Chpter 19: Industrial Ecology and Environmental Chemistry

Total Page:16

File Type:pdf, Size:1020Kb

Chpter 19: Industrial Ecology and Environmental Chemistry Manahan, Stanley E. "INDUSTRIAL ECOLOGY AND ENVIRONMENTAL CHEMISTRY" Fundamentals of Environmental Chemistry Boca Raton: CRC Press LLC, 2001 19 INDUSTRIAL ECOLOGY AND ENVIRONMENTAL CHEMISTRY __________________________ 19.1 INTRODUCTION AND HISTORY At the beginning of Chapter 11, mention was made of the anthrosphere consisting of the things humans construct, use, and do in the environment. The anthrosphere constitutes a fifth sphere of the environment, along with the geosphere, hydrosphere, atmosphere, and biosphere. Any intelligent effort to maintain and enhance environmental quality must consider the anthrosphere along with these other four spheres. This chapter is devoted primarily to the anthrosphere. In so doing, it emphasizes the emerging science of industrial ecology, defined and explained below. Industrial ecology is an approach based upon systems engineering and ecolo- gical principles that integrates the production and consumption aspects of the design, production, use, and termination (decommissioning) of products and ser- vices in a manner that minimizes environmental impact while optimizing utilization of resources, energy, and capital. The practice of industrial ecology represents an environmentally acceptable, sustainable means of providing goods and services. It is closely tied with environmental chemistry, and the two sciences work synergistically with each other. Industrial ecology works within a system of industrial ecosystems, which mimic natural ecosystems. Natural ecosystems, usually driven by solar energy and photosynthesis, consist of an assembly of mutually interacting organisms and their environment, in which materials are interchanged in a largely cyclical manner. An ideal system of industrial ecology follows the flow of energy and materials through several levels, uses wastes from one part of the system as raw material for another part, and maximizes the efficiency of energy utilization. Whereas wastes, effluents, and products used to be regarded as leaving an industrial system at the point where a product or service was sold to a consumer, industrial ecology regards such materials as part of a larger system that must be considered until a complete cycle of manu- facture, use, and disposal is completed. From the discussion above and in the remainder of this book, it can be concluded © 2001 CRC Press LLC that industrial ecology is all about cyclization of materials. This approach is summarized in a statement attributed to Kumar Patel of the University of California at Los Angles, “The goal is cradle to reincarnation, since if one is practicing industrial ecology correctly there is no grave.” For the practice of industrial ecology to be as efficient as possible, cyclization of materials should occur at the highest possible level of material purity and stage of product development. As just one of many examples that could be cited, consider that it is much more efficient in terms of materials, energy, and monetary costs to bond a new rubber tread to a large, expensive tire used on heavy earth moving equipment than it is to try to separate the rubber from the tire and remold it into a new one. The basis of industrial ecology is provided by the phenomenon of industrial metabolism, which refers to the ways in which an industrial system handles materials and energy, extracting needed materials from sources such as ores, using energy to assemble materials in desired ways, and disassembling materials and components. In this respect, an industrial ecosystem operates in a manner analogous to biological organisms, which act on biomolecules to perform anabolism (synthesis) and catabolism (degradation). Just as occurs with biological systems, industrial enterprises can be assembled into industrial ecosystems. Such systems consist of a number (preferably large and diverse) of industrial enterprises acting synergistically and, for the most part, with each utilizing products and potential wastes from other members of the system. Such systems are best assembled through natural selection and, to a greater or lesser extent, such selection has occurred throughout the world. However, recognition of the existence and desirability of smoothly functioning industrial ecosystems can provide the basis for laws and regulations (or the repeal thereof) that give impetus to the establishment and efficient operation of such systems. The term sustainable development has been used to describe industrial develop- ment that can be sustained without environmental damage and to the benefit of all people. Clearly, if humankind is to survive with a reasonable standard of living, something like “sustainable development” must evolve in which use of nonrenewable resources is minimized insofar as possible, and the capability to produce renewable resources (for example, by promoting soil conservation to maintain the capacity to grow biomass) is enhanced. This will require significant behavioral changes, particu- larly in limiting population growth and curbing humankind’s appetite for increasing consumption of goods and energy. 