Industrial Symbiosis, a Model of Strong Sustainability: an Analysis of Two Case Studies, Tampico and Dunkirk Manuel Morales

Total Page:16

File Type:pdf, Size:1020Kb

Industrial Symbiosis, a Model of Strong Sustainability: an Analysis of Two Case Studies, Tampico and Dunkirk Manuel Morales Industrial symbiosis, a model of strong sustainability: An analysis of two case studies, Tampico and Dunkirk Manuel Morales To cite this version: Manuel Morales. Industrial symbiosis, a model of strong sustainability: An analysis of two case studies, Tampico and Dunkirk. Economics and Finance. Université Clermont Auvergne, 2019. English. tel- 02539675 HAL Id: tel-02539675 https://hal.archives-ouvertes.fr/tel-02539675 Submitted on 10 Apr 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Ecole Doctorale des Sciences Economiques, Juridiques, Politiques et de gestion Centre d’Etudes et de Recherche sur le Développement International (CERDI) Université Clermont Auvergne, CNRS, IRD, CERDI, F-63000 Clermont-Ferrand, France Industrial symbiosis, a model of strong sustainability: An analysis of two case studies, Tampico and Dunkirk Thèse présentée et soutenue publiquement le 21/Juin/2019 pour l’obtention du titre de Docteur en Sciences Economiques par Manuel E. MORALES sous la direction de Arnaud DIEMER (UCA), Gemma CERVANTES (DeLaSalle-Bajio)et Suren ERKMAN (UNIL) Membres du Jury Claude-Gilles DUSSAP Professor, Université Clermont Auvergne Président du jury Paul JAMES Professor, Western Sydney University Rapporteur Nicolas BUCLET Professeur, Université Grenoble Alpes Rapporteur Arnaud DIEMER Associate Professor, Université Clermont Auvergne Directeur de thèse Professor, La Salle Bajio University, Industrial Ecology Gemma CERVANTES Directrice de thèse Research Group Professor, University of Lausanne, Institute for Earth Suren ERKMAN Directeur de thèse Surface Dynamics Raffaella TADDEO Fellow Researcher, University of Pescara Suffragant Associate Professor, Université de Technologie de Sabrina BRULLOT Sufraggant Troyes L’université Clermont Auvergne n’entend donner aucune approbation ni improbation aux opinions émises dans cette thèse. Ces opinions doivent être considérées comme propres à l’auteur. “Static and mechanistic analysis, however, is not adequate to understand the changing world in which we live. In order to adequately address the most pressing social and environmental challenges looming ahead, we need to develop analytical tools for analyzing dynamic situations” Elinor Ostrom (2011) Déclaration sur l’honneur contre le plagiat Je soussigné, Manuel E. MORALES Certifie qu’il s’agit d’un travail original et que toutes les sources utilisées ont été indiquées dans leur totalité. Je certifie, de surcroît, que je n’ai ni recopié ni utilisé des idées ou des formulations tirées d’un ouvrage, article ou mémoire, en version imprimée ou électronique, sans mentionner précisément leur origine et que les citations intégrales sont signalées entre guillemets. Conformément à la loi, le non-respect de ces dispositions me rend passible de poursuites devant la commission disciplinaire et les tribunaux de la République Française. Fait à Clermont-Ferrand, le 1 avril 2019 ACKNOWLEDGMENTS I would like to express my special appreciation and thanks to my thesis director Professor Dr. Arnaud DIEMER, you have been a tremendous mentor for me. I would like to thank you for the research opportunity you offer me the first time I came in France with my family in 2015, encouraging to take the DU in Sustainability Education training and for allowing me to grow as a research scientist. Your advice on both research as well as on my career have been invaluable. Furthermore, without your support this would not have been possible. I would also like to thank my co-directors Suren ERKMAN and Gemma CERVANTES for all your brilliant comments and suggestions. As well as the opportunity Gemma facilitate me to make this research mobility in Guanajuato during 4 months, sharing your network contacts with me, and making possible to gather the data I needed for the case study development. Without your support and guidance, the development of the Altamira case study diagnosis and analysis would not be possible. All my appreciation to the committee members, professor Claude-Gilles DUSSAP, Nicolas BUCLET, Paul JAMES and Raffaella TADDEO for serving as my committee members even at hardship. I also want to thank you for letting my defense be an enjoyable moment, and for your brilliant comments and suggestions during the writing process, thanks to you. I would especially like to thank the business associations and the environment and security director/manager of each company that participate in the case studies for trust in this project and invest your worthy time to provide me insightful data through the interviews and the data you shared with me. Thanks to the municipality authorities in Altamira