1 Revision 1 1 the High-Pressure Phase of Lawsonite

Total Page:16

File Type:pdf, Size:1020Kb

1 Revision 1 1 the High-Pressure Phase of Lawsonite 1 Revision 1 2 The high-pressure phase of lawsonite: A single crystal study of a key mantle hydrous phase 3 4 Earl O’Bannon III,1* Christine M. Beavers1,2, Martin Kunz2, and Quentin Williams1 5 1Department of Earth and Planetary Sciences, University of California, Santa Cruz, 1156 High 6 Street, Santa Cruz, California 95064, U.S.A. 7 2Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, 8 U.S.A. 9 *Corresponding Author 10 1 11 Abstract 12 Lawsonite CaAl2Si2O7(OH)2·H2O is an important water carrier in subducting oceanic 13 crusts, and the primary hydrous phase in basalt at depths greater than ~80 km. We have 14 conducted high-pressure synchrotron single-crystal x-ray diffraction experiments on natural 15 lawsonite at room temperature up to ~10.0 GPa to study its high-pressure polymorphism. We 16 find that lawsonite remains orthorhombic with Cmcm symmetry up to ~9.3 GPa, and shows 17 nearly isotropic compression. Above ~9.3 GPa, lawsonite becomes monoclinic with P21/m 18 symmetry. Across the phase transition, the Ca polyhedron becomes markedly distorted, and 19 the average positions of the H2O molecules and hydroxyls change. The changes observed in the 20 H-atom positions under compression are different than the low temperature changes in this 21 material. We resolve for the first time the H-bonding configuration of the high-pressure 22 monoclinic phase of lawsonite. A bond valence approach is deployed to determine that the 23 phase transition from orthorhombic to monoclinic is primarily driven by the Si2O7 groups, and in 24 particular it's bridging oxygen atom (O1). The changes in the structure strongly indicate that 25 entropy increases across the symmetry-lowering transition, and hence that the slope of the 26 phase transition is negative. Therefore, monoclinic lawsonite is thus stable under the pressure 27 and temperature conditions that exist in the Earth, and is likely to be a major water carrier in 28 colder, deep subducted slabs. Monoclinic lawsonite also likely has enhanced electrical 29 conductivity along its c-axis due to the dynamically disordered hydrogen atoms. 30 Key words: Lawsonite; CaAl2Si2O7(OH)2·H2O; Single-crystal diffraction; High-Pressure; Hydrogen 31 disorder 32 1. Introduction 2 33 Significant amounts of water are transported into the mantle by subduction zones in the 34 form of hydrated minerals in oceanic crust and continentally derived meta-sediments [Ono, 35 1998; Chinnery et al., 2000; Dobrzhinetskaya and Green, 2007]. This water affects the chemical 36 and physical properties of materials by lowering their solidus temperatures, which allows for 37 partial melting of mantle material at relatively low temperatures, and by altering rheological 38 properties. Water reservoirs in subducted oceanic crust and its overlying sediments include 39 chloritoid, lawsonite, topaz, serpentines, chlorite (clinochlore), zoisite, amphiboles and micas. 40 Lawsonite is particularly interesting because of its high overall water content, ~11.5 wt.% [Baur, 41 1978], large stability field, and its prevalence in fully hydrated mid-ocean ridge basalt (MORB) 42 at pressure, which contains 7-15 wt% lawsonite [Schmidt and Poli, 1998]. Lawsonite and 43 phengitic mica are thought to be the dominant water carriers in subducted crust from ~200 to 44 over 300 km depth, which corresponds to pressures of ~7-10 GPa [Pawley, 1994; Schmidt and 45 Poli, 1994; Domanik and Holloway, 1996]. The way that H2O molecules and OH groups are 46 contained within the lawsonite structure is unusual (Figure 1). H2O molecules reside in cavities 47 that are formed by rings of two Si2O7 groups and two Al-octahedra. These cavities are not 48 completely open channels, like the channels typically found in ring silicates (e.g. cordierite), but 49 the channels in lawsonite also contain the large Ca ion, bound to the ring framework, in 50 addition to the water molecule. The OH groups are contained within a much smaller channel in 51 the structure formed by two AlO6 octahedra and two SiO4 tetrahedra. 3 52 53 Figure 1. Room pressure and temperature structure of lawsonite looking along the a-axis. Atom 54 colors are the same in all structural figures. All structural diagrams were generated using 55 CrystalMaker ® v.8.7.6. 