Ambient Water Quality Criteria for Silver

Total Page:16

File Type:pdf, Size:1020Kb

Ambient Water Quality Criteria for Silver United States Office of Water EPA 440/5-80-071 Environmental Protection Regulations and Standards October 1980 Agency Criteria and Standards Division Washington DC 20460 SEPA Ambient Water Quality Criteria for Silver .... AMBIENT WATER QUALITY CRITERIA FOR SILVER Prepared By U.S. ENVIRONMENTAL PROTECTION AGENCY Office of Water Regulations and Standards Criteria and Standards Division Washington, D.C. Office of Research and Development Environmental Criteria and Assessment Office Cincinnati, Ohio Carcinogen Assessment Group Washington, D.C. Environmental Research Laboratories Corvalis, Oregon Duluth, Minnesota Gulf Breeze, Florida Narragansett, Rhode Island , ., " , i DISCLAIMER This report has been reviewed by the Environmental Criteria and Assessment Office, U.S. Environmental Protection Agency, and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. AVAILABILITY NOTICE This document is available to the public through the National Technical Information Service, (NTIS), Springfield, Virginia 22161. :1"':""'"),-;",1 'J " ~ ~.~ .:\, :,," :.l< "'II:: .' " ii FOREWORD Section 304 (a)(1) of the Clean Water Act of 1977 (P.L. 95-217), requires the J\dministrator of the Environmental Protection Agency to publish criter-ia for water quality accurately reflecting the latest scientific kno'w1edge on the kind and extent of all identifiable effects on health and welfare which may be expected from the presence of pollutants in amy body of water, including ground water. Proposed water quality criter"ia for the 65 toxic pollutants listed under section 307 (a)(I) of the Clean Water Act were developed and a notice of their availability wa,s published for public cormnent on March 15, 1979 (44 FR 15926), July 25, 1979 (44 FR 43660), and October 1, 1979 (44 FR 56628). This document ;:s a revision of those proposed criteria based upon a consideration o'f cormnents received from other Federal Agencies, State agencies, special interest groups, and individual scientists. The criteria contained in this document replace any previously published EPA criteri a for the 65 poll utants. Th i s criterion document is also pUblished in sat,isifaction of paragraph 11 of the Settlement Agreement in Natural ResOl'Jrces Defense Council, et. a1. vs. Train, 8 ERC 2120 (D.D.C. 1976), modified, 12 ERC 1833 (D.D.C. 1979). ll The term IIwal,ter quality criteria is used in two sections of the Clean Water Act, :section 304 (a)(I) and section 303 (c)(2). The term has a different program impact in each section. In section 304, the term represents a non-regulatory, scientific assessment of ecological ef­ fects. The critelria'presented in this publication are such scientific assessments. SLich water qual ity criteri a associ ated with specific stream uses when adopted as State water quality standards under section 303 become enforceable maximum acceptable levels of a pollutant in ambient waters. The water quality criteria adopted in the State water quality standards could have the same numerical limits as the criteria developed under sl~ction 304. However, in many situations States may want to adjust water quality criteria developed under section 304 to reflect local environmental conditions and human exposure patterns before incorporation into water quality standards. It is not until their adoption as part of the State water quality standards that the criteria become regulatory. Guidelines to assist the States in the modification of criteria presented in this document, in the development of water quality standards, and in other water-related programs of this Agency, are being developed by EPA. STEVEN SCHATZOW Deputy Assistant Administrator Office of Water Regulations and Standards iii ACKNOWLEDGEMENTS Aquatic Life Toxicology William A. Brungs, ERL-Narragansett David J. Hansen, ERL-Gulf Breeze U.S. Environmental Protection Agency U.S. Environmental Protection Agency Mlammalian Toxicology and Human Health Effects Bonnie Carson (author) Robert M. Bruce, ECAO-RTP Midwest Research Institute U.S. Environmental Protection Agency Christopher DeRosa (doc. mgr.), ECAO-Cin Richard Bull, HERL U.S. Enviromental Protection Agency U.S. Environmental Protection Agency Bonnie Smith (doc. mgr.), ECAO-Cin Patrick Durkin U.S. Environmental