and Dunkirk industrial symbiosis project for insightful comments and the commitment, you show in the development of this research study. A special thanks to my beloved wife Fatima and my daughters Frida and Elise. Words cannot express how grateful I am to my wife for all of the sacrifices that you have made on my behalf. Your prayer for me was what sustained me thus far. I would also like to thank the French Ph.D. team for all the grateful and insightful academic discussions we had. But also for this 3 year we spend working together and challenging ourselves for a deep self-conviction that world could become better, thanks Timothy PARRIQUE, Ganna GLADKIKH, Abdourakhmane NDIAYE, Florian DIERICKX, Julian TORRES, Faheem KHUSHIK and all PhD students, administrative and academic staff at CERDI, the Industrial Bioeconomy Chair members at NEOMA BS – Campus Reims and the ACTe laboratory. Thank to my family in Mexico for supporting me for everything, and especially I cannot thank you enough for encouraging me throughout this experience. Finally, I thank my God, my good Father, for letting me through all the difficulties. I have experienced your guidance day by day. You are the one who let me finish my degree. I will keep on trusting you for my future. Thank you, Lord. FOREWORD This thesis is the outcome of a research effort that encompasses a set of published papers with the intention to unfold a clear narrative string. It addresses industrial symbiosis as an inter-firm innovative strategy looking forward to achieve strong sustainability in developing and developed countries. One of the benefits of the system’s causality understands improvement, and the knowledge management (Mauelshagen et al., 2014) goes beyond the merely analytical-deliberative process integrating technical assessments and social values to produce legitimate policy design and outcomes. Given that IS cannot expect strong sustainability accomplishment if its governance does not place significant effort into managing and supporting this collaborative network, with a complementary commitment in efficiency and resilience, as well as conciliating local and global issues. Our study aims to provide a territorial and systemic approach able to integrate the complexity of motivations and values sometimes contradictory between stakeholders, seeking to provide a rigorous and coherent framework for public/private policy recommendations. For this purpose, we call on some disciplines like economics geography, industrial ecology and systems analysis. The thesis structure encompasses: - An introduction, presenting the context of the study, the state of the art related to industrial symbiosis, the research questions and objectives of the dissertation, the theoretical assumptions we state and the theoretical framework we call to bear the assumptions we previously state. We present the methodology and the relevant outcomes we obtain when giving answer to the research questions analyzed. - A set of five scientific papers, published or under revision, inquiring in the theoretical foundations, the literature review on what we build the theoretical assumptions stated, and the methodology process that we draw up to analyze the case studies in France and Mexico. - Finally, the conclusion highlights the main outcomes of the study and the theoretical and methodological contributions shedding light to the analyzed problematic. ABSTRACT Industrial symbiosis (IS) is presented as an inter-firm organizational strategy with the aim of social innovation that targets material and energy flow optimization, but also structural sustainability. In this study, we present systems thinking and geographical proximity as the theoretical framework used to analyze industrial symbiosis through a methodology based on System Dynamics and the underpinning use of Causal Loop Diagrams, aiming to identify the main drivers and hindrances that reinforce or balance the industrial symbiosis’s sustainability. The understanding of industrial symbiosis is embedded in a theoretical framework that conceptualizes industry as a complex ecosystem in which qualitative and quantitative approaches can be integrated, if we use a methodology flexible enough to encompass the complexity of the stakeholder’s values and motivations in the same analysis. Furthermore, the methodology performs a comparative strength over descriptive statistical forecasting, because it is able to integrate social causal rationality
Recommended publications
  • Industrial Symbiosis