56 Lawsonite undergoes two low temperature phase transitions at 155(5) and 273(5) K at 57 ambient pressure that involve changes in the hydrogen bonding of the H2O and OH groups 58 [Libowitzky and Armbruster, 1995], and to a lesser extent changes in the aluminosilicate 59 framework. However, no phase transitions are observed upon heating to ~600 oC [Pawley et al., 60 1996]. Notably, the H atoms of the H2O and OHs in lawsonite are dynamically disordered and 61 oscillate between two equivalent sites, and the low temperature phase transitions are 62 interpreted to be generated by a freezing in of the dynamic hopping motions of the H atoms 63 [Libowitzky and Armbruster, 1995; Libowitzky, 2009]. High pressure, room temperature single- 64 crystal diffraction structures have been reported up to ~3.78 GPa [Comodi and Zanazzi, 1996] 4 65 and no phase transitions were reported in this pressure range. An additional phase transition at 66 ~4 GPa from orthorhombic C to an orthorhombic P space group was reported by Boffa Ballaran 67 and Angel (2003) using single-crystal diffraction, but they could not determine the structure 68 and space group of this phase At higher pressures, Scott and Williams (1999) reported a 69 discontinuous shift in the O-H stretching vibrations at ~8-9 GPa in the high-pressure infrared 70 spectra of lawsonite. Daniel et al. (2000) reported a phase transition at ~8.6 GPa using Raman 71 spectroscopy and powder diffraction, and Pawley and Allan (2001) observed the same 72 transition at ~10-11 GPa using powder diffraction. This transition, from orthorhombic to 73 monoclinic symmetry, has now been known, for ~16 years, to occur between ~8.6 and ~11 GPa 74 [Daniel et al., 2000; Pawley and Allan, 2001; Boffa Ballaran and Angel, 2003]. 75 Structural determinations of the proposed orthorhombic P phase (> 4 GPa) and the 76 monoclinic P phase have not been reported, and both of these transitions occur at pressures 77 relevant to subduction zonesPawley and Allan (2001) reported a Rietveld refinement of the 78 P21/m structure of monoclinic lawsonite using the orthorhombic Cmcm structure as their 79 starting model. The P-T slope of this phase transition is poorly constrained, and Pawley and 80 Allan (2001) hypothesize that this transition has a shallow positive slope. If this were the case, 81 the high-pressure phase of lawsonite would be unlikely to be stable under conditions found 82 within subduction zones. However, Pawley and Allan (2001) also explicitly state that a negative 83 slope cannot be ruled out, which would intersect the temperature field within colder subducted 84 slabs. Moreover, the high-pressure phase of lawsonite almost certainly has higher entropy since 85 the oxygen position, O2, splits into two separate sites in the monoclinic structure , O2A and 86 O2B, and the cation site M1 splits into M1A and M1B (e.g. Liebscher et al., 2010; Pawley and 5 87 Allan, 2001). Hence, ΔSortho-mono is anticipated to be positive, and ΔVortho-mono is small but 88 negative (e.g. Boffa Ballaran and Angel, 2003; Daniel et al., 2000; Pawley and Allan, 2001), 89 which indicates that the slope of the Cmcm-P21/m transition must be negative. From this it 90 follows that the high-pressure monoclinic phase of lawsonite could be the dominant water 91 carrier in basalts carried by rapidly subducted, older slabs, and thus may be of considerable 92 importance for moving water to depths deeper than 300 km (~10 GPa), and approaching the 93 top of the transition zone. 94 High quality single-crystal structural determinations for the high-pressure phase(s) of 95 the dominant carrier of water to depths of ~300 km in subducted basalt [Schmidt and Poli, 96 1998] and in hydrated metamorphic assemblages associated with subduction [Vitale Brovarone 97 and Beyssac, 2014] have thus not yet been reported, and the structure of this primary water 98 carrier is uncertain. This study uses synchrotron based single-crystal x-ray diffraction at room 99 temperature to examine the structural changes of lawsonite under compression up to ~10.0 100 GPa. The great benefit of single-crystal structure determinations is the ability to ab initio 101 determine, and subsequently refine the atomic positions. Moreover, atomic positions can be 102 refined with anisotropic displacement parameters (ADPs), which is often not possible based on 103 the reduced data quality obtained by high pressure poeder diffraction.. Here, our goals are to 104 probe and characterize the existence of the proposed ~4.0 GPa transition in lawsonite, and 105 solve the structure of the higher-pressure monoclinic lawsonite. Both the proposed 106 orthorhombic P phase and the monoclinic P phase occur within pressure ranges that are 107 important for our understanding of subduction zones, and both are thus anticipated to be 108 primary carriers of water to depth. 