Protection Agency Syracuse Research Corporation Ernest Foulkes Alfred Garv;n University of Cincinnati University of Cincinnati Dinko Kello Terri Laird, ECAO-Cin Institute for Medical Research U.S. Environmental Protection Agency Edward W. Lawless Steven D. Lutkenhoff, ECAO-Cin Midwest Research Institute U. S. Envi ronmenta"1 Protecti on Agency Jerry F. Stara, ECAO-Cin U.S. Environmental Protection Agency Technical Support Services Staff: D.J. Reisman, M.A. Garlough, B.L. Zwayer, P.A. Daunt, K.S. Edwards, T.A. Scandura, A.T. Pressley, C.A. Cooper, M.M. Denessen. Clerical Staff: C.A. Haynes, S.J. Faehr, L.A. Wade, D. Jones" B.J. Bordicks, B.J. Quesnell, P. Gray, B. Gardiner, R. Swantack. iv TABLE OF CONTENTS Criteria Summary Introduction A-l Aquatic Life Toxicology B-1 Introduction Effects B-3 Acute Toxicity B-3 Chronic Toxicity 8-6 Plant Effects 8-10 Residues 8-11 Miscellaneous 8-11 SUlTlT1ary 8-12 Criteri a 8-13 References 8-34 Mammalian Toxicology and Human Health Effects Introduction C-l Exposure C-1 Ingestion from Water C-l Ingestion from Food C-17 Inhalation C-21 Dermal C-29 Pharmacokinetics C-33 Absorption C-33 Distribution C-40 Metabolism C-52 Excretion C-56 Effects C..68 Acute, Subacute and Chronic Toxicity C-68 Synergism and/or Antagonism C 94 Teratogenicity C-102 Mutagenicity C-104 Carcinogenicity C-106 Criterion Formulation C-116 Existing Guidelines and Standards C-116 Current Levels of Exposure C-119 Special Groups at Risk C..121 Basis and Derivation of Criterion C-122 References C..129 v CRITERIA DOCUMENT SILVER CR ITER IA Aquatic Life For freshwater aquatic life the concentration (in ~g/l) of total recoverable silver should not exceed the numerical value given by e(1.72[ln(hardness)]-6.52) at any time. For example, at hardnesses of 50, 100, and 200 mg/1 as CaC0 3, the concentration of total recoverable silver should not exceed 1.2, 4.1, and 13 ~g/1, respectively, at any time. The available data indicate that chronic toxicity to freshwater aquatic life may occur at concentrations as low as 0.12 ~g/l. For saltwater aauatic life the concentration of total recoverable silver Should not exceed 2.3 ~g/1 at any time. No data are available concerning the chronic toxicity of silver to sensitive saltwater aquatic life. Human Health The ambient water auality criterion for silver is recommended to be identical to the existing water standard which is 50 ~g/l. Analysis of the toxic effects data resulted in a calculated level which is protective of human health against the ingestion of contaminated water and contaminated aauatic organisms. The calculated value is comparable to the present stan­ dard. For this reason a selective criterion based on exposure solely from consumption of 6.5 grams of aquatic organisms was not derived. vi I NTRODUCTI ON Silver is a white, ductile metal occurring naturally in the pure form and in ores. Principal uses of silver are in photographic materials, elec­ troplating, as a conductor, in dental alloys, solder and brazing alloys, paints, jewelry, silverware, coinage, and mirror production. Silver is of some use as an antibacterial agent and has been shown to be bactericidal even in concentrations that are not great enough to precipitate proteins; the assumption is that silver is capable of interfering with essential meta­ bolic processes in the bacterial cell (Goodman and Gilman, 1975). Silver can exist in two valence states, Ag+ and Ag++. It has an atomic weight of 107.87. Solubilities of a few common silver salts in water are: AgCl, 1,930 ~g/l; AgN0 , Z.5 x 109 ~g/l; and AgI, 30 ~g/l (Windholz, 3 1976). Silver occurs primarily in the form of the sulfide (argentite A9ZS) or intimately associated with other metal sulfides, especially those of lead and copper. Other common silver minerals include cerargyrite (AgCl ), proustite (3AgS As S ), pyragyrite (3A9 S Sb S ), stepha- Z 3 Z Z 3 nite (5A9 S Sb S ) and native metallic silver. Most lead and copper Z Z 3 ores are argentiferous, though there are important exceptions. Recovery of silver and gold from these ores constitutes an important part of their metallurgical treatment. Silver is also commonly associated in nature with gold. Not only does gold occur with silver in copper and lead ores, but native metallic gold usually contains silver. Gold and silver are mutually soluble in each other in all proportions in the metallic