    Interreg Europe – Policy Learning Platform – Environment and Resource Efficiency Policy brief Industrial symbiosis This policy brief provides information on how industrial symbiosis is supported by EU policy framework and on the potential actions regions and cities can take to support the establishment of sustainable industrial networks that are based on exchanges of resources. 1. Background Since the early days of industrialisation industrial economy has been following a linear model of resource consumption that follows a take-make-dispose pattern.1 Industrial symbiosis is an approach which closes the loop in the material and energy flows contributing to a circular economy model. Industrial symbiosis represents a shift from the traditional industrial model in which wastes are considered the norm, to integrated systems in which everything has its use. Industrial symbiosis is part of the industrial ecology concept, that uses the natural ecosystem as an analogy for human industrial activity. The principal objective of industrial ecology is to restructure the industrial system by optimising resource use, closing material loops and minimising emissions, promoting de- materialisation and reducing and eliminating the dependence on non-renewable energy sources.2 While industrial ecology is principally concerned with the flow of materials and energy through systems at different scales, from products to factories and up to national and global levels; industrial symbiosis focuses on these flows through industrial networks in local and regional economies.3 In a broad sense, industrial symbiosis is defined as the synergistic exchange of waste, by-products, water and energy between individual companies in a locality, region or even in a virtual community.
    [Show full text]
  • Resource Efficiency, Extended Producer Responsibility And
    Resource Efficiency, Extended Producer Responsibility and Producer Ownership A presentation to the Annual Symposium of the Greening Growth Partnership and Economics and Environmental Policy Research Network By Professor Paul Ekins University College London and International Resource Panel Ottawa February 27th, 2020 The imperative of increasing resource efficiency The promise of double decoupling Key messages from the Summary for Policy Makers http://www.unep.org/resourcepanel/KnowledgeResources/AssessmentAreasReports/Cross-CuttingPublications/tabid/133337/Default.aspx Headline Message: “With concerted action, there is significant potential for increasing resource efficiency, which will have numerous benefits for the economy and the environment” By 2050 policies to improve resource efficiency and tackle climate change could • reduce global resource extraction by up to 28% globally. • cut global GHG emissions by around 60%, • boost the value of world economic activity by 1% How to increase resource efficiency? Waste/resource management focus • Make it easier to recycle materials by differentiating between wastes and recyclables (definition of waste, by-products) • Increase the quality of collected recyclates (separate collections) • Create markets for recycled materials through product specifications and green public procurement (standards and regulation) • Ban the incineration of recyclables • Facilitate industrial clusters that exchange materials while they are still resources to prevent them from becoming wastes (industrial symbiosis)
    [Show full text]
  • Industrial Ecology: a New Perspective on the Future of the Industrial System
    Industrial Ecology: a new perspective on the future of the industrial system (President's lecture, Assemblée annuelle de la Société Suisse de Pneumologie, Genève, 30 mars 2001.) Suren Erkman Institute for Communication and Analysis of Science and Technology (ICAST), P. O. Box 474, CH-1211 Geneva 12, Switzerland Introduction Industrial ecology? A surprising, intriguing expression that immediately draws our attention. The spontaneous reaction is that «industrial ecology» is a contradiction in terms, something of an oxymoron, like «obscure clarity» or «burning ice». Why this reflex? Probably because we are used to considering the industrial system as isolated from the Biosphere, with factories and cities on one side and nature on the other, the problem consisting in trying to minimize the impact of the industrial system on what is «outside» of it: its surroundings, the «environment». As early as the 1950’s, this end-of-pipe angle was the one adopted by ecologists, whose first serious studies focused on the consequences of the various forms of pollution on nature. In this perspective on the industrial system, human industrial activity as such remained outside of the field of research. Industrial ecology explores the opposite assumption: the industrial system can be seen as a certain kind of ecosystem. After all, the industrial system, just as natural ecosystems, can be described as a particular distribution of materials, energy, and information flows. Furthermore, the entire industrial system relies on resources and services provided by the Biosphere, from which it cannot be dissociated. (It should be specified that .«industrial», in the context of industrial ecology, refers to all human activities occurring within the modern technological society.