6 109 2. Methods 110 2.1 Sample characterization 111 The natural sample used in this study is from the type locality Reed Station, Tiburon 112 Peninsula, Marin Co., California, USA [Ransome, 1895]. We characterized the sample with 113 single-crystal diffraction and Raman spectroscopy, which both agree well with previous studies 114 [Baur, 1978; Daniel et al., 2000; Meyer et al., 2001; Pawley and Allan, 2001]. Ambient pressure 115 measurements were conducted on Beamline 11.3.1 at the Advanced Light Source (ALS) at 116 Lawrence Berkeley National Lab in Berkeley, CA.
Recommended publications
  • Geology and Mineral Deposits of the James River-Roanoke River Manganese District Virginia
    Geology and Mineral Deposits of the James River-Roanoke River Manganese District Virginia GEOLOGICAL SURVEY BULLETIN 1008 Geology and Mineral ·Deposits oftheJatnes River-Roanoke River Manganese District Virginia By GILBERT H. ESPENSHADE GEOLOGICAL SURVEY BULLETIN 1008 A description of the geology anq mineral deposits, particularly manganese, of the James River-Roanoke River district UNITED STAT.ES GOVERNMENT, PRINTING. OFFICE• WASHINGTON : 1954 UNITED STATES DEPARTMENT OF THE INTERIOR Douglas McKay, Secretary GEOLOGICAL SURVEY W. E. Wrather, Director For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. CONTENTS· Page Abstract---------------------------------------------------------- 1 Introduction______________________________________________________ 4 Location, accessibility, and culture_______________________________ 4 Topography, climate, and vegetation _______________ .,.. _______ ---___ 6 Field work and acknowledgments________________________________ 6 Previouswork_________________________________________________ 8 GeneralgeologY--------------------------------------------------- 9 Principal features ____________________________ -- __________ ---___ 9 Metamorphic rocks____________________________________________ 11 Generalstatement_________________________________________ 11 Lynchburg gneiss and associated igneous rocks________________ 12 Evington groUP------------------------------------------- 14 Candler formation_____________________________________ 14 Archer Creek formation________________________________
    [Show full text]
  • Heat Capacity of High Pressure Minerals and Phase Equilibria of Cretan Blueschists
    Heat capacity of high pressure minerals and phase equilibria of Cretan blueschists by Matthew Rahn Manon A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Geology) in The University of Michigan 2008 Doctoral Committee: Professor Eric J. Essene, Chair Professor Rebecca Ann Lange Professor Youxue Zhang Associate Professor Steven M. Yalisove Matthew Rahn Manon 2008 Acknowledgments Cheers to all the grad students who have gone and come through CC-Little over the years. Zeb, Steven, Jim, Chris, Katy, Phillip, Franek, Eric, Tom, Darius, Sarah, Sara, Abir, Laura, Casey, Sam, John and anyone else I’ve been to learned something from, or argued something with. From early nights at Dominicks for subductology “seminars” through to the FWC, Michigan has been a fun place to live. Thanks to Anne Hudon, whos made sure I haven’t been able to place myself in inextricable holes. Thanks also to those from earlier in my life. College professors like Ken Hess or Barbara Nimmersheim who, in their very different ways inspired me to explore what it is I know. I’ll always remember time spent with Bob Wiebe who introduced me to the wild unknown of geology. Immeasurable thanks go to Eric Essene. The fieldtrips we took the first few years were good adventures. He’s always put aside his own issues to be there for me to talk to, especially when I didn’t deserve it. Eric’s scientific curiosity, and mental rigor are deservedly well known. His patience with me may be one of his great, unsung virtues.