19.2 INDUSTRIAL ECOSYSTEMS A group of firms that practice industrial ecology through a system of industrial metabolism that is efficient in the use of both materials and resources constitute a functional industrial ecosystem. Such a system can be defined as a regional cluster of industrial firms and other entities linked together in a manner that enables them to utilize byproducts, materials, and energy between various enterprises in a mutually advantageous manner. Figure 19.1 shows the main attributes of a functional industrial ecosystem, which, in the simplest sense, processes materials powered by a relatively abundant source of energy. Materials enter the system from a raw materials source and are put in a © 2001 CRC Press LLC usable form by a primary materials producer. From there the materials go into manufacturing goods for consumers. Associated with various sectors of the operation are waste processors that can take byproduct materials, upgrade them, and feed them back into the system. An efficient, functional transportation system is required for the system to work well, and good communications links must exist among the various sectors. A key material in the system is water, and it is often in limited supply in highly populated arid regions of the world. Transportation system Energy Communications Labor Waste processing Manufacturing Primary materials processor Consumers Water Raw materials source Figure 19.1 Major components required for an industrial system. When these components exist symbiotically, utilizing waste materials from one concern as feedstock for another, they compose a functioning industrial ecosystem. A successfully operating industrial ecosystem provides several benefits. Such a system reduces pollution. It results in high energy efficiency compared to systems of firms that are not linked and it reduces consumption of virgin materials because it maximizes materials recycle. Reduction of amounts of wastes is another advantage of a functional system of industrial ecology. Finally, a key measure of the success of a system of industrial ecology is increased market value of products relative to material and energy consumption. An industrial ecosystem can be set up using two basic complementary © 2001 CRC Press LLC approaches. Within an industry, emphasis may be placed upon product durability and amenability to repair and recycle, which are compatible with the practice of industrial ecology. Instead of selling products, a concern may emphasize leasing so that it can facilitate recycling. The second approach emphasizes interactions between concerns so that they operate in keeping with good practice of industrial ecology. This approach facilitates materials and energy flow, exchange, and recycle between various firms in the industrial ecosystem. An important aspect of an industrial ecosystem is the practice of a high degree of industrial symbiosis. Symbiotic relationships in natural biological systems occur when two often very dissimilar organisms live together in a mutually advantageous manner. Analogous symbiotic relationships in which firms utilize each other’s residual materials form the basis of relationships between firms in a functional industrial ecosystem. Examples of industrial symbiosis are cited in Section 19.14 in the discussion of the Kalundborg, Denmark, industrial ecosystem. A useful way to view an industrial ecosystem is geographically, often on the basis of a transportation network. An example is the Houston Ship Channel, which stretches for many kilometers and is bordered by a large number of petrochemical concerns that exist to mutual advantage through the exchange of materials and energy. The purification of natural gas by concerns located along the channel yields lower molecular mass hydrocarbons such as ethane and propane that can be used by other concerns, for example, in polymers manufacture. Sulfur removed from natural gas and petroleum can be used to manufacture sulfuric acid, which in turn is a key raw material for the manufacture of a number of other chemicals. 19.3 THE FIVE MAJOR COMPONENTS OF AN INDUSTRIAL ECOSYSTEM Industrial ecosystems can be broadly defined to include all types of production, processing, and consumption. These include, for example, agricultural production as well as purely industrial operations. It is useful to define five major components of an industrial ecosystem, as shown in Figure 19.2. These are (1) a primary materials producer, (2) a source
Recommended publications
  • Recycling Scrap Carpet
