Industrial Ecology: the Role of Manufactured Capital in Sustainability Helga Weisza,B,1, Sangwon Suhc, and T

Total Page:16

File Type:pdf, Size:1020Kb

Industrial Ecology: the Role of Manufactured Capital in Sustainability Helga Weisza,B,1, Sangwon Suhc, and T SPECIAL FEATURE: INTRODUCTION Industrial Ecology: The role of manufactured capital in sustainability Helga Weisza,b,1, Sangwon Suhc, and T. E. Graedeld The lack of quantitative results over two aResearch Domain Transdisciplinary Concepts & Methods, Potsdam Institute for Climate decades ago was paralleled by a compelling Impact Research, 14473 Potsdam, Germany; bDepartment of Cultural History and Theory and c underrepresentation of methodological sug- Department of Social Sciences, Humboldt University Berlin, 10117 Berlin, Germany; Bren gestions. Among the few exceptions in those School of Environmental Science and Management, University of California, Santa Barbara, early papers were Ayres’ material flow anal- d CA 93106; and Center for Industrial Ecology, Yale University, New Haven, CT 06511 ysis of toxic heavy metals (17) and Duchin’s proposal to use economic input-output anal- ysis (18) to describe and analyze the meta- In 1992 PNAS presented a Special Feature with transition has increased in parallel, and the bolic connectedness among physical factors 22 contributions from a colloquium entitled technological and economic feasibility for such of production, industrial production, and “ ” Industrial Ecology, held at the National a transition has been demonstrated, especially consumptions sectors. Those two approaches Academy of Sciences of the United States in for the energy system (13, 14). have developed into core methods of Indus- Washington, DC (1). In these articles Industrial How did Industrial Ecology originally de- trial Ecology today (6, 19–25). The research Ecology was presented as an approach to un- fine its scope in what we now call sustain- articles included in the present Special Fea- derstand and ultimately optimize the total ma- ability science and what is its role today? If ture provide ample evidence for Industrial terial cycles of industrial processes (2). there is one compelling motif apparent in Ecology’s success in applying and further de- This PNAS issue presents the second Special virtually every paper of the 1992 Special veloping these methods and in quantifying Feature on Industrial Ecology, offering the Feature, it is a concentration on the physical the industrial metabolism for different indus- opportunity to reflect on the original goals basis of industrial societies as the analytical trial processes and across different scales in and approaches and to compare them with end point. This focus still persists, but its many of its ramifications. ’ Industrial Ecology s achievements and its per- scientific justification, which engendered lively In hindsight, it is also compelling to see tinent role within sustainability science. discussions in 1992, has changed significantly. that although the methods and the empirical The motivation to promote a new field as One original line of reasoning stressed the basis had been so much more limited, the originally expressed in the contributions of need to overcome the dominant paradigm of expressed range of Industrial Ecology goals the 1992 Special Feature is soberingly topical pollution control in the 1970s and 1980s, and topics was much broader 20 y ago than it (3, 4): (i) the recognition that human alter- which focused on technical end-of-pipe fixes, is today. This reflects the increasing special- ations of the Earth System are progressing at and treated use of natural resources (water, ization in sustainability science that has oc- an unprecedented pace; (ii)theinsightthat energy, biomass, metals, and minerals) and curred since that time. humankind has become a planetary force; disposal of wastes and pollutants to environ- Although a direct confrontation between and (iii) advocacy for a real-world sustainabil- mental media (such as air, water, and soil) as economists’ claim that, given the appropriate ity transition that would be as fundamental as separate subjects. The concept of industrial price signals, the market economy will effi- — the industrial revolution of the 18th century. metabolism that is, a holistic approach of ciently “squeeze the maximum human sat- Since the first Special Feature in 1992, the quantifying the flows of materials and energy isfaction out of the limited human and — pace of growth in global greenhouse gas into and out of society (15, 16) has since natural resources” (26) and the physicists’ emissions, material use, and energy use has then been instrumental in developing an in- approach that “long-term ecological sus- not slowed down or stopped, but rather has creasingly detailed and quantitative under- tainability is incompatible with an open – accelerated, especially after the year 2000 (5 standing of the life cycle of materials. materials cycle” (17) has become almost 7). Human-induced alterations of the Earth The specific Industrial Ecology approaches absent in Industrial Ecology, the original System have reached such a scale (8, 9) that a toward transforming the industrial metabo- ambition to reconcile the fragmented goals new term for the current geological epoch, lism to reduce its environmental impacts and diverting physical and economic rationales the Anthropocene, was proposed (10). Cli- the pressure on resources while maintaining has shifted to two related avenues. mate-sensitive tipping elements of the Earth its function for human well-being are still Oneavenueisthepragmaticcooperation System have been detected and described pretty much in place: enabling a circular between academia and industry jointly seek- (11). Those tipping elements (such as the materials flow economy, the importance of ing ways to simultaneously reduce economic Indian monsoon, the Amazon rainforest, or product design in recycling, the use of non- costs and metabolic throughput, such as in theGreenlandIceSheet)havebeenstable toxic materials, the mimicry of ecological research on eco-symbiosis (27), waste man- since the beginning of the Holocene but have systems, and decoupling economic growth agement and recycling (28–30), criticality of the potential to irreversibly flip into funda- from resource use, all of which were already mentally different regimes once triggered by a proposed in 1992. With a few exceptions, Author contributions: H.W. and S.S. designed research; and H.W., global mean temperature above certain thresh- however, the presentations in 1992 were S.S., and T.E.G. wrote the paper. ’ olds. Some of those thresholds appear to be largely devoid of data, whereas in today sIn- The authors declare no conflict of interest. within the reach of current climate-change dustrial Ecology data abound, and analysis 1To whom correspondence should be addressed. Email: Helga. pathways (12). Advocacy for a sustainability and interpretations are becoming central. [email protected]. 6260–6264 | PNAS | May 19, 2015 | vol. 112 | no. 20 www.pnas.org/cgi/doi/10.1073/pnas.1506532112 Downloaded by guest on October 3, 2021 metals (31–33), or the long-term stock and time causing human-induced environmental Transforming the industrial metabolism to INTRODUCTION flow dynamics of basic industrial commodi- change at a planetary scale (34, 62, 63). reduce its environmental and resource im- SPECIAL FEATURE: ties (22, 34). The second avenue is to further pacts, while maintaining its function for hu- develop a theoretical concept to describe, The Role of Manufactured Capital for man well-being, is the crucial challenge for quantify, and eventually simulate the physical Sustainability sustainability. Meeting this challenge requires economy, thereby providing a solid, quanti- In recognition of the fundamental impor- a degree of understanding of key interactions tative description of the interface mediating tance of ecosystem services for human well- among human, natural, and manufactured the coevolution between social and environ- being, sustainability science has accumulated capital (Fig. 1) and their implications for mental change (35–37). a large body of work on natural and human sustainability. On the one hand, manufac- Some topics from the 1992 Special Fea- capital and their interrelations (64). Most tured capital provides essential goods, ser- ture deserve our attention, not because they interactions between natural and human vices, and shelter for human well-being. In quickly became part of the Industrial Ecol- capital are not direct, however, but are me- doing so it consumes natural resources and ogy mainstream but because they anticipated diated by manufactured capital in the form of induces anthropogenic environmental change, decisive research avenues that are only now industrial production facilities, communica- such as climate change and habitat loss. This, coming to the forefront. The ambition that tion devices, and extensively built infra- in turn, necessitates changes in human, nat- Industrial Ecology research would focus on structure. This