    [Show full text]
  • Washington State Minerals Checklist
    Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • I. Thermal Expansion of Lawsonite, Zoisite, Clinozoisite, and Diaspore
    American Mineralogist, Volume 81, pages 335-340, 1996 Volume behavior of hydrous minerals at high pressure and temperature: I. Thermal expansion of lawsonite, zoisite, clinozoisite, and diaspore A.R. PAWLEY,I,* S.A.T. REDFERN,2 ANDT.J.B. HOLLAND2 'Department of Geology, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 lRJ, U.K. 2Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, U.K. ABSTRACT The temperature dependence of the lattice parameters of synthetic lawsonite [Ca- A12Si2 07 (OH)2 . H20], natural zoisite [Ca2A13 Si3 0'2 (OH)], natural clinozoisite [Ca2Al3Si3012(OH)], and synthetic diaspore [AIO(OH)] have been measured at ambient pressure. The volume thermal expansion coefficients for lawsonite, zoisite, and clinozoisite are approximately constant over the measured temperature ranges (25-590 DCfor lawson- ite, 25-750 DCfor zoisite, and 25-900 DCfor clinozoisite), whereas the thermal expansion of diaspore increases slightly over the range 25-300 DC.Interestingly, the room-tempera- ture volume of clinozoisite is greater than that of zoisite, but this situation is reversed above -300 DC.The experimental results may be summarized as follows: lawsonite: VI Vo= 1 + 3.16 (:to.05) x 10-5 (T - 298), Vo = 101.51 (:to.Ol) cm3/mol; zoisite: VIVo = 1 + 3.86 (:to.05) x 10-5 (T - 298), Vo = 136.10 (:to.02) cm3/mol; clinozoisite: VIVo = 1 + 2.94 (:to.05) x 10-5 (T - 298), Vo = 136.42 (:to.05) cm3/mol; diaspore: VIVo = 1 + 7.96 (:to.28) x 10-5 [T - 298 - 20 (VT- ~)], Vo = 17.74 (:to.Ol) cm3/mol.
    [Show full text]
  • Reflectance Spectral Features and Significant Minerals in Kaishantun
    minerals Article Reflectance Spectral Features and Significant Minerals in Kaishantun Ophiolite Suite, Jilin Province, NE China Chenglong Shi 1 ID , Xiaozhong Ding 1,*, Yanxue Liu 1 and Xiaodong Zhou 2 1 Institute of Geology, Chinese Academy of Geological Sciences, No. 26 Baiwanzhuang Street, Beijing 100037, China; [email protected] (C.S.); [email protected] (Y.L.) 2 Survey of Regional Geological and Mineral Resource of Jilin Province, No.4177 Chaoda Road, Changchun 130022, China; [email protected] * Correspondence: [email protected]; Tel.: +86-10-6899-9675 Received: 28 January 2018; Accepted: 28 February 2018; Published: 5 March 2018 Abstract: This study used spectrometry to determine the spectral absorption of five types of mafic-ultramafic rocks from the Kaishantun ophiolite suite in Northeast China. Absorption peak wavelengths were determined for peridotite, diabase, basalt, pyroxenite, and gabbro. Glaucophane, actinolite, zoisite, and epidote absorption peaks were also measured, and these were used to distinguish such minerals from other associated minerals in ophiolite suite samples. Combined with their chemical compositions, the blueschist facies (glaucophane + epidote + chlorite) and greenschist facies (actinolite + epidote + chlorite) mineral assemblage was distinct based on its spectral signature. Based on the regional tectonic setting, the Kaishantun ophiolite suite probably experienced the blueschist facies metamorphic peak during subduction and greenschist facies retrograde metamorphism during later slab rollback. Keywords: reflectance spectrum; ophiolite suite; mineral classification; Kaishantun; NE China 1. Introduction Ophiolites are segments of oceanic crust that have been residually accreted in convergent boundaries [1–3]. The principal focus of recent studies related to ophiolites has been on the spatial and temporal patterns of felsic to mafic-ultramafic rock suites.