    [Show full text]
  • Exergy Analysis of the Energy Use in Greece
    E-symbiosis conference 19-21 June 2014 Athens THE IMPACT OF EXERGY ANALYSIS IN THE SYMBIOSIS OF THE ENERGY USE 1 1 2 Christopher J. Koroneos , Evanthia A. Nanaki , G. A. Xydis 1University of Western Macedonia, Department of Mechanical Engineering, Mpakola & Sialvera, Kozani 50100, Greece Email: [email protected] [email protected] 2 Centre for Research and Technology Hellas, Institute for Research & Technology of Thessaly Technology Park of Thessaly,1stIndustrialArea, 38500 Volos, Greece Email: [email protected] Abstract In this work the concept of Exergy Analysis is applied to the residential and industrial sector of Greece in order to show the potential role that exergy (second – law) analysis can play to energy sustainability. Comprehensive exergy analysis is particularly valuable for evaluating energy production technologies that are energy intensive and represent a key infrastructural component. Exergy analysis is used as an analysis method for Industrial Symbiosis. It is foung that the residential energy and exergy efficiency, in 2003, came up to 22.36% and 20.92% respectively whereas the industrial energy and exergy efficiency came up to 53.72% and 51.34% respectively. Keywords: Exergy efficiency; Residential sector; Industrial sector; Industrial symbiosis 1. Introduction Energy constitutes an essential ingredient for social development and economic growth. The concept of Industrial symbiosis during the decade of 1990 -2010 was given key role in future industrial systems [1]. The closed energy and material loops was believed to entail a promising way in which future industrial systems could be designed so that the environmental impact from industrial operations in theory could be close to zero.
    [Show full text]
  • Achieving Energy Efficiency in Manufacturing: Organization, Procedures and Implementation
    ACHIEVING ENERGY EFFICIENCY IN MANUFACTURING: ORGANIZATION, PROCEDURES AND IMPLEMENTATION _______________________________________ A Thesis presented to the Faculty of the Graduate School at the University of Missouri-Columbia _______________________________________________________ In Partial Fulfillment of the Requirements for the Degree Master of Science __________________________________________________________________ By SÂNDINA PONTE Dr. Bin Wu, Thesis Supervisor MAY 2011 © Copyright by Sândina Ponte 2011 All Rights Reserved The undersigned, appointed by the dean of the Graduate School, have examined the thesis entitled ACHIEVING ENERGY EFFICIENCY IN MANUFACTURING: ORGANIZATION, PROCEDURES AND IMPLEMENTATION presented by Sândina Ponte, a candidate for the degree of master of science and hereby certify that, in their opinion, it is worthy of acceptance. Professor Bin Wu Professor James Noble Professor Hongbin Ma Thank you to my wonderful husband for the much needed motivation during those last few weeks. Thanks to Dr. Wu for supporting this project and being such a wonderful advisor and friend. Thanks to my managers Bernt Svens and Stefan Forsmark at ABB Inc. for believing in Energy Efficiency and the need for sustainable development. ACKNOWLEDGEMENTS My thanks to my advisor, Dr. Bin Wu, for his contribution and support to my research. I also wish to thank Chatchai Pinthuprapa for his previous research on energy audits and web tool development. ii TABLE OF CONTENTS ACKNOWLEDGEMENTS...............................................................................................