    Advancing Carpet Stewardship: A How-To Guide The Product Stewardship Institute | October 2015 Product Stewardship Institute, Inc. is an equal opportunity employer and provider. Advancing Carpet Stewardship: A HOW-TO GUIDE WHAT IS CARPET STEWARDSHIP? Americans discard nearly 3.9 million tons of carpet and rugs annually. Yet, despite voluntary industry recycling programs, only about 7.5 percent gets recycled. Much of this bulky, cumbersome waste ends up in the nation’s landfills and imposes significant costs on local governments for its management. Reusing and recycling, rather than landfilling, scrap carpet can: • Reduce reliance on disposal; • Recover valuable materials to make other products (including decking, construction material, automotive and furniture parts, and carpet pad, among others); • Create recycling jobs; • Reduce waste management costs for governments; • Reduce the need for virgin materials to be extracted; and • Reduce greenhouse gas emissions and energy use by decreasing the energy-intensive production of new carpet. State and local governments, carpet manufacturers, and other stakeholders in the carpet life cycle need to work together to develop more effective ways of managing scrap carpet. Carpet stewardship is a way to minimize the health, safety, and environmental impacts of carpet from manufacturing through end-of- life, while also maximizing economic benefits. Carpet manufacturers have the greatest ability to increase sustainable production and recycling, but other stakeholders, such as suppliers, retailers, and consumers, also play a role. Carpet stewardship can be either voluntary or required by law. Extended producer responsibility (EPR) is a mandatory type of product stewardship that includes, at a minimum, the requirement that the manufacturer’s responsibility for its product extends to managing that product at end-of-life, including both financial and management responsibility.
    [Show full text]
  • Principles of Product Stewardship
    Advancing Tire Stewardship in the United States MEETING SUMMARY January 21 & 22, 2015—Hartford, CT Attendees More than 160 local, state, and federal government officials, recyclers, retailers, and other key stakeholders attended the meeting, with about half attending in person and the other half participating via live web streaming (see attendee list). Government officials participating represented 22 states. Meeting Materials Meeting materials are available on PSI's 2015 Tire Stewardship Dialogue Meeting web-site (http://www.productstewardship.us/?page=2015_Tires_Dialogue). We encourage you to consult the PowerPoint presentations when reviewing this summary. Welcoming Remarks Jessie Stratton, Connecticut Department of Energy and Environmental Protection (CT DEEP) Policy Director, welcomed attendees to the meeting. She indicated that tires were one of ten priority materials in CT and emphasized the collaborative process as essential to the success of recycling programs. Meeting Overview Scott Cassel of the Product Stewardship Institute (PSI) thanked meeting sponsors and reported that the size of the group was the largest ever for a PSI dialogue meeting, reflecting significant interest in the issue of scrap tire management. Scott reported that 90 percent of the 65 respondents to a 2014 PSI survey of state/local governments and watershed protection groups said that they had a scrap tire dumping problem. He outlined the contents of PSI’s briefing document and asked for comments and suggested revisions by January 30. Scott also laid out the expected meeting outcomes and provided an overview of the meeting agenda. Scott highlighted three basic problems mentioned by those from government, industry, and environmental groups whom PSI interviewed prior to the meeting: illegal dumping, market challenges for higher end uses, and lack of sustainable funding.
    [Show full text]
  • Creating Market Incentives for Greener Products Policy Manual for Eastern Partnership Countries
    Creating Market Incentives for Greener Products Policy Manual for Eastern Partnership Countries Creating Incentives for Greener Products Policy Manual for Eastern Partnership Countries 2014 About the OECD The OECD is a unique forum where governments work together to address the economic, social and environmental challenges of globalisation. The OECD is also at the forefront of efforts to understand and to help governments respond to new developments and concerns, such as corporate governance, the information economy and the challenges of an ageing population. The Organisation provides a setting where governments can compare policy experiences, seek answers to common problems, identify good practice and work to co-ordinate domestic and international policies. The OECD member countries are: Australia, Austria, Belgium, Canada, Chile, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Israel, Italy, Japan, Korea, Luxembourg, Mexico, the Netherlands, New Zealand, Norway, Poland, Portugal, the Slovak Republic, Slovenia, Spain, Sweden, Switzerland, Turkey, the United Kingdom and the United States. The European Union takes part in the work of the OECD. Since the 1990s, the OECD Task Force for the Implementation of the Environmental Action Programme (the EAP Task Force) has been supporting countries of Eastern Europe, Caucasus and Central Asia to reconcile their environment and economic goals. About the EaP GREEN programme The “Greening Economies in the European Union’s Eastern Neighbourhood” (EaP GREEN) programme aims to support the six Eastern Partnership countries to move towards green economy by decoupling economic growth from environmental degradation and resource depletion. The six EaP countries are: Armenia, Azerbaijan, Belarus, Georgia, Republic of Moldova and Ukraine.