    [Show full text]
  • International Ocean Discovery Program Expedition 355
    International Ocean Discovery Program Expedition 355 Preliminary Report Arabian Sea Monsoon Deep sea drilling in the Arabian Sea: constraining tectonic-monsoon interactions in South Asia 31 March–31 May 2015 D.K. Pandey, P.D. Clift, D.K. Kulhanek, S. Andò, J.A.P. Bendle, S. Bratenkov, E.M. Griffith, G.P. Gurumurthy, A. Hahn, M. Iwai, B.-K. Khim, A. Kumar, A.G. Kumar, H.M. Liddy, H. Lu., M.W. Lyle, R. Mishra, T. Radhakrishna, C.M. Routledge, R. Saraswat, R. Saxena, G. Scardia, G.K. Sharma, A.D. Singh, S. Steinke, K. Suzuki, L. Tauxe, M. Tiwari, Z. Xu, and Z. Yu Publisher’s notes Core samples and the wider set of data from the science program covered in this report are under moratorium and accessible only to Science Party members until 29 August 2016. This publication was prepared by the International Ocean Discovery Program JOIDES Resolution Science Operator (IODP JRSO) as an account of work performed under the International Ocean Dis- covery Program. Funding for the program is provided by the following implementing organizations and international partners: National Science Foundation (NSF), United States Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan European Consortium for Ocean Research Drilling (ECORD) Ministry of Science and Technology (MOST), People’s Republic of China Korea Institute of Geoscience and Mineral Resources (KIGAM) Australia-New Zealand IODP Consortium (ANZIC) Ministry of Earth Sciences (MoES), India Coordination for Improvement of Higher Education Personnel (CAPES), Brazil Disclaimer Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the participating agencies, Texas A&M University, or Texas A&M Research Foundation.
    [Show full text]
  • Optical Properties of Common Rock-Forming Minerals
    AppendixA __________ Optical Properties of Common Rock-Forming Minerals 325 Optical Properties of Common Rock-Forming Minerals J. B. Lyons, S. A. Morse, and R. E. Stoiber Distinguishing Characteristics Chemical XI. System and Indices Birefringence "Characteristically parallel, but Mineral Composition Best Cleavage Sign,2V and Relief and Color see Fig. 13-3. A. High Positive Relief Zircon ZrSiO. Tet. (+) 111=1.940 High biref. Small euhedral grains show (.055) parallel" extinction; may cause pleochroic haloes if enclosed in other minerals Sphene CaTiSiOs Mon. (110) (+) 30-50 13=1.895 High biref. Wedge-shaped grains; may (Titanite) to 1.935 (0.108-.135) show (110) cleavage or (100) Often or (221) parting; ZI\c=51 0; brownish in very high relief; r>v extreme. color CtJI\) 0) Gamet AsB2(SiO.la where Iso. High Grandite often Very pale pink commonest A = R2+ and B = RS + 1.7-1.9 weakly color; inclusions common. birefracting. Indices vary widely with composition. Crystals often euhedraL Uvarovite green, very rare. Staurolite H2FeAI.Si2O'2 Orth. (010) (+) 2V = 87 13=1.750 Low biref. Pleochroic colorless to golden (approximately) (.012) yellow; one good cleavage; twins cruciform or oblique; metamorphic. Olivine Series Mg2SiO. Orth. (+) 2V=85 13=1.651 High biref. Colorless (Fo) to yellow or pale to to (.035) brown (Fa); high relief. Fe2SiO. Orth. (-) 2V=47 13=1.865 High biref. Shagreen (mottled) surface; (.051) often cracked and altered to %II - serpentine. Poor (010) and (100) cleavages. Extinction par- ~ ~ alleL" l~4~ Tourmaline Na(Mg,Fe,Mn,Li,Alk Hex. (-) 111=1.636 Mod. biref.