    [Show full text]
  • Industrial Ecology: the Role of Manufactured Capital in Sustainability Helga Weisza,B,1, Sangwon Suhc, and T
    SPECIAL FEATURE: INTRODUCTION Industrial Ecology: The role of manufactured capital in sustainability Helga Weisza,b,1, Sangwon Suhc, and T. E. Graedeld The lack of quantitative results over two aResearch Domain Transdisciplinary Concepts & Methods, Potsdam Institute for Climate decades ago was paralleled by a compelling Impact Research, 14473 Potsdam, Germany; bDepartment of Cultural History and Theory and c underrepresentation of methodological sug- Department of Social Sciences, Humboldt University Berlin, 10117 Berlin, Germany; Bren gestions. Among the few exceptions in those School of Environmental Science and Management, University of California, Santa Barbara, early papers were Ayres’ material flow anal- d CA 93106; and Center for Industrial Ecology, Yale University, New Haven, CT 06511 ysis of toxic heavy metals (17) and Duchin’s proposal to use economic input-output anal- ysis (18) to describe and analyze the meta- In 1992 PNAS presented a Special Feature with transition has increased in parallel, and the bolic connectedness among physical factors 22 contributions from a colloquium entitled technological and economic feasibility for such of production, industrial production, and “ ” Industrial Ecology, held at the National a transition has been demonstrated, especially consumptions sectors. Those two approaches Academy of Sciences of the United States in for the energy system (13, 14). have developed into core methods of Indus- Washington, DC (1). In these articles Industrial How did Industrial Ecology originally de- trial Ecology today (6, 19–25). The research Ecology was presented as an approach to un- fine its scope in what we now call sustain- articles included in the present Special Fea- derstand and ultimately optimize the total ma- ability science and what is its role today? If ture provide ample evidence for Industrial terial cycles of industrial processes (2).
    [Show full text]
  • Product Design and Business Model Strategies for a Circular Economy
    KES Transactions on Sustainable Design and Manufacturing II Sustainable Design and Manufacturing 2015 : pp.277-296 : Paper sdm15-026 Product design and business model strategies for a circular economy Nancy M.P. Bocken 1 *, Conny Bakker1 and Ingrid de Pauw1 1 Design Engineering department Industrial Design Engineering Delft University of Technology Landbergstraat 15, 2628 CE Delft, The Netherlands * [email protected] Abstract There is a growing need for and interest in the business concept of a circular economy. The move to a circular economy brings with it a range of practical challenges for designers and strategists in businesses that will need to facilitate this transformation from a linear take-make-dispose model to a more circular model. This paper seeks to develop a framework to guide designers and businesses strategists in the move from a linear to a circular economy. The following research question is addressed: What are the product design and business model strategies for businesses that want to move to a circular economy model? Building on Stahel (1994, p. 179) the terminology of slowing, closing and narrowing resource loops is introduced. A list of product design strategies and business model strategies for strategic decision-makers is introduced based on this to facilitate the move to a circular economy. 1. Introduction Governmental organisations as well as business representatives report an increasing pressure on our global resources and the climate due to human activity (WBCSD, 2014; IPCC, 2014). The circular economy is viewed as a promising approach to help reduce our global sustainability pressures (European Commission, 2014; Ellen MacArthur Foundation, 2014).
