Resource Efficiency, Extended Producer Responsibility And
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Five Principles of Waste Product Redesign Under the Upcycling Concept
International Forum on Energy, Environment Science and Materials (IFEESM 2015) Five Principles of Waste Product Redesign under the Upcycling Concept Jiang XU1 & Ping GU1 1School of Design, Jiangnan University, Wuxi, China KEYWORD: Upcycling; Redesign principle; Green design; Industrial design; Product design ABSTRACT: It explores and constructs the principles of waste product redesign which are based on the concept of upcycling. It clarifies the basic concept of upcycling, briefly describes its current development, deeply discusses its value and significance, combines with the idea of upcycling which behinds regeneration design principle from the concept of “4R” of green design, and takes real-life case as example to analyze the principles of waste product redesign. It puts forward five principles of waste product redesign: value enhancement, make the most use of waste, durable and environmental protection, cost control and populace's aesthetic. INTRODUCTION Recently, environmental problems was becoming worse and worse, while as a developing country, China is facing dual pressures that economical development and environmental protection. However, large numbers of goods become waste every day all over the world, but the traditional recycling ways, such as melting down and restructuring, not only produce much CO2, but also those restruc- tured parts or products cannot mention in the same breath with raw ones. As a result, the western countries started to center their attention to the concept of “upcycling” of green design, which can transfer the old and waste things into more valuable products to vigorously develop the green econ- omy. Nevertheless, this new concept hasn’t been well known and the old notion of traditionally inef- ficient reuse still predominant in China, so it should be beneficial for our social development to con- struct the principles of waste products’ redesign which are based on the concept of upcycling. -
Industrial Symbiosis
Interreg Europe – Policy Learning Platform – Environment and Resource Efficiency Policy brief Industrial symbiosis This policy brief provides information on how industrial symbiosis is supported by EU policy framework and on the potential actions regions and cities can take to support the establishment of sustainable industrial networks that are based on exchanges of resources. 1. Background Since the early days of industrialisation industrial economy has been following a linear model of resource consumption that follows a take-make-dispose pattern.1 Industrial symbiosis is an approach which closes the loop in the material and energy flows contributing to a circular economy model. Industrial symbiosis represents a shift from the traditional industrial model in which wastes are considered the norm, to integrated systems in which everything has its use. Industrial symbiosis is part of the industrial ecology concept, that uses the natural ecosystem as an analogy for human industrial activity. The principal objective of industrial ecology is to restructure the industrial system by optimising resource use, closing material loops and minimising emissions, promoting de- materialisation and reducing and eliminating the dependence on non-renewable energy sources.2 While industrial ecology is principally concerned with the flow of materials and energy through systems at different scales, from products to factories and up to national and global levels; industrial symbiosis focuses on these flows through industrial networks in local and regional economies.3 In a broad sense, industrial symbiosis is defined as the synergistic exchange of waste, by-products, water and energy between individual companies in a locality, region or even in a virtual community. -
Upcycling Wastes with Biogas Production: an Exergy and Economic Analysis