aspect has thus far received ural, and manufactured capital and their in- the future has not quickly materialized, al- relatively little attention in sustainability sci- teractions. Examples are the rapid growth in though scenarios of the future have become ence. The manufactured capital is the entire renewable energy infrastructure to cope with more dominant in recent years (34, 38). It physical man-made stock, produced and re- climate change, the increasing possibility of seems that the founding generation severely produced by society. It comprises buildings, failures in material supply chains, and a surge underestimated the existing lack of knowledge transport, energy, water, and waste infra- in the speed
Recommended publications
  • A Apple Inc., 19, 178 B Basel Action Network, 116, 126 Basel
    Index A E Apple Inc., 19, 178 End-of-life returns, 149 End-of-use returns, 149 B Environmental legislation, 86, 133, 144, 145 Basel Action Network, 116, 126 E-waste, 8, 82–91, 107, 108, 110, 115–120, Basel Convention, 83, 86, 117, 118 125–127, 129–131, 142 Bio-fuel, 7, 30, 31, 33–35 Extended producer responsibility, 88, 117, 119, Blood supply chain, 50, 51, 57, 58, 63–65, 121, 123, 127, 144, 202 67, 68 British, 180, 182, 202 F Brominated Fire Retardants (BFRs), 116 Feedstocks, 29, 35 Footprint, 8, 14, 26, 31, 35, 36, 38, 77, 78, 92–95, 113, 123, 127, 175–180, 182, 183, C 185–191, 195 C40, 3, 14, 16, 24 Fossil hydrocarbon fuels, 35 Cap and Trade, 176, 202 Carbon-dioxide, 1, 4, 7, 9, 10, 30, 39, 81, G 115, 193 GHG emissions, 9, 10, 14, 16, 19, 23, 175–180, CDP project, 14, 190, 191 182, 185–191 Certifier, 168–170, 173 GHG Protocol, 19, 177, 180, 182, 189 Chemicals, 39, 85, 118, 119, 121, 176, 179 Green building, 81, 82, 176, 185 Clinton Climate Initiative, 14 Green building history, 101 Closed-loop supply chain, 8, 133, 149, 163 Green Electronics Council (GEC), 123 Cloud computing, 92–95 Green IT, 74–77, 80, 81, 90, 91 CO2-eq., 10, 11, 14, 16, 19, 21, 23, 175, 182, Greenpeace, 4, 117, 127 186–188 Collective producer responsibility (CPR), H 130–132, 135, 142, 143 Health care, 39, 42, 49–51, 70, 71 Construction, 54, 60, 81, 82, 120, 171, 180, Herman Miller, 179, 180, 191 185 Hewlett-Packard, 73, 76, 125 Credibility, 166, 169, 171 I D ICLEI, 16 Data center, 75, 76, 78–80, 82, 92–95, 123, 185 India, 2, 4, 7, 11, 14, 25, 74, 78, 79, 81–86, 90, Dell, 25, 76, 121, 123, 125, 143, 186, 190 91, 94, 95, 110, 117–119 Disposition decision, 150–153, 156, 158, 160, Industrial ecology, 219 161, 163 In-house manufacturing, 132 T.
    [Show full text]
  • Permaculture
    Permaculture What might it have to offer a green economist? Definition ‘The use of systems thinking and design principles that provide the organising framework for implementing a vision of consciously designed landscapes that mimic the relationships and patterns found in nature’ ‘Linear relationships are easy to think about: the more the merrier. Linear equations are solvable, which makes them suitable for textbooks. Linear systems have an important modular virtue: you can take them apart and put them together again—the pieces add up. Non-linear systems generally cannot be solved and cannot be added together . Non-linearity means that the act of playing the game has a way of changing the rules . That twisted changeability makes non-linearity hard to calculate, but it also creates rich kinds of behavior that never occure in linear systems’ James Gleick, Chaos: Making a New Science Traditional wisdom ‘Because of feedback delays within complex systems, by the time a problem becomes apparent it may be unnecessarily difficult to solve’ Translation: ‘A stitch in time saves nine’ ‘A diverse system with multiple pathways and redundancies is more stable and less vulnerable to external shock than a uniform system with little diversity’ Translation: Don’t put all your eggs in one basket Odum developed Howard Odum methods for tracking and measuring the flows of energy and nutrients through complex living systems Ways of understanding the links between flows of money and goods in society and the flows of energy in ecosystems ‘industrial man . eats potatoes largely made of oil’ Environment, Power and Society, 1971 ‘Odum proposed that a measurement of the amount of transformed solar energy embodied in any product of the biosphere or human society—for which he coined the term ‘emergy’—could provide a kind of ‘universal currency’ which would allow fair and accurate comparison of the human and natural contributions to any particular economic process.