    [Show full text]
  • Industrial Metabolism and River Basin Studies: a New Approach for the Analysis of Chemical Pollution
    INDUSTRIAL METABOLISM AND RIVER BASIN STUDIES: A NEW APPROACH FOR THE ANALYSIS OF CHEMICAL POLLUTION William M. Stigliani International Institute for Applied Systems Analysis, Laxenburg, Austria Peter R. Jaffe Princeton University, Princeton, New Jersey RR-93-6 September 1993 PRINCETON UNIVERSITY Princeton, NJ, USA INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS Laxenburg, Austria Research Reports, which record research conducted at IIASA, are independently reviewed before publication. Views or opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other organizations supporting the work. Copyright 01993 International Institute for Applied Systems Analysis. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage or retrieval system, without permission in writing from the publisher. This is a joint publication with Princeton University. Cover design by Martin Schobel. Printed by Novographic, Vienna, Austria. Contents Foreword Overview vii 1. Introduction 2. Pathways of Chemical Pollutants through the Industrial Economy 2.1 Categorization of sources of pollution 2.2 0 bstacles to reducing emissions 3. Trace Pollutants in the Environment 3.1 The dispersion of trace pollutants in the environment 3.2 Processes that disperse trace pollutants in the environment 3.3 The effect of environmental changes on the dispersion of trace pollutants
    [Show full text]
  • Download PDF (87.5
    Index AccountAbility 1000 Stakeholder Engagement Behavioural Insights Team 314 Standard (AA1000SES) 347 behaviourally informed disclosure 318–19 act-related consumption 212 choice architecture 313–14, 315, 317, 325 Africa 225 confusion, avoidance of 319 agency 86, 88, 92–5 default rules 319–23 collective 84–5, 96 and automatic enrolment 319–21 Agenda 21 55–6 extreme 322 agent-based model, modified 166–7 implicit endorsement 321 Agyeman, J. 422 mass 321 Akenji, L. 26 personalized 321 Albinsson, P.A. 419 energy use 318, 320–21, 325 Allwood, J.M. 142 findings 315–17 American Institute for Cancer Research 196 framing 316, 318 Antonides, G. 209–23 inertia and procrastination 315–16, 321, ascription of responsibility (AR) 256 322 Asia 62–3, 165, 193, 287 internalities 313, 315 Asia-Pacific 225 libertarian paternalism 314–15 attitude–behaviour (value–action) gaps 88, 107, ‘nudging’ 314, 318, 325 278 nutrition 318 attitude–behaviour–choice (ABC) model 95, presentation 316 105 probability assessment and attitude to risk attitudes–facilitators–infrastructure (AFI) 317 framework 26 reference point for consumer decisions 321 attitudinal factors 105, 278 salience 323–4 Austgulen, M.H. 204 savings 319–20, 325 Australia 59, 135, 140, 164, 172, 226 social norms 316–17, 324, 325 Global Green Tag 296 Belgium 64, 155 Austrian economics 394, 397–400, 401, 406, Belk, R. 415 408 Bell, D. 433 availability bias 317 Bentham, J. 396 Berg, A. 28 Baatz, C. 124, 127 best available technologies (BATs) 289, 378 Baker, S. 210, 211 Bhamra, T. 103 Ballantine, P.W. 419 Bhate, S. 105, 106 Bamberg, S.
    [Show full text]
  • Extended Producer Responsibility in the EU
    Law Environment and Development JournalLEAD EXTENDED PRODUCER RESPONSIBILITY: AN ASSESSMENT OF RECENT AMENDMENTS TO THE EUROPEAN UNION WASTE FRAMEWORK DIRECTIVE Katrien Steenmans ARTICLE - SPECIAL ISSUE ON DESIGNING LAW AND POLICY TOWARDS MANAGING PLASTICS IN A CIRCULAR ECONOMY VOLUME 15/2 LEAD Journal (Law, Environment and Development Journal) is a peer-reviewed academic publication based in New Delhi and London and jointly managed by the Law, Environment and Development Centre of SOAS University of London and the International Environmental Law Research Centre (IELRC). LEAD is published at www.lead-journal.org [email protected] ISSN 1746-5893 ARTICLE - SPECIAL ISSUE ON DESIGNING LAW AND POLICY TOWARDS MANAGING PLASTICS IN A CIRCULAR ECONOMY EXTENDED PRODUCER RESPONSIBILITY: AN ASSESSMENT OF RECENT AMENDMENTS TO THE EUROPEAN UNION WASTE FRAMEWORK DIRECTIVE Katrien Steenmans* This document can be cited as Katrien Steenmans, ‘Extended Producer Responsibility: An Assessment of Recent Amendments to the European Union Waste Framework Directive’, 15/2 Law, Environment and Development Journal (2019), p. 108, available at http://www.lead-journal.org/content/19108.pdf DOI: https://doi.org/10.25501/SOAS.00033068 Katrien Steenmans, Lecturer in Law, Coventry Law School; Research Associate, Centre for Business in Society, Coventry University, Email: [email protected] Published under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License * Parts of this article are based on my PhD thesis: Katrien Steenmans, ‘Enabling Industrial Symbiosis Through Regulations, Policies, and Property Rights’ (PhD, University of Surrey 2018). Thank you to the editors and reviewers for their invaluable suggestions to improve the clarity and contribution of this article.