    [Show full text]
  • A Apple Inc., 19, 178 B Basel Action Network, 116, 126 Basel
    Index A E Apple Inc., 19, 178 End-of-life returns, 149 End-of-use returns, 149 B Environmental legislation, 86, 133, 144, 145 Basel Action Network, 116, 126 E-waste, 8, 82–91, 107, 108, 110, 115–120, Basel Convention, 83, 86, 117, 118 125–127, 129–131, 142 Bio-fuel, 7, 30, 31, 33–35 Extended producer responsibility, 88, 117, 119, Blood supply chain, 50, 51, 57, 58, 63–65, 121, 123, 127, 144, 202 67, 68 British, 180, 182, 202 F Brominated Fire Retardants (BFRs), 116 Feedstocks, 29, 35 Footprint, 8, 14, 26, 31, 35, 36, 38, 77, 78, 92–95, 113, 123, 127, 175–180, 182, 183, C 185–191, 195 C40, 3, 14, 16, 24 Fossil hydrocarbon fuels, 35 Cap and Trade, 176, 202 Carbon-dioxide, 1, 4, 7, 9, 10, 30, 39, 81, G 115, 193 GHG emissions, 9, 10, 14, 16, 19, 23, 175–180, CDP project, 14, 190, 191 182, 185–191 Certifier, 168–170, 173 GHG Protocol, 19, 177, 180, 182, 189 Chemicals, 39, 85, 118, 119, 121, 176, 179 Green building, 81, 82, 176, 185 Clinton Climate Initiative, 14 Green building history, 101 Closed-loop supply chain, 8, 133, 149, 163 Green Electronics Council (GEC), 123 Cloud computing, 92–95 Green IT, 74–77, 80, 81, 90, 91 CO2-eq., 10, 11, 14, 16, 19, 21, 23, 175, 182, Greenpeace, 4, 117, 127 186–188 Collective producer responsibility (CPR), H 130–132, 135, 142, 143 Health care, 39, 42, 49–51, 70, 71 Construction, 54, 60, 81, 82, 120, 171, 180, Herman Miller, 179, 180, 191 185 Hewlett-Packard, 73, 76, 125 Credibility, 166, 169, 171 I D ICLEI, 16 Data center, 75, 76, 78–80, 82, 92–95, 123, 185 India, 2, 4, 7, 11, 14, 25, 74, 78, 79, 81–86, 90, Dell, 25, 76, 121, 123, 125, 143, 186, 190 91, 94, 95, 110, 117–119 Disposition decision, 150–153, 156, 158, 160, Industrial ecology, 219 161, 163 In-house manufacturing, 132 T.
    [Show full text]
  • Permaculture
    Permaculture What might it have to offer a green economist? Definition ‘The use of systems thinking and design principles that provide the organising framework for implementing a vision of consciously designed landscapes that mimic the relationships and patterns found in nature’ ‘Linear relationships are easy to think about: the more the merrier. Linear equations are solvable, which makes them suitable for textbooks. Linear systems have an important modular virtue: you can take them apart and put them together again—the pieces add up. Non-linear systems generally cannot be solved and cannot be added together . Non-linearity means that the act of playing the game has a way of changing the rules . That twisted changeability makes non-linearity hard to calculate, but it also creates rich kinds of behavior that never occure in linear systems’ James Gleick, Chaos: Making a New Science Traditional wisdom ‘Because of feedback delays within complex systems, by the time a problem becomes apparent it may be unnecessarily difficult to solve’ Translation: ‘A stitch in time saves nine’ ‘A diverse system with multiple pathways and redundancies is more stable and less vulnerable to external shock than a uniform system with little diversity’ Translation: Don’t put all your eggs in one basket Odum developed Howard Odum methods for tracking and measuring the flows of energy and nutrients through complex living systems Ways of understanding the links between flows of money and goods in society and the flows of energy in ecosystems ‘industrial man . eats potatoes largely made of oil’ Environment, Power and Society, 1971 ‘Odum proposed that a measurement of the amount of transformed solar energy embodied in any product of the biosphere or human society—for which he coined the term ‘emergy’—could provide a kind of ‘universal currency’ which would allow fair and accurate comparison of the human and natural contributions to any particular economic process.