Venice 2012, Fourth International Symposium on Energy from Biomass and Waste Upcycling wastes with biogas production: An exergy and economic analysis M. Martin*, A. Parsapour* *Environmental Technology and Management, Linköping University, 581 83, Linköping, Sweden SUMMARY: The massive consumption of finite resources creates high economical and environmental costs due to material dispersion and waste generation. In order to overcome this, by-products and wastes may be used, to avoid the use of virgin materials and benefit from the useful inherent energy of the material. By adding value to the material, economic and environmental performance can be improve, which is called upcycling. In this paper, an exergy and economic analysis of a biogas process is examined. In order to investigate if biogas production from wastes can upcycle materials, biogas production from a by- product from the brewing process is examined. From the analysis, the process is found to upcycle the by-product with an increase in exergy and economic benefit due to the generation of biomethane and biofertilizer. This analysis thus shows that by using by-products as such, the sustainability of the system may improve. 1. INTRODUCTION Given the concerns for sustainable development, the availability of energy from fossil sources and their environmental effects continues to produce problems for nations worldwide. With the current availability of alternative energy sources, our dependence on fossil sources can thus be questioned. Among these, bioenergy and biofuels have great potential for development and improvement. However, many experts have criticized the environmental performance and energy efficiency of biofuel production (Wibe, 2010; Akinci, 2008; Searchinger, 2008). -
Exergy Analysis of the Energy Use in Greece
E-symbiosis conference 19-21 June 2014 Athens THE IMPACT OF EXERGY ANALYSIS IN THE SYMBIOSIS OF THE ENERGY USE 1 1 2 Christopher J. Koroneos , Evanthia A. Nanaki , G. A. Xydis 1University of Western Macedonia, Department of Mechanical Engineering, Mpakola & Sialvera, Kozani 50100, Greece Email: [email protected] [email protected] 2 Centre for Research and Technology Hellas, Institute for Research & Technology of Thessaly Technology Park of Thessaly,1stIndustrialArea, 38500 Volos, Greece Email: [email protected] Abstract In this work the concept of Exergy Analysis is applied to the residential and industrial sector of Greece in order to show the potential role that exergy (second – law) analysis can play to energy sustainability. Comprehensive exergy analysis is particularly valuable for evaluating energy production technologies that are energy intensive and represent a key infrastructural component. Exergy analysis is used as an analysis method for Industrial Symbiosis. It is foung that the residential energy and exergy efficiency, in 2003, came up to 22.36% and 20.92% respectively whereas the industrial energy and exergy efficiency came up to 53.72% and 51.34% respectively. Keywords: Exergy efficiency; Residential sector; Industrial sector; Industrial symbiosis 1. Introduction Energy constitutes an essential ingredient for social development and economic growth. The concept of Industrial symbiosis during the decade of 1990 -2010 was given key role in future industrial systems [1]. The closed energy and material loops was believed to entail a promising way in which future industrial systems could be designed so that the environmental impact from industrial operations in theory could be close to zero. -
Responsible Manufacturing in the Marine Production
local repairers of ship spares. This study considers the UN “Responsible Manufacturing Sustainable Development Goals on climate change, in the marine production: sustainable production and consumption. The results on prospects offered by ΑΜ technology are based upon Legal and technical aspects” already successful upcycling of marine spare parts. The outcome is that shipowners, as users/consumers should 1 2 Yanna Pavlopoulou & Evanthia Kostidi be aware and support the expansion of a global new legislation that implements the “right to repair”, the 1 Managing Partner at CommonLawgic Research Center; mandatory concept of Extended Producer’s Responsibility PhD candidate at National Technical University of Athens (NTUA) Greece, Sector of Industrial Management and (EPR) and responsible innovation ethics. A new movement Operations Research, Environmental Economics and Su- has to emerge urging the manufacturers to design circular stainability Unit. Contact details: [email protected]* materials, upcycled products and shared services, with the 2 PhD Candidate at University of the Aegean (Greece) at support of additive manufacturing and circular makers. the Department of Shipping, Trade