state. Silver is usually found in extremely low concentrations in the aquatic environment, due both to its low crustal abundance and the effectiveness of controls on its mobility in water. In a study of 10 U.S. rivers, Kharkar, et ale (1968) detected silver in concentrations ranging from 0.092 to 0.55 ~g/l. Hem (1970) cites studies of public drinking water supplies and river waters which report median concentrations of 0.23 and 0.09 ~g/l, respec­ tively. The geochemistry of silver has been extensively reviewed by Boyle (1968) • Sorption and precipitation processes are effective in reducing the con­ centration of dissolved silver and result in higher concentrations in the bed sediments than in the overlying waters. Sorption by manganese dioxide and precipitation with halides are probably the dominant controls on the mobility of silver in the aquatic environment. Some silver is also bioaccu­ mulated, and the remainder is transported in solution to the oceans (U.S. EPA, 1979). fI ? REFERENCES Boyle, R.W. 1968. The geochemistry of silver and its deposits. Geol. Sur­ vey of Canada, Bull. 160, Ottawa, Canada. Goodman, L.S. and A. Gilman (eds.) 1975.
Recommended publications
  • UNITED STATES PATENT OFFICE PRODUCTION of VANILLIC ACID (SILVER, Oxide PROCESS) Irwin A
    Patented Apr. 15, 1947 2,419,158 UNITED STATES PATENT OFFICE PRODUCTION OF VANILLIC ACID (SILVER, oxIDE PROCESS) Irwin A. Pearl, Appleton, Wis., assignor, by mesne assignments, to Sulphite Products Corporation, - Appleton, Wis., a corporation of Wisconsin No Drawing. Application January 12, 1944, Seria No. 517,985 8 Claims. (C. 260-521) 2 The present invention relates to the production About 300 parts of vanillic acid melting at 210 of vanillic and closely related acids, and to an 211 is obtained. - a improved process for producing acids derived by Ortho vanillin and syringaldehyde react in the oxidation from vanillin, Ortho-vanillin, and same way as the vanillin in Example I, with syringaldehyde. similarly high yields of completely transformed Most aldehydes may be transformed to the material. corresponding acids by common oxidizing agents If the treatment with solid sodium hydroxide or in the Cannizzaro reaction, but vanillin, Ortho warms the solution materially above 50° C., the vanillin, and Syringaldehyde are exceptions and vaniliin reacts as fast as it is added and the have been reported as not amenable to either temperature rises, but full completion of the reaction. Ordinary oxidizing agents either (1) action is assured by slight further heating. I have no action on the compound or (2) act as have secured good results with final temperatures dehydrogenating agents, and yield the dehydro of 75° to 85, but higher temperatures are dicompound or (3) cause complete decomposition. innocuous. The Cannizzaro reaction is conveniently written 5 However, if the materials are admixed at tem as follows: peratures materially below 50° C., it is first neces NaOH sary to warm them, and at about 50° C.
    [Show full text]
  • Transport of Dangerous Goods
    ST/SG/AC.10/1/Rev.16 (Vol.I) Recommendations on the TRANSPORT OF DANGEROUS GOODS Model Regulations Volume I Sixteenth revised edition UNITED NATIONS New York and Geneva, 2009 NOTE The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. ST/SG/AC.10/1/Rev.16 (Vol.I) Copyright © United Nations, 2009 All rights reserved. No part of this publication may, for sales purposes, be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying or otherwise, without prior permission in writing from the United Nations. UNITED NATIONS Sales No. E.09.VIII.2 ISBN 978-92-1-139136-7 (complete set of two volumes) ISSN 1014-5753 Volumes I and II not to be sold separately FOREWORD The Recommendations on the Transport of Dangerous Goods are addressed to governments and to the international organizations concerned with safety in the transport of dangerous goods. The first version, prepared by the United Nations Economic and Social Council's Committee of Experts on the Transport of Dangerous Goods, was published in 1956 (ST/ECA/43-E/CN.2/170). In response to developments in technology and the changing needs of users, they have been regularly amended and updated at succeeding sessions of the Committee of Experts pursuant to Resolution 645 G (XXIII) of 26 April 1957 of the Economic and Social Council and subsequent resolutions.