    [Show full text]
  • Industrial Ecology: a New Perspective on the Future of the Industrial System
    Industrial Ecology: a new perspective on the future of the industrial system (President's lecture, Assemblée annuelle de la Société Suisse de Pneumologie, Genève, 30 mars 2001.) Suren Erkman Institute for Communication and Analysis of Science and Technology (ICAST), P. O. Box 474, CH-1211 Geneva 12, Switzerland Introduction Industrial ecology? A surprising, intriguing expression that immediately draws our attention. The spontaneous reaction is that «industrial ecology» is a contradiction in terms, something of an oxymoron, like «obscure clarity» or «burning ice». Why this reflex? Probably because we are used to considering the industrial system as isolated from the Biosphere, with factories and cities on one side and nature on the other, the problem consisting in trying to minimize the impact of the industrial system on what is «outside» of it: its surroundings, the «environment». As early as the 1950’s, this end-of-pipe angle was the one adopted by ecologists, whose first serious studies focused on the consequences of the various forms of pollution on nature. In this perspective on the industrial system, human industrial activity as such remained outside of the field of research. Industrial ecology explores the opposite assumption: the industrial system can be seen as a certain kind of ecosystem. After all, the industrial system, just as natural ecosystems, can be described as a particular distribution of materials, energy, and information flows. Furthermore, the entire industrial system relies on resources and services provided by the Biosphere, from which it cannot be dissociated. (It should be specified that .«industrial», in the context of industrial ecology, refers to all human activities occurring within the modern technological society.
    [Show full text]
  • Achieving Energy Efficiency in Manufacturing: Organization, Procedures and Implementation
    ACHIEVING ENERGY EFFICIENCY IN MANUFACTURING: ORGANIZATION, PROCEDURES AND IMPLEMENTATION _______________________________________ A Thesis presented to the Faculty of the Graduate School at the University of Missouri-Columbia _______________________________________________________ In Partial Fulfillment of the Requirements for the Degree Master of Science __________________________________________________________________ By SÂNDINA PONTE Dr. Bin Wu, Thesis Supervisor MAY 2011 © Copyright by Sândina Ponte 2011 All Rights Reserved The undersigned, appointed by the dean of the Graduate School, have examined the thesis entitled ACHIEVING ENERGY EFFICIENCY IN MANUFACTURING: ORGANIZATION, PROCEDURES AND IMPLEMENTATION presented by Sândina Ponte, a candidate for the degree of master of science and hereby certify that, in their opinion, it is worthy of acceptance. Professor Bin Wu Professor James Noble Professor Hongbin Ma Thank you to my wonderful husband for the much needed motivation during those last few weeks. Thanks to Dr. Wu for supporting this project and being such a wonderful advisor and friend. Thanks to my managers Bernt Svens and Stefan Forsmark at ABB Inc. for believing in Energy Efficiency and the need for sustainable development. ACKNOWLEDGEMENTS My thanks to my advisor, Dr. Bin Wu, for his contribution and support to my research. I also wish to thank Chatchai Pinthuprapa for his previous research on energy audits and web tool development. ii TABLE OF CONTENTS ACKNOWLEDGEMENTS...............................................................................................