    [Show full text]
  • Zoisite-Clinozoisite Relations in Low- to Medium-Grade High-Pressure Metamorphic Rocks and Their Implications
    MINERALOGICAL MAGAZINE, DECEMBER I980, VOL. 43, PP. IOO5-I3 Zoisite-clinozoisite relations in low- to medium-grade high-pressure metamorphic rocks and their implications MASAKI ENAMI Department of Earth Sciences, Nagoya University, Nagoya 464, Japan AND SHOHEI BANNO Department of Earth Sciences, Kanazawa University, Kanazawa 920, Japan SUMMARY. Coexisting zoisite and clinozoisite in seven- electron-probe microanalysis of coexisting zoisite teen specimens from six localities in Japan have been and clinozoisite are described below, with our view studied with the electron-probe microanalyser. Zoisite on the temperature-dependence of the gap in the and clinozoisite are commonly zoned, but compositional temperature range of low- to medium-grade meta- gaps between them are systematic. Referring to the metamorphic grade of the host rocks, a temporary and morphism of high-pressure intermediate type. schematic phase-diagram for the system Ca2AIaSi3OI2- (OH)-Ca2AI2Fea+Si3012(OH) is presented. With in- Mode of occurrence of coexisting zoisite and creasing temperature, in the range of low- to medium- clinozoisite grade metamorphism, the compositional gap between the two epidote-group minerals shifts towards higher Fe 3+ Fig. I shows specimens localities. Brief accounts compositions. of the geology and petrology of these areas and the mode of occurrence of coexisting zoisite and EPIDOTE-GROUP minerals with the general for- clinozoisite are described below. mula Ca2(A1,Fea+)aSi3012(OH) have two series Iratsu and Tonaru epidote-amphibolite masses. of solid solutions, zoisite and clinozoisite-pistacite. The Iratsu and Tonaru masses are metamorphosed The chemical compositions of coexisting zoisite and layered gabbros that occur in the epidote clinozoisite have been reported by many authors amphibolite-facies area in central Shikoku (Banno (Banno, I964; Myer, 1966; Ackermand and Raase, et al., 1976; also for general petrology, cf.
    [Show full text]
  • Japan Association of Mineralogical Sciences
    Japan Association of Mineralogical Sciences http://jams.la.coocan.jp documenting the importance of silica transport. He examined the sys- tematics of vein textures in the Sanbagawa belt and estimated fl uid JAPAN ASSOCIATION OF MINERALOGICAL SCIENCES fl ow rates in veins by applying a model of coupled crystallization and AWARDEES crystal settling. Dr. Okamoto also succeeded in growing quartz veins in supercritical water. This work provides new information on the roles The Japan Association of Mineralogical Sciences (JAMS) is proud to of fl uid compositions and fl uid fl ow rates in the development of internal announce the recipients of its 2013 society awards. The Japan textures during vein growth. He is expanding his research on silica– Association of Mineralogical Sciences Award for Young water interaction to explore hydrological systems within the crust of Scientist is awarded to a maximum of two scientists per year who are subduction-related island arcs. under 37 years of age and have made exceptional contributions to the mineralogical and related sciences. The Japan Association of JAMS Award for Applied Mineralogy to Masao Kimura Mineralogical Sciences Award for Applied Mineralogy is awarded to one scientist who has made remarkable contributions to Masao Kimura has worked the fi eld of applied mineralogy. The Sakurai Medal—named in honor for Nippon Steel (26 years) of Dr. Kin-ichi Sakurai, famous for fi nding new minerals—is awarded and Nippon Steel & Sumitomo to one scientist who has made great contributions to studies on new Metal (1 year) corporations in minerals. The Japan Association of Mineralogical Sciences Japan in the Advanced Research Paper Award is awarded to the authors of two excellent Technology Research publications in the Journal of Mineralogical and Petrological Sciences (JMPS) Laboratories.