and Transport, MSc. Shipping in Transport and International Trade, MSc Keywords: responsible, circular innovation, additive Mechanical Engineering. Contact details: manufacturing,3D printing, EPR, maritime [email protected]** ABSTRACT INTRODUCTION Responsible innovation is an emerging concept aligned to Marine technology and business competition flourished in consumers’ business objectives. Corporate social the past decade, under the environmental umbrella, offering responsibility in contrast is a backward response to ways to combat shipping’s Sulphur and ocean footprint. challenges. The issue at stake is how to forward regulate the The Greek shipping combated but lost the battles on BWM competitive and socio-ethical aspects of technology and SOx policy measures. -
Extended Producer Responsibility in the EU
Law Environment and Development JournalLEAD EXTENDED PRODUCER RESPONSIBILITY: AN ASSESSMENT OF RECENT AMENDMENTS TO THE EUROPEAN UNION WASTE FRAMEWORK DIRECTIVE Katrien Steenmans ARTICLE - SPECIAL ISSUE ON DESIGNING LAW AND POLICY TOWARDS MANAGING PLASTICS IN A CIRCULAR ECONOMY VOLUME 15/2 LEAD Journal (Law, Environment and Development Journal) is a peer-reviewed academic publication based in New Delhi and London and jointly managed by the Law, Environment and Development Centre of SOAS University of London and the International Environmental Law Research Centre (IELRC). LEAD is published at www.lead-journal.org [email protected] ISSN 1746-5893 ARTICLE - SPECIAL ISSUE ON DESIGNING LAW AND POLICY TOWARDS MANAGING PLASTICS IN A CIRCULAR ECONOMY EXTENDED PRODUCER RESPONSIBILITY: AN ASSESSMENT OF RECENT AMENDMENTS TO THE EUROPEAN UNION WASTE FRAMEWORK DIRECTIVE Katrien Steenmans* This document can be cited as Katrien Steenmans, ‘Extended Producer Responsibility: An Assessment of Recent Amendments to the European Union Waste Framework Directive’, 15/2 Law, Environment and Development Journal (2019), p. 108, available at http://www.lead-journal.org/content/19108.pdf DOI: https://doi.org/10.25501/SOAS.00033068 Katrien Steenmans, Lecturer in Law, Coventry Law School; Research Associate, Centre for Business in Society, Coventry University, Email: [email protected] Published under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License * Parts of this article are based on my PhD thesis: Katrien Steenmans, ‘Enabling Industrial Symbiosis Through Regulations, Policies, and Property Rights’ (PhD, University of Surrey 2018). Thank you to the editors and reviewers for their invaluable suggestions to improve the clarity and contribution of this article. -
A Review on Upcycling: Current Body of Literature, Knowledge Gaps and a Way Forward
Venice Italy Apr 13-14, 2015, 17 (4) Part I A Review on Upcycling: Current Body of Literature, Knowledge Gaps and a Way Forward Kyungeun Sung related books have been published since 1999.1 Most books Abstract—Upcycling is a process in which used materials are (96%; 115 out of 120 books) in the sample were published converted into something of higher value and/or quality in their between 2008 and 2014 with higher publication rate between second life. It has been increasingly recognised as one promising 2012 and 2014 as 62.5% of all samples (75 books between means to reduce material and energy use, and to engender sustainable 2012 and 2014; 21 books in 2012; 28 in 2013; and 26 in production and consumption. For this reason and other foreseeable benefits, the concept of upcycling has received more attention from 2014). 53% (64/120) of the sampled books are categorised as numerous researchers and business practitioners in recent years. This ‘craft and hobbies’ whereas the other book categories show has been seen in the growing number of publications on this topic similar percentages (art & design: 10%; house & home DIY: since the 1990s. However, the overall volume of literature dealing 10%; science & technology: 9%; business & economics: 8%; with upcycling is still low and no major review has been presented. and the rest as miscellaneous).2 The theses search on Google Therefore, in order to further establish this field, this paper analyses Scholar simultaneously conducted by the author showed a and summarises the current body of literature on upcycling, focusing similar recent surge of publication: 90% (37/41) of these in the on different definitions, trends in practices, benefits, drawbacks and 3 barriers in a number of subject areas, and gives suggestions for future sample (since 2001) were published between 2009 and 2014. -