    [Show full text]
  • Industrial Ecology: a New Perspective on the Future of the Industrial System
    Industrial Ecology: a new perspective on the future of the industrial system (President's lecture, Assemblée annuelle de la Société Suisse de Pneumologie, Genève, 30 mars 2001.) Suren Erkman Institute for Communication and Analysis of Science and Technology (ICAST), P. O. Box 474, CH-1211 Geneva 12, Switzerland Introduction Industrial ecology? A surprising, intriguing expression that immediately draws our attention. The spontaneous reaction is that «industrial ecology» is a contradiction in terms, something of an oxymoron, like «obscure clarity» or «burning ice». Why this reflex? Probably because we are used to considering the industrial system as isolated from the Biosphere, with factories and cities on one side and nature on the other, the problem consisting in trying to minimize the impact of the industrial system on what is «outside» of it: its surroundings, the «environment». As early as the 1950’s, this end-of-pipe angle was the one adopted by ecologists, whose first serious studies focused on the consequences of the various forms of pollution on nature. In this perspective on the industrial system, human industrial activity as such remained outside of the field of research. Industrial ecology explores the opposite assumption: the industrial system can be seen as a certain kind of ecosystem. After all, the industrial system, just as natural ecosystems, can be described as a particular distribution of materials, energy, and information flows. Furthermore, the entire industrial system relies on resources and services provided by the Biosphere, from which it cannot be dissociated. (It should be specified that .«industrial», in the context of industrial ecology, refers to all human activities occurring within the modern technological society.
    [Show full text]
  • Achieving Energy Efficiency in Manufacturing: Organization, Procedures and Implementation
    ACHIEVING ENERGY EFFICIENCY IN MANUFACTURING: ORGANIZATION, PROCEDURES AND IMPLEMENTATION _______________________________________ A Thesis presented to the Faculty of the Graduate School at the University of Missouri-Columbia _______________________________________________________ In Partial Fulfillment of the Requirements for the Degree Master of Science __________________________________________________________________ By SÂNDINA PONTE Dr. Bin Wu, Thesis Supervisor MAY 2011 © Copyright by Sândina Ponte 2011 All Rights Reserved The undersigned, appointed by the dean of the Graduate School, have examined the thesis entitled ACHIEVING ENERGY EFFICIENCY IN MANUFACTURING: ORGANIZATION, PROCEDURES AND IMPLEMENTATION presented by Sândina Ponte, a candidate for the degree of master of science and hereby certify that, in their opinion, it is worthy of acceptance. Professor Bin Wu Professor James Noble Professor Hongbin Ma Thank you to my wonderful husband for the much needed motivation during those last few weeks. Thanks to Dr. Wu for supporting this project and being such a wonderful advisor and friend. Thanks to my managers Bernt Svens and Stefan Forsmark at ABB Inc. for believing in Energy Efficiency and the need for sustainable development. ACKNOWLEDGEMENTS My thanks to my advisor, Dr. Bin Wu, for his contribution and support to my research. I also wish to thank Chatchai Pinthuprapa for his previous research on energy audits and web tool development. ii TABLE OF CONTENTS ACKNOWLEDGEMENTS...............................................................................................