    [Show full text]
  • Industrial Ecology: Concepts and Approaches L
    Proc. Nati. Acad. Sci. USA Vol. 89, pp. 793-797, February 1992 Colloquium Paper This paper serves as an introduction to the following papers, which were presented at a colloquium entitled "Industrial Ecology, " organized by C. Kumar N. Patel, held May 20 and 21, 1991, at the National Academy of Sciences, Washington, DC. Industrial ecology: Concepts and approaches L. W. JELINSKI*, T. E. GRAEDEL, R. A. LAUDISE, D. W. MCCALL, AND C. K. N. PATEL AT&T Bell Laboratories, Murray Hill, NJ 07974 ABSTRACT Industrial ecology is a new approach to the and gases, and produce wastes of their own. These industrial design of products and processes and the implemen- wastes are in turn food for other organisms, some of tation of sustainable manufacturing strategies. It is a concept which may convert the wastes into the minerals used in which an industrial system is viewed not in isolation from its by the primary producers, and some ofwhich consume surrounding systems but in concert with them. Industrial each other in a complex network of processes in which ecology seeks to optimize the total materials cycle from virgn everything produced is used by some organism for its material to finished material, to component, to product, to own metabolism. Similarly, in the industrial ecosys- waste product, and to ultimate disposal. To better characterize tem, each process and network of processes must be the topic, the National Academy of Sciences convened a collo- viewed as a dependent and interrelated part of a larger quium from which were derived a number of salient contribu- whole.
    [Show full text]
  • Industrial Ecology a New Path to Sustainability: an Empirical Review
    INDEPENDENT JOURNAL OF MANAGEMENT & PRODUCTION (IJM&P) http://www.ijmp.jor.br v. 5, n. 3, June - September 2014 ISSN: 2236-269X DOI: 10.14807/ijmp.v5i3.178 INDUSTRIAL ECOLOGY A NEW PATH TO SUSTAINABILITY: AN EMPIRICAL REVIEW Felichesmi Selestine Lyakurwa Mzumbe University, Tanzania E-mail: [email protected] [email protected] Submission: 15/12/2013 Revision: 02/01/2014 Accept: 10/01/2014 ABSTRACT The precise understanding of the link between industrial ecology and sustainability is vitally important for a continuous environmental performance. In this study, an intensive review of industrial ecology principles, its application areas and the extent to which industrial ecology has been applied was documented. It was observed that the effective application of industrial ecology is critical for sustainability, since the industry is the main polluter of the environment. It was further inferred that, there is inadequate applicability of the industrial ecology principles by developed countries. Thus I hypothesized that, there is a great opportunity for new investment in this field considering the absence of modern means for the liquid and solid waste management. For example, improper incineration of wastes such as hospital wastes, and the electrical and electronic equipment was perceived to bring health problems in the near future. Therefore, it is time for the governments in both developed and developing countries to increase the applicability of industrial ecology, for sustainable social, economic, political and environmental performances. Keywords: Industrial ecology, Sustainability, Environment, Resource, Materials, Energy [http://creativecommons.org/licenses/by/3.0/us/] Licensed under a Creative Commons Attribution 3.0 United States License 623 INDEPENDENT JOURNAL OF MANAGEMENT & PRODUCTION (IJM&P) http://www.ijmp.jor.br v.
    [Show full text]
  • Waste Valorization, Loop-Closing, and Industrial Ecology Ange Nzihou, Reid Lifset
    Waste Valorization, Loop-Closing, and Industrial Ecology Ange Nzihou, Reid Lifset To cite this version: Ange Nzihou, Reid Lifset. Waste Valorization, Loop-Closing, and Industrial Ecology. Journal of Industrial Ecology, Wiley, 2010, 14 (2), p.196-199. 10.1111/j.1530-9290.2010.00242.x. hal-01634025 HAL Id: hal-01634025 https://hal.archives-ouvertes.fr/hal-01634025 Submitted on 22 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Waste Valorization, Loop-Closing, and Industrial Ecology Ange Nzihou and Reid Lifset Recycling has always been a pivotal con- orization is the treatment of waste for beneficial cept in industrial ecology. From the seminal use as raw material or as an energy carrier, with article by Frosch and Gallopoulos (1989) the emphasis on processes and practices that re- in Scientific American that marks the begin- duce emissions and related environmental im- ning of this field, the productive use of what pacts. The term valorization typically refers to would otherwise be efforts to make use a waste has been seen Waste valorization is the treatment of of bulk, production- as central to resource related wastes, such as efficiency and the re- waste for beneficial use as raw mate- paper sludge, inciner- duction of environ- rial or as an energy carrier, with em- ator ash, metal slags, mental damage.