Industrial Symbiosis for the Development of Biofuel Production
LINKÖPING STUDIES IN SCIENCE AND TECHNOLOGY THESIS NO. 1441 INDUSTRIAL SYMBIOSIS FOR THE DEVELOPMENT OF BIOFUEL PRODUCTION MICHAEL MARTIN Environmental Technology and Management Department of Management and Engineering Linköping University, SE-581 83 Linköping, Sweden COVER ART The cover portrays the author’s artistic view of industrial symbiosis. Many small to large firms and industries in the symbiotic activities are represented by circles. Linkages between these entities exist in various colors to represent the material and energy flows and their quantity. Interestingly, the circles and linkages are not all adjacent to one another and some can be seen as outliers, similar to those on the back cover. Furthermore, some of the exchanges do not take place directly between two firms, but use another firm to transfer the materials or even upgrade them for further use. Much like real world exchanges, this picture shows the relationship between firms under symbiotic activities from a holistic view, without boundaries and models. LIU-TEK-LIC-2010:12 ISBN 978-91-7393-373-5 ISSN 0280-7971 Printed by: LiU-Tryck, Linköping 2010. ABSTRACT In recent years the popularity of biofuels has been transformed from a sustainable option for transportation to a questionable and criticized method. Many reports have therefore been produced to view biofuel production from a life cycle perspective; though results may be misleading. In a number of the reports, biofuel production is viewed in a linear manner, i.e. crops and energy in and biofuel out. However there is a large quantity of material and energy flows associated with biofuel production and these must be accounted for. -
Industrial Symbiosis and Energy Effi- Ciency in European Process Industry: State of Art and Future Scenario Deliverable D2.1 (Version 1) (Status: 29/09/2020)
Skills Alliance for Industrial Symbiosis: A Cross-sectoral Blueprint for a Sustainable Process Industry (SPIRE-SAIS) Industrial Symbiosis and Energy Effi- ciency in European Process Industry: State of Art and Future Scenario Deliverable D2.1 (Version 1) (Status: 29/09/2020) Project acronym: SPIRE-SAIS Project title: Skills Alliance for Industrial Symbiosis: A Cross-sectoral Blueprint for a Sustainable Process Industry Project number: 612429-EPP-1-2019-1-DE-EPPKA2-SSA-B Coordinator: TU Dortmund University (TUDO) Funding Scheme: Erasmus+ Due date of deliverable: September 2020 Actual submission date: 30th of September 2020 Project duration: 01.01.2020 – 31.12.2023 (48 months) Work package: WP 2 - Technological and Economic Development and Foresight Work package leader: Scuola Superiore Sant’Anna Authors: Dissemination level: Public SPIRE-SAIS: Industrial Symbiosis and Energy Efficiency in European Process Industry: State of Art and Future Scenario (Deliverable 2.1) Summary 1 Introduction ...................................................................................................... 5 2 Structure of the D2.1 document ......................................................................... 7 3 Cross-sector research activities ........................................................................... 8 4 Industrial Symbiosis across sectors .................................................................... 23 4.1 Iron and Steel Sector ...................................................................................................... -
Waste to Energy in the Age of the Circular Economy Best Practice Handbook
WASTE TO ENERGY IN THE AGE OF THE CIRCULAR ECONOMY BEST PRACTICE HANDBOOK NOVEMBER 2020 ASIAN DEVELOPMENT BANK WASTE TO ENERGY IN THE AGE OF THE CIRCULAR ECONOMY BEST PRACTICE HANDBOOK NOVEMBER 2020 ASIAN DEVELOPMENT BANK Creative Commons Attribution 3.0 IGO license (CC BY 3.0 IGO) © 2020 Asian Development Bank 6 ADB Avenue, Mandaluyong City, 1550 Metro Manila, Philippines Tel +63 2 8632 4444; Fax +63 2 8636 2444 www.adb.org Some rights reserved. Published in 2020. ISBN: 978-92-9262-480-4 (print); 978-92-9262-481-1 (electronic); 978-92-9262-482-8 (ebook) Publication Stock No. TIM200330-2 DOI: http://dx.doi.org/10.22617/TIM200330-2 The views expressed in this publication are those of the authors and do not necessarily