    [Show full text]
  • Silver As a Drinking-Water Disinfectant
    Silver as a drinking-water disinfectant Silver as a drinking-water disinfectant Alternative drinking-water disinfectants: silver ISBN 978-92-4-151369-2 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution- NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. Alternative drinking-water disinfectants: bromine, iodine and silver. Geneva: World Health Organization; 2018. Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data. CIP data are available at http://apps.who.int/iris. Sales, rights and licensing. To purchase WHO publications, see http://apps.who.int/bookorders.
    [Show full text]
  • Primary-Explosives
    Improvised Primary Explosives © 1998 Dirk Goldmann No part of the added copyrighted parts (except brief passages that a reviewer may quote in a review) may be reproduced in any form unless the reproduced material includes the following two sentences: The copyrighted material may be reproduced without obtaining permission from anyone, provided: (1) all copyrighted material is reproduced full-scale. WARNING! Explosives are danegerous. In most countries it's forbidden to make them. Use your mind. You as an explosives expert should know that. 2 CONTENTS Primary Explosives ACETONE PEROXIDE 4 DDNP/DINOL 6 DOUBLE SALTS 7 HMTD 9 LEAD AZIDE 11 LEAD PICRATE 13 MEKAP 14 MERCURY FULMINATE 15 "MILK BOOSTER" 16 NITROMANNITE 17 SODIUM AZIDE 19 TACC 20 Exotic and Friction Primers LEAD NITROANILATE 22 NITROGEN SULFIDE 24 NITROSOGUANIDINE 25 TETRACENE 27 CHLORATE-FRICTION PRIMERS 28 CHLORATE-TRIMERCURY-ACETYLIDE 29 TRIHYDRAZINE-ZINC (II) NITRATE 29 Fun and Touch Explosives CHLORATE IMPACT EXPLOSIVES 31 COPPER ACETYLIDE 32 DIAMMINESILVER II CHLORATE 33 FULMINATING COPPER 33 FULMINATING GOLD 34 FULMINATING MERCURY 35 FULMINATING SILVER 35 NITROGEN TRICHLORIDE 36 NITROGEN TRIIODIDE 37 SILVER ACETYLIDE 38 SILVER FULMINATE 38 "YELLOW POWDER" 40 Latest Additions 41 End 3 PRIMARY EXPLOSIVES ACETONE PEROXIDE Synonyms: tricycloacetone peroxide, acetontriperoxide, peroxyacetone, acetone hydrogen explosive FORMULA: C9H18O6 VoD: 3570 m/s @ 0.92 g/cc. 5300 m/s @ 1.18 g/cc. EQUIVALENCE: 1 gram = No. 8 cap .75 g. = No. 6 cap SENSITIVITY: Very sensitive to friction, flame and shock; burns violently and can detonate even in small amounts when dry. DRAWBACKS: in 10 days at room temp. 50 % sublimates; it is best made immediately before use.
    [Show full text]
  • Controlled Growth of Silver Oxide Nanoparticles on the Surface of Citrate Anion Intercalated Layered Double Hydroxide
    nanomaterials Article Controlled Growth of Silver Oxide Nanoparticles on the Surface of Citrate Anion Intercalated Layered Double Hydroxide Do-Gak Jeung 1, Minseop Lee 2, Seung-Min Paek 2,* and Jae-Min Oh 1,* 1 Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Korea; [email protected] 2 Department of Chemistry, Kyungpook National University, Daegu 41566, Korea; [email protected] * Correspondence: [email protected] (S.-M.P.); [email protected] (J.-M.O.) Abstract: Silver oxide nanoparticles with controlled particle size were successfully obtained utilizing citrate-intercalated layered double hydroxide (LDH) as a substrate and Ag+ as a precursor. The lattice of LDH was partially dissolved during the reaction by Ag+. The released hydroxyl and citrate acted as a reactant in crystal growth and a size controlling capping agent, respectively. X-ray diffraction, X-ray photoelectron spectroscopy, and microscopic measurements clearly showed the development of nano-sized silver oxide particles on the LDH surface. The particle size, homogeneity and purity of silver oxide were influenced by the stoichiometric ratio of Ag/Al. At the lowest silver ratio, the particle size was the smallest, while the chemical purity was the highest. X-ray photoelectron spectroscopy and UV-vis spectroscopy results suggested that the high Ag/Al ratio tended to produce silver oxide with a complex silver environment. The small particle size and homogeneous distribution of silver oxide showed advantages in antibacterial efficacy compared with bulk silver oxide. LDH Citation: Jeung, D.-G.; Lee, M.; Paek, with an appropriate ratio could be utilized as a substrate to grow silver oxide nanoparticles with S.-M.; Oh, J.-M.