    [Show full text]
  • Industrial Ecology: Concepts and Approaches L
    Proc. Nati. Acad. Sci. USA Vol. 89, pp. 793-797, February 1992 Colloquium Paper This paper serves as an introduction to the following papers, which were presented at a colloquium entitled "Industrial Ecology, " organized by C. Kumar N. Patel, held May 20 and 21, 1991, at the National Academy of Sciences, Washington, DC. Industrial ecology: Concepts and approaches L. W. JELINSKI*, T. E. GRAEDEL, R. A. LAUDISE, D. W. MCCALL, AND C. K. N. PATEL AT&T Bell Laboratories, Murray Hill, NJ 07974 ABSTRACT Industrial ecology is a new approach to the and gases, and produce wastes of their own. These industrial design of products and processes and the implemen- wastes are in turn food for other organisms, some of tation of sustainable manufacturing strategies. It is a concept which may convert the wastes into the minerals used in which an industrial system is viewed not in isolation from its by the primary producers, and some ofwhich consume surrounding systems but in concert with them. Industrial each other in a complex network of processes in which ecology seeks to optimize the total materials cycle from virgn everything produced is used by some organism for its material to finished material, to component, to product, to own metabolism. Similarly, in the industrial ecosys- waste product, and to ultimate disposal. To better characterize tem, each process and network of processes must be the topic, the National Academy of Sciences convened a collo- viewed as a dependent and interrelated part of a larger quium from which were derived a number of salient contribu- whole.
    [Show full text]
  • Industrial Ecology a New Path to Sustainability: an Empirical Review
    INDEPENDENT JOURNAL OF MANAGEMENT & PRODUCTION (IJM&P) http://www.ijmp.jor.br v. 5, n. 3, June - September 2014 ISSN: 2236-269X DOI: 10.14807/ijmp.v5i3.178 INDUSTRIAL ECOLOGY A NEW PATH TO SUSTAINABILITY: AN EMPIRICAL REVIEW Felichesmi Selestine Lyakurwa Mzumbe University, Tanzania E-mail: [email protected] [email protected] Submission: 15/12/2013 Revision: 02/01/2014 Accept: 10/01/2014 ABSTRACT The precise understanding of the link between industrial ecology and sustainability is vitally important for a continuous environmental performance. In this study, an intensive review of industrial ecology principles, its application areas and the extent to which industrial ecology has been applied was documented. It was observed that the effective application of industrial ecology is critical for sustainability, since the industry is the main polluter of the environment. It was further inferred that, there is inadequate applicability of the industrial ecology principles by developed countries. Thus I hypothesized that, there is a great opportunity for new investment in this field considering the absence of modern means for the liquid and solid waste management. For example, improper incineration of wastes such as hospital wastes, and the electrical and electronic equipment was perceived to bring health problems in the near future. Therefore, it is time for the governments in both developed and developing countries to increase the applicability of industrial ecology, for sustainable social, economic, political and environmental performances. Keywords: Industrial ecology, Sustainability, Environment, Resource, Materials, Energy [http://creativecommons.org/licenses/by/3.0/us/] Licensed under a Creative Commons Attribution 3.0 United States License 623 INDEPENDENT JOURNAL OF MANAGEMENT & PRODUCTION (IJM&P) http://www.ijmp.jor.br v.
