divided into 26 The naturalized vascular plants of Western Australia natural regions (Figure 1) that are used for 1: Checklist, environmental weeds and distribution in bioregional planning. Weeds are unevenly distributed in these regions, generally IBRA regions those with the greatest amount of land disturbance and population have the high- Greg Keighery and Vanda Longman, Department of Conservation and Land est number of weeds (Table 4). For exam- Management, WA Wildlife Research Centre, PO Box 51, Wanneroo, Western ple in the tropical Kimberley, VB, which Australia 6946, Australia. contains the Ord irrigation area, the major cropping area, has the greatest number of weeds. However, the ‘weediest regions’ are the Swan Coastal Plain (801) and the Abstract naturalized, but are no longer considered adjacent Jarrah Forest (705) which contain There are 1233 naturalized vascular plant naturalized and those taxa recorded as the capital Perth, several other large towns taxa recorded for Western Australia, com- garden escapes. and most of the intensive horticulture of posed of 12 Ferns, 15 Gymnosperms, 345 A second paper will rank the impor- the State. Monocotyledons and 861 Dicotyledons. tance of environmental weeds in each Most of the desert has low numbers of Of these, 677 taxa (55%) are environmen- IBRA region. weeds, ranging from five recorded for the tal weeds, recorded from natural bush- Gibson Desert to 135 for the Carnarvon land areas. Another 94 taxa are listed as Results (containing the horticultural centre of semi-naturalized garden escapes. Most Total naturalized flora Carnarvon).
    [Show full text]
  • Schismus Barbatus Global Invasive
    FULL ACCOUNT FOR: Schismus barbatus Schismus barbatus System: Terrestrial Kingdom Phylum Class Order Family Plantae Magnoliophyta Liliopsida Cyperales Poaceae Common name Mediterranean grass (English), common Mediterranean grass (English) Synonym Festuca barbata , Loefl. ex L. Similar species Schismus arabicus Summary Schismus barbatus is invasive in the Mojave and Sonoran Deserts of the southwestern United States. However, this species also provides food for desert turtles and rodents. It is most common in disturbed areas of the deserts and becomes most abundant during years of favourable winter rains. view this species on IUCN Red List Species Description Schismus barbatus is a tufted annual up to 40cm tall. The inflorescence is a narrow, erect, greenish-purple panicle (branched, cluster), produced in spring [in western United States].” Devender et al. (1997) describes S. barbatus as a cool-season annual. Wilken and Hannah (1998) describe S. barbatus as being a slow growing grass with smooth stems that ascend to somewhat grow on the ground. The leaves are alternate with irregular jagged edges. The stem is smooth for the most part with scattered soft hairs. The blades are narrowly linear, 5-10cm long, 0.5-2mm wide, and curled inward. The grass has dense infloresence 1-5cm long and ovate to elliptic in shape. Spikelets are 4-8mm long, becoming reddish, and are composed of 3-8 florets. Brooks (2000a) indicates that S. barbatus is so similar to S. arabicus physiognomically and in terms of the habitats it invades that the two species may have very similar ecological effects. Notes According to Devender et al. (1997), S.
    [Show full text]
  • On the Flora of Australia
    L'IBRARY'OF THE GRAY HERBARIUM HARVARD UNIVERSITY. BOUGHT. THE FLORA OF AUSTRALIA, ITS ORIGIN, AFFINITIES, AND DISTRIBUTION; BEING AN TO THE FLORA OF TASMANIA. BY JOSEPH DALTON HOOKER, M.D., F.R.S., L.S., & G.S.; LATE BOTANIST TO THE ANTARCTIC EXPEDITION. LONDON : LOVELL REEVE, HENRIETTA STREET, COVENT GARDEN. r^/f'ORElGN&ENGLISH' <^ . 1859. i^\BOOKSELLERS^.- PR 2G 1.912 Gray Herbarium Harvard University ON THE FLORA OF AUSTRALIA ITS ORIGIN, AFFINITIES, AND DISTRIBUTION. I I / ON THE FLORA OF AUSTRALIA, ITS ORIGIN, AFFINITIES, AND DISTRIBUTION; BEIKG AN TO THE FLORA OF TASMANIA. BY JOSEPH DALTON HOOKER, M.D., F.R.S., L.S., & G.S.; LATE BOTANIST TO THE ANTARCTIC EXPEDITION. Reprinted from the JJotany of the Antarctic Expedition, Part III., Flora of Tasmania, Vol. I. LONDON : LOVELL REEVE, HENRIETTA STREET, COVENT GARDEN. 1859. PRINTED BY JOHN EDWARD TAYLOR, LITTLE QUEEN STREET, LINCOLN'S INN FIELDS. CONTENTS OF THE INTRODUCTORY ESSAY. § i. Preliminary Remarks. PAGE Sources of Information, published and unpublished, materials, collections, etc i Object of arranging them to discuss the Origin, Peculiarities, and Distribution of the Vegetation of Australia, and to regard them in relation to the views of Darwin and others, on the Creation of Species .... iii^ § 2. On the General Phenomena of Variation in the Vegetable Kingdom. All plants more or less variable ; rate, extent, and nature of variability ; differences of amount and degree in different natural groups of plants v Parallelism of features of variability in different groups of individuals (varieties, species, genera, etc.), and in wild and cultivated plants vii Variation a centrifugal force ; the tendency in the progeny of varieties being to depart further from their original types, not to revert to them viii Effects of cross-impregnation and hybridization ultimately favourable to permanence of specific character x Darwin's Theory of Natural Selection ; — its effects on variable organisms under varying conditions is to give a temporary stability to races, species, genera, etc xi § 3.
    [Show full text]
  • SUPPLEMENTARY MATERIAL African Journal of Range & Forage Science, 2021 Biogeog
    SUPPLEMENTARY MATERIAL https://doi.org/10.2989/10220119.2021.1918247 African Journal of Range & Forage Science, 2021 Biogeographical patterns of grasses (Poaceae) indigenous to South Africa, Lesotho and Eswatini Marike Trytsman, Francuois L Muller, Craig D Morris and Abraham E van Wyk Supplementary material 4. Grass species endemic/near-endemic to southern Africa (South Africa, Lesotho and Eswatini) (based on Fish et al. 2015) as recorded in each grasschorion. IOCB: Indian Ocean Coastal Belt Central Arid Region Fynbos Grassland IOCB Savanna Succulent Karoo 1 Agrostis eriantha Agrostis bergiana Agrostis barbuligera Anthephora argentea Agrostis barbuligera Agrostis bergiana 2 Anthephora argentea Agrostis eriantha Agrostis bergiana Aristida diffusa Agrostis bergiana Aristida dasydesmis 3 Aristida canescens Agrostis polypogonoides Agrostis eriantha Aristida transvaalensis Agrostis eriantha Aristida diffusa 4 Aristida dasydesmis Agrostis schlechteri Agrostis subulifolia Brachypodium flexum Anthephora argentea Aristida engleri 5 Aristida diffusa Anthoxanthum dregeanum Anthoxanthum dregeanum Bromus firmior Aristida canescens Aristida parvula 6 Aristida engleri Anthoxanthum tongo Aristida canescens Capeochloa cincta Aristida dasydesmis Brachypodium bolusii 7 Aristida parvula Aristida canescens Aristida diffusa Cymbopogon prolixus Aristida diffusa Brachypodium flexum 8 Aristida spectabilis Aristida diffusa Aristida effusa Cynodon bradleyi Aristida effusa Capeochloa arundinacea 9 Brachypodium bolusii Brachypodium flexum Aristida monticola Cynodon
    [Show full text]