    [Show full text]
  • Silver Oxide Battery SIZES: All Sizes EMERGENCY HOTLINE: 800-424-9300 (24 Hr, Chemtrec) EDITION DATE: 08/11/2014
    Spectrum Brands, Inc. Rayovac Division 3001 Deming Way Middleton, WI 53562-1431 Phone: (608) 275-3340 Fax: (608) 275-4577 http://www.rayovac.com SAFETY DATA SHEET The Safety Data Sheet is supplied as a service to you. For other related information, please visit: http://www.rayovac.com 1. IDENTIFICATION PRODUCT NAME: Silver Oxide Battery SIZES: All sizes EMERGENCY HOTLINE: 800-424-9300 (24 hr, Chemtrec) EDITION DATE: 08/11/2014 2. HAZARD IDENTIFICATION We would like to inform our customers that these batteries are exempt articles and are not subject to the 29 CFR 1910.1200 OSHA requirements, Canadian WHMIS requirements or GHS requirements. Emergency Overview OSHA Hazards-not applicable Target Organs-not applicable GHS Classification-not applicable GHS Label Elements, including precautionary Statement-not applicable Pictogram-not applicable Signal words-not applicable Hazard statements-not applicable Precautionary statements-not applicable 3. COMPOSITION/INFORMATION ON INGREDIENTS INGREDIENT NAME CAS # % TLV*/**TWA Silver Oxide 20667-12-3 <0.5 .01 mg/m3 (TWA) Steel 7439-89-6 37-41 --- Zinc 7440-66-6 30-40 5.0 mg/m3 (ZnO as Fume) Potassium Hydroxide 1310-58-3 1-3 Solution Not Listed Graphite 7782-42-5 <0.25 15 mppcf (TWA) Mercury 7439-97-6 <0.9** 1 mg/10 m3 (Ceiling) Manganese Dioxide 1313-13-9 <2.5 C5.0 mg/ m3 (Mn, TWA) Water, paper, plastic, other --- Balance --- *Source: OSHA 29 CFR 1910.1000 Table Z-1, 2 or 3 11-01-2012 ** All Silver Oxide cells contain less than 25 mg/cell of mercury NA = Not Applicable Safety Data Sheet Information (800) 237-7000 Page 1 of 4 4.