    [Show full text]
  • List of Abbreviations
    List of Abbreviations Ab albite Cbz chabazite Fa fayalite Acm acmite Cc chalcocite Fac ferroactinolite Act actinolite Ccl chrysocolla Fcp ferrocarpholite Adr andradite Ccn cancrinite Fed ferroedenite Agt aegirine-augite Ccp chalcopyrite Flt fluorite Ak akermanite Cel celadonite Fo forsterite Alm almandine Cen clinoenstatite Fpa ferropargasite Aln allanite Cfs clinoferrosilite Fs ferrosilite ( ortho) Als aluminosilicate Chl chlorite Fst fassite Am amphibole Chn chondrodite Fts ferrotscher- An anorthite Chr chromite makite And andalusite Chu clinohumite Gbs gibbsite Anh anhydrite Cld chloritoid Ged gedrite Ank ankerite Cls celestite Gh gehlenite Anl analcite Cp carpholite Gln glaucophane Ann annite Cpx Ca clinopyroxene Glt glauconite Ant anatase Crd cordierite Gn galena Ap apatite ern carnegieite Gp gypsum Apo apophyllite Crn corundum Gr graphite Apy arsenopyrite Crs cristroballite Grs grossular Arf arfvedsonite Cs coesite Grt garnet Arg aragonite Cst cassiterite Gru grunerite Atg antigorite Ctl chrysotile Gt goethite Ath anthophyllite Cum cummingtonite Hbl hornblende Aug augite Cv covellite He hercynite Ax axinite Czo clinozoisite Hd hedenbergite Bhm boehmite Dg diginite Hem hematite Bn bornite Di diopside Hl halite Brc brucite Dia diamond Hs hastingsite Brk brookite Dol dolomite Hu humite Brl beryl Drv dravite Hul heulandite Brt barite Dsp diaspore Hyn haiiyne Bst bustamite Eck eckermannite Ill illite Bt biotite Ed edenite Ilm ilmenite Cal calcite Elb elbaite Jd jadeite Cam Ca clinoamphi- En enstatite ( ortho) Jh johannsenite bole Ep epidote
    [Show full text]
  • Reaction Textures and Fluid Behaviour in Very High- Pressure Calc-Silicate Rocks of the Münchberg Gneiss Complex, Bavaria, Germany
    J. metamorphic Ceol., 1994, 12, 735-745 Reaction textures and fluid behaviour in very high- pressure calc-silicate rocks of the Münchberg gneiss complex, Bavaria, Germany R. KLEMD,1 S. MATTHES2 AND U. SCHÜSSLER2 Fachbereich Geowissenschaften, Universität Bremen, PO Box 330440, 28334 Bremen, Germany 2lnstitut für Mineralogie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany ABSTRACT Calc-silicate rocks occur as elliptical bands and boudins intimately interlayered with eclogites and high-pressure gneisses in the Munchberg gneiss complex of NE Bavaria. Core assemblages of the boudins consist of grossular-rich garnet, diopside, quartz, zoisite, clinozoisite, calcite, rutile and titanite. The polygonal granoblastic texture commonly displays mineral relics and reaction textures such as post- kinematic grossular-rich garnet coronas. Reactions between these mineral phases have been modelled in the CaO-Al203-Si02-C02-H20 system with an internally consistent thermodynamic data base. High-pressure metamorphism in the calc-silicate rocks has been estimated at a minimum pressure of 31 kbar at a temperature of 630°C with X^oSQ.Gi. Small volumes of a C02-N2-rich fluid whose composition was buffered on a local scale were present at peak-metamorphic conditions. The P-T conditions for the onset of the amphibolite facies overprint are about 10 kbar at the same temperature. A'co., of the H20-rich fluid phase is regarded to have been <0.03 during amphibolite facies conditions. These P-T estimates are interpreted as representing different stages of recrystallization during isothermal decompression. The presence of multiple generations of mineral phases and the preservation of very high-pressure relics in single thin sections preclude pervasive post-peak metamorphic fluid flow as a cause of a re-equilibration within the calc-silicates.
    [Show full text]