    [Show full text]
  • Product Design and Business Model Strategies for a Circular Economy
    KES Transactions on Sustainable Design and Manufacturing II Sustainable Design and Manufacturing 2015 : pp.277-296 : Paper sdm15-026 Product design and business model strategies for a circular economy Nancy M.P. Bocken 1 *, Conny Bakker1 and Ingrid de Pauw1 1 Design Engineering department Industrial Design Engineering Delft University of Technology Landbergstraat 15, 2628 CE Delft, The Netherlands * [email protected] Abstract There is a growing need for and interest in the business concept of a circular economy. The move to a circular economy brings with it a range of practical challenges for designers and strategists in businesses that will need to facilitate this transformation from a linear take-make-dispose model to a more circular model. This paper seeks to develop a framework to guide designers and businesses strategists in the move from a linear to a circular economy. The following research question is addressed: What are the product design and business model strategies for businesses that want to move to a circular economy model? Building on Stahel (1994, p. 179) the terminology of slowing, closing and narrowing resource loops is introduced. A list of product design strategies and business model strategies for strategic decision-makers is introduced based on this to facilitate the move to a circular economy. 1. Introduction Governmental organisations as well as business representatives report an increasing pressure on our global resources and the climate due to human activity (WBCSD, 2014; IPCC, 2014). The circular economy is viewed as a promising approach to help reduce our global sustainability pressures (European Commission, 2014; Ellen MacArthur Foundation, 2014).
    [Show full text]
  • Industrial Metabolism and River Basin Studies: a New Approach for the Analysis of Chemical Pollution
    INDUSTRIAL METABOLISM AND RIVER BASIN STUDIES: A NEW APPROACH FOR THE ANALYSIS OF CHEMICAL POLLUTION William M. Stigliani International Institute for Applied Systems Analysis, Laxenburg, Austria Peter R. Jaffe Princeton University, Princeton, New Jersey RR-93-6 September 1993 PRINCETON UNIVERSITY Princeton, NJ, USA INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS Laxenburg, Austria Research Reports, which record research conducted at IIASA, are independently reviewed before publication. Views or opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other organizations supporting the work. Copyright 01993 International Institute for Applied Systems Analysis. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage or retrieval system, without permission in writing from the publisher. This is a joint publication with Princeton University. Cover design by Martin Schobel. Printed by Novographic, Vienna, Austria. Contents Foreword Overview vii 1. Introduction 2. Pathways of Chemical Pollutants through the Industrial Economy 2.1 Categorization of sources of pollution 2.2 0 bstacles to reducing emissions 3. Trace Pollutants in the Environment 3.1 The dispersion of trace pollutants in the environment 3.2 Processes that disperse trace pollutants in the environment 3.3 The effect of environmental changes on the dispersion of trace pollutants
    [Show full text]
  • From Deep Ecology to the Blue Economy 2011
    The Blue Economy From Deep Ecology to The Blue Economy A review of the main concepts related to environmental, social and ethical business that contributed to the creation of The Blue Economy written by Gunter Pauli February 2011 based on an original article written by the same author in 1999 © 2011, Gunter Pauli If I can see beyond the green economy today, It is thanks to the giants on whose shoulders I stand Environmental deterioration and the imbalance between man and nature increasingly preoccupy scholars, philosophers, businessmen and policy makers alike. The disparity between rich and poor and the continuous incapacity to respond to the basic needs of all (not only humans) preoccupies many. It seems that the only sustainable phenomena of our modern time is the loss of biodiversity and our incapacity to eliminate poverty. Even though we all look reality in the eye, we seem to lack the vision and the tools to make a difference and steer our excessive consumption society in general and our competitive business world towards sustainability. Our media continue to report on the loss of forest cover, biodiversity, and human dignity. My concern has always been: in spite of the statistics showing the downward trends, what can I do to make a material difference on the ground. Since the 1950s we have seen a series of ideas and conceptual frameworks that have emerged from studies that illustrate the disconnect between our exploitative culture and the Earth's limited resources. This document attempts to summarize the most important persons and organizations whose work has greatly influenced my present thinking on business, environment, social development and ethics.