    [Show full text]
  • Chpter 19: Industrial Ecology and Environmental Chemistry
    Manahan, Stanley E. "INDUSTRIAL ECOLOGY AND ENVIRONMENTAL CHEMISTRY" Fundamentals of Environmental Chemistry Boca Raton: CRC Press LLC, 2001 19 INDUSTRIAL ECOLOGY AND ENVIRONMENTAL CHEMISTRY __________________________ 19.1 INTRODUCTION AND HISTORY At the beginning of Chapter 11, mention was made of the anthrosphere consisting of the things humans construct, use, and do in the environment. The anthrosphere constitutes a fifth sphere of the environment, along with the geosphere, hydrosphere, atmosphere, and biosphere. Any intelligent effort to maintain and enhance environmental quality must consider the anthrosphere along with these other four spheres. This chapter is devoted primarily to the anthrosphere. In so doing, it emphasizes the emerging science of industrial ecology, defined and explained below. Industrial ecology is an approach based upon systems engineering and ecolo- gical principles that integrates the production and consumption aspects of the design, production, use, and termination (decommissioning) of products and ser- vices in a manner that minimizes environmental impact while optimizing utilization of resources, energy, and capital. The practice of industrial ecology represents an environmentally acceptable, sustainable means of providing goods and services. It is closely tied with environmental chemistry, and the two sciences work synergistically with each other. Industrial ecology works within a system of industrial ecosystems, which mimic natural ecosystems. Natural ecosystems, usually driven by solar energy and photosynthesis, consist of an assembly of mutually interacting organisms and their environment, in which materials are interchanged in a largely cyclical manner. An ideal system of industrial ecology follows the flow of energy and materials through several levels, uses wastes from one part of the system as raw material for another part, and maximizes the efficiency of energy utilization.
    [Show full text]
  • Industrial Symbiosis for the Development of Biofuel Production
    LINKÖPING STUDIES IN SCIENCE AND TECHNOLOGY THESIS NO. 1441 INDUSTRIAL SYMBIOSIS FOR THE DEVELOPMENT OF BIOFUEL PRODUCTION MICHAEL MARTIN Environmental Technology and Management Department of Management and Engineering Linköping University, SE-581 83 Linköping, Sweden COVER ART The cover portrays the author’s artistic view of industrial symbiosis. Many small to large firms and industries in the symbiotic activities are represented by circles. Linkages between these entities exist in various colors to represent the material and energy flows and their quantity. Interestingly, the circles and linkages are not all adjacent to one another and some can be seen as outliers, similar to those on the back cover. Furthermore, some of the exchanges do not take place directly between two firms, but use another firm to transfer the materials or even upgrade them for further use. Much like real world exchanges, this picture shows the relationship between firms under symbiotic activities from a holistic view, without boundaries and models. LIU-TEK-LIC-2010:12 ISBN 978-91-7393-373-5 ISSN 0280-7971 Printed by: LiU-Tryck, Linköping 2010. ABSTRACT In recent years the popularity of biofuels has been transformed from a sustainable option for transportation to a questionable and criticized method. Many reports have therefore been produced to view biofuel production from a life cycle perspective; though results may be misleading. In a number of the reports, biofuel production is viewed in a linear manner, i.e. crops and energy in and biofuel out. However there is a large quantity of material and energy flows associated with biofuel production and these must be accounted for.
    [Show full text]