    [Show full text]
  • Industrial Ecology: the Role of Manufactured Capital in Sustainability Helga Weisza,B,1, Sangwon Suhc, and T
    SPECIAL FEATURE: INTRODUCTION Industrial Ecology: The role of manufactured capital in sustainability Helga Weisza,b,1, Sangwon Suhc, and T. E. Graedeld The lack of quantitative results over two aResearch Domain Transdisciplinary Concepts & Methods, Potsdam Institute for Climate decades ago was paralleled by a compelling Impact Research, 14473 Potsdam, Germany; bDepartment of Cultural History and Theory and c underrepresentation of methodological sug- Department of Social Sciences, Humboldt University Berlin, 10117 Berlin, Germany; Bren gestions. Among the few exceptions in those School of Environmental Science and Management, University of California, Santa Barbara, early papers were Ayres’ material flow anal- d CA 93106; and Center for Industrial Ecology, Yale University, New Haven, CT 06511 ysis of toxic heavy metals (17) and Duchin’s proposal to use economic input-output anal- ysis (18) to describe and analyze the meta- In 1992 PNAS presented a Special Feature with transition has increased in parallel, and the bolic connectedness among physical factors 22 contributions from a colloquium entitled technological and economic feasibility for such of production, industrial production, and “ ” Industrial Ecology, held at the National a transition has been demonstrated, especially consumptions sectors. Those two approaches Academy of Sciences of the United States in for the energy system (13, 14). have developed into core methods of Indus- Washington, DC (1). In these articles Industrial How did Industrial Ecology originally de- trial Ecology today (6, 19–25). The research Ecology was presented as an approach to un- fine its scope in what we now call sustain- articles included in the present Special Fea- derstand and ultimately optimize the total ma- ability science and what is its role today? If ture provide ample evidence for Industrial terial cycles of industrial processes (2).
    [Show full text]
  • Waste Valorization, Loop-Closing, and Industrial Ecology Ange Nzihou, Reid Lifset
    Waste Valorization, Loop-Closing, and Industrial Ecology Ange Nzihou, Reid Lifset To cite this version: Ange Nzihou, Reid Lifset. Waste Valorization, Loop-Closing, and Industrial Ecology. Journal of Industrial Ecology, Wiley, 2010, 14 (2), p.196-199. 10.1111/j.1530-9290.2010.00242.x. hal-01634025 HAL Id: hal-01634025 https://hal.archives-ouvertes.fr/hal-01634025 Submitted on 22 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Waste Valorization, Loop-Closing, and Industrial Ecology Ange Nzihou and Reid Lifset Recycling has always been a pivotal con- orization is the treatment of waste for beneficial cept in industrial ecology. From the seminal use as raw material or as an energy carrier, with article by Frosch and Gallopoulos (1989) the emphasis on processes and practices that re- in Scientific American that marks the begin- duce emissions and related environmental im- ning of this field, the productive use of what pacts. The term valorization typically refers to would otherwise be efforts to make use a waste has been seen Waste valorization is the treatment of of bulk, production- as central to resource related wastes, such as efficiency and the re- waste for beneficial use as raw mate- paper sludge, inciner- duction of environ- rial or as an energy carrier, with em- ator ash, metal slags, mental damage.
    [Show full text]
  • Extended Producer Responsibility and Product Stewardship for Tobacco
    l o rna f Wa ou s J te l a R n e o s i o t u International Journal a r n c r e e t Curtis et al., Int J Waste Resources 2014, 4:3 s n I DOI: 10.4172/2252-5211.1000157 ISSN: 2252-5211 of Waste Resources Review Article Open Access Extended Producer Responsibility and Product Stewardship for Tobacco Product Waste Clifton Curtis1, Susan Collins2, Shea Cunningham3, Paula Stigler4 and Thomas E Novotny5* 1Director, The Varda Group; and Policy Director, Cigarette Butt Pollution Project, USA 2President, Container Recycling Institute, USA 3Sustainability Policy, Research & Planning Consultant, Container Recycling Institute, USA 4Assistant Professor, University of Texas Health Sciences, San Antonio Regional Campus, USA 5Chief Executive Officer, Cigarette Butt Pollution Project and Professor of Epidemiology, Graduate School of Public Health, San Diego State University, USA *Corresponding author: Thomas E Novotny, Chief Executive Officer, Cigarette Butt Pollution Project and Professor of Epidemiology, Graduate School of Public Health, San Diego State University, USA, Tel: +619-594-3109; E-mail: [email protected] Received date: July 23, 2014; Accepted date: August 26, 2014; Published date: September 4, 2014 Copyright: © 2014 Novotny TE, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract This paper reviews several environmental principles, including Extended Producer Responsibility (EPR), Product Stewardship (PS), the Polluter Pays Principle (PPP), and the Precautionary Principle, as they may apply to tobacco product waste (TPW).
    [Show full text]