reflect the views and policies of the Asian Development Bank (ADB) or its Board of Governors or the governments they represent. ADB does not guarantee the accuracy of the data included in this publication and accepts no responsibility for any consequence of their use. The mention of specific companies or products of manufacturers does not imply that they are endorsed or recommended by ADB in preference to others of a similar nature that are not mentioned. By making any designation of or reference to a particular territory or geographic area, or by using the term “country” in this document, ADB does not intend to make any judgments as to the legal or other status of any territory or area. This work is available under the Creative Commons Attribution 3.0 IGO license (CC BY 3.0 IGO) https://creativecommons.org/licenses/by/3.0/igo/. -
Industrial Ecology Approaches to Improve Metal Management
Industrial Ecology Approaches to Improve Metal Management Three Modeling Experiments Rajib Sinha Licentiate Thesis Industrial Ecology Department of Sustainable Development, Environmental Science and Engineering (SEED) KTH Royal Institute of Technology Stockholm, Sweden 2014 Title: Industrial Ecology Approaches to Improve Metal Management: Three Modeling Experiments Author: Rajib Sinha Registration: TRITA-IM-LIC 2014:01 ISBN: 978-91-7595-396-0 Contact information: Industrial Ecology Department of Sustainable Development, Environmental Science and Engineering (SEED) School of Architecture and the Built Environment, KTH Royal Institute of Technology Technikringen 34, SE-100 44 Stockholm, Sweden Email: [email protected] www.kth.se Printed by: Universitetetsservice US-AB, Stockholm, Sweden, 2014 ii Preface This licentiate thesis1 attempts to capture specific, but also diverse, research interests in the field of industrial ecology. It therefore has a broader scope than a normal licentiate thesis. Here, I would like to share my academic journey in producing the thesis to guide the reader in understanding the content and the background. At high school (standard 9−12), I was most interested in mathematics and physics. This led me to study engineering, and I completed my B.Sc. in Civil Engineering at BUET, Dhaka, Bangladesh. During my undergraduate studies, I developed a great interest in structural engineering. As a result, I chose finite element analysis of shear stress as my Bachelor's degree project. The title of the dissertation was Analysis of Steel-Concrete Composite Bridges with Special Reference to Shear Connectors. All my close classmates at university and I chose an environmental engineering path for further studies. With my interest in environmental engineering, I completed my M.Sc. -
An Integrated Input Output Life Cycle Assessment and Optimization Framework for Carbon Footprint Reduction Policy Making N
University of New Haven Digital Commons @ New Haven Mechanical and Industrial Engineering Faculty Mechanical and Industrial Engineering Publications 2017 From Green Buildings to Green Supply Chains: An Integrated Input Output Life Cycle Assessment and Optimization Framework for Carbon Footprint Reduction Policy Making N. Muhammad Aslaam North Dakota State University Gokhan Egilmez University of New Haven, [email protected] Murat Kucukvar Istanbul Sehir University M.Khurrum S. Butta Ohio University Follow this and additional works at: http://digitalcommons.newhaven.edu/mechanicalengineering- facpubs Part of the Industrial Engineering Commons, and the Mechanical Engineering Commons Publisher Citation N. Muhammad Aslaam, Gokhan Egilmez, Murat Kucukvar, M. Khurrum S. Bhutta, Ohio University (2016). From Green Buildings to Green Supply Chains: An Integrated Input Output Life Cycle Assessment and Optimization Framework for Carbon Footprint Reduction Policy Making. Management of Environmental Quality An International Journal, December 2016. Comments This is the authors' accepted version of the article published December 2016 in Management of Environmental Quality. The ev rsion of record can be found at www.emeraldinsight.com/journal/meq 1 From Green Buildings to Green Supply Chains: An Integrated Input Output Life Cycle 2 Assessment and Optimization Framework for Carbon Footprint Reduction Policy Making 3 1N. Muhammad Aslaam 2 Gokhan Egilmez, 3Murat Kucukvar, 4M. Khurrum S. Bhutta 4 1Graduate Research Assistant, UGPTI, North Dakota State