    [Show full text]
  • Download PDF (87.5
    Index AccountAbility 1000 Stakeholder Engagement Behavioural Insights Team 314 Standard (AA1000SES) 347 behaviourally informed disclosure 318–19 act-related consumption 212 choice architecture 313–14, 315, 317, 325 Africa 225 confusion, avoidance of 319 agency 86, 88, 92–5 default rules 319–23 collective 84–5, 96 and automatic enrolment 319–21 Agenda 21 55–6 extreme 322 agent-based model, modified 166–7 implicit endorsement 321 Agyeman, J. 422 mass 321 Akenji, L. 26 personalized 321 Albinsson, P.A. 419 energy use 318, 320–21, 325 Allwood, J.M. 142 findings 315–17 American Institute for Cancer Research 196 framing 316, 318 Antonides, G. 209–23 inertia and procrastination 315–16, 321, ascription of responsibility (AR) 256 322 Asia 62–3, 165, 193, 287 internalities 313, 315 Asia-Pacific 225 libertarian paternalism 314–15 attitude–behaviour (value–action) gaps 88, 107, ‘nudging’ 314, 318, 325 278 nutrition 318 attitude–behaviour–choice (ABC) model 95, presentation 316 105 probability assessment and attitude to risk attitudes–facilitators–infrastructure (AFI) 317 framework 26 reference point for consumer decisions 321 attitudinal factors 105, 278 salience 323–4 Austgulen, M.H. 204 savings 319–20, 325 Australia 59, 135, 140, 164, 172, 226 social norms 316–17, 324, 325 Global Green Tag 296 Belgium 64, 155 Austrian economics 394, 397–400, 401, 406, Belk, R. 415 408 Bell, D. 433 availability bias 317 Bentham, J. 396 Berg, A. 28 Baatz, C. 124, 127 best available technologies (BATs) 289, 378 Baker, S. 210, 211 Bhamra, T. 103 Ballantine, P.W. 419 Bhate, S. 105, 106 Bamberg, S.
    [Show full text]
  • Chpter 19: Industrial Ecology and Environmental Chemistry
    Manahan, Stanley E. "INDUSTRIAL ECOLOGY AND ENVIRONMENTAL CHEMISTRY" Fundamentals of Environmental Chemistry Boca Raton: CRC Press LLC, 2001 19 INDUSTRIAL ECOLOGY AND ENVIRONMENTAL CHEMISTRY __________________________ 19.1 INTRODUCTION AND HISTORY At the beginning of Chapter 11, mention was made of the anthrosphere consisting of the things humans construct, use, and do in the environment. The anthrosphere constitutes a fifth sphere of the environment, along with the geosphere, hydrosphere, atmosphere, and biosphere. Any intelligent effort to maintain and enhance environmental quality must consider the anthrosphere along with these other four spheres. This chapter is devoted primarily to the anthrosphere. In so doing, it emphasizes the emerging science of industrial ecology, defined and explained below. Industrial ecology is an approach based upon systems engineering and ecolo- gical principles that integrates the production and consumption aspects of the design, production, use, and termination (decommissioning) of products and ser- vices in a manner that minimizes environmental impact while optimizing utilization of resources, energy, and capital. The practice of industrial ecology represents an environmentally acceptable, sustainable means of providing goods and services. It is closely tied with environmental chemistry, and the two sciences work synergistically with each other. Industrial ecology works within a system of industrial ecosystems, which mimic natural ecosystems. Natural ecosystems, usually driven by solar energy and photosynthesis, consist of an assembly of mutually interacting organisms and their environment, in which materials are interchanged in a largely cyclical manner. An ideal system of industrial ecology follows the flow of energy and materials through several levels, uses wastes from one part of the system as raw material for another part, and maximizes the efficiency of energy utilization.
    [Show full text]