    [Show full text]
  • Chemical List
    1 EXHIBIT 1 2 CHEMICAL CLASSIFICATION LIST 3 4 1. Pyrophoric Chemicals 5 1.1. Aluminum alkyls: R3Al, R2AlCl, RAlCl2 6 Examples: Et3Al, Et2AlCl, EtAlCl2, Me3Al, Diethylethoxyaluminium 7 1.2. Grignard Reagents: RMgX (R=alkyl, aryl, vinyl X=halogen) 8 1.3. Lithium Reagents: RLi (R = alkyls, aryls, vinyls) 9 Examples: Butyllithium, Isobutyllithium, sec-Butyllithium, tert-Butyllithium, 10 Ethyllithium, Isopropyllithium, Methyllithium, (Trimethylsilyl)methyllithium, 11 Phenyllithium, 2-Thienyllithium, Vinyllithium, Lithium acetylide ethylenediamine 12 complex, Lithium (trimethylsilyl)acetylide, Lithium phenylacetylide 13 1.4. Zinc Alkyl Reagents: RZnX, R2Zn 14 Examples: Et2Zn 15 1.5. Metal carbonyls: Lithium carbonyl, Nickel tetracarbonyl, Dicobalt octacarbonyl 16 1.6. Metal powders (finely divided): Bismuth, Calcium, Cobalt, Hafnium, Iron, 17 Magnesium, Titanium, Uranium, Zinc, Zirconium 18 1.7. Low Valent Metals: Titanium dichloride 19 1.8. Metal hydrides: Potassium Hydride, Sodium hydride, Lithium Aluminum Hydride, 20 Diethylaluminium hydride, Diisobutylaluminum hydride 21 1.9. Nonmetal hydrides: Arsine, Boranes, Diethylarsine, diethylphosphine, Germane, 22 Phosphine, phenylphosphine, Silane, Methanetellurol (CH3TeH) 23 1.10. Non-metal alkyls: R3B, R3P, R3As; Tributylphosphine, Dichloro(methyl)silane 24 1.11. Used hydrogenation catalysts: Raney nickel, Palladium, Platinum 25 1.12. Activated Copper fuel cell catalysts, e.g. Cu/ZnO/Al2O3 26 1.13. Finely Divided Sulfides: Iron Sulfides (FeS, FeS2, Fe3S4), and Potassium Sulfide 27 (K2S) 28 REFERRAL
    [Show full text]
  • Prohibited and Restricted Chemical List
    School Emergency Response Plan and Management Guide Prohibited and Restricted Chemical List PROHIBITED AND RESTRICTED CHEMICAL LIST Introduction After incidents of laboratory chemical contamination at several schools, DCPS, The American Association for the Advancement of Science (AAAS) and DC Fire and Emergency Management Services developed an aggressive program for chemical control to eliminate student and staff exposure to potential hazardous chemicals. Based upon this program, all principals are required to conduct a complete yearly inventory of all chemicals located at each school building to identify for the removal and disposal of any prohibited/banned chemicals. Prohibited chemicals are those that pose an inherent, immediate, and potentially life- threatening risk, injury, or impairment due to toxicity or other chemical properties to students, staff, or other occupants of the school. These chemicals are prohibited from use and/or storage at the school, and the school is prohibited from purchasing or accepting donations of such chemicals. Restricted chemicals are chemicals that are restricted by use and/or quantities. If restricted chemicals are present at the school, each storage location must be addressed in the school's written emergency plan. Also, plan maps must clearly denote the storage locations of these chemicals. Restricted chemicals—demonstration use only are a subclass in the Restricted chemicals list that are limited to instructor demonstration. Students may not participate in handling or preparation of restricted chemicals as part of a demonstration. If Restricted chemicals—demonstration use only are present at the school, each storage location must be addressed in the school's written emergency plan. Section 7: Appendices – October 2009 37 School Emergency Response Plan and Management Guide Prohibited and Restricted Chemical List Following is a table of chemicals that are Prohibited—banned, Restricted—academic curriculum use, and Restricted—demonstration use only.
    [Show full text]
  • United States Patent Office Patented Mar
    3,311,468 United States Patent Office Patented Mar. 28, 1967 2 3,351,468 continuously or batchwise as desired. Other objects and SVRESR RECGVERY PRO CESS advantages will appear as the description proceeds. Charies Davidoff, 1:8 Roliagiiii Road, The attainment of the above objects is made possible Maiaasset, N.Y. 1936 by my method of recovering silver from a solution of No Drawing, Fied Dec. 26, 1963, Ser. No. 333,635 5 alkali metal silver cyanide comprising adding to the solu 6 Caias. (Ci. 75-63) tion at least about 0.25 mole of an alkali metal hydro sulfite compound for each mole of silver in the solution, This invention relates to a method for recovering silver, maintaining the resulting solution, preferably at an ele and more particularly to a method for recovering silver vated temperature above about 150 F., until cessation from a solution of alkali metal silver cyanide or other sil 10 of precipitation of the silver, and removing the precipi wer salt. tated silver from the solution. The above process has It is common knowledge that solutions of silver cyanide been found to constitute a surprisingly simple, economical complex exist in several fields of industry from which the method of expeditiously recovering silver from solutions silver must be recovered for obvious reasons of economy. of alkali metal silver cyanide in up to 100% yields with Thus, in the mining industry, a widely employed method out the need for the previously required acid-proof equip of recovering silver from ore containing the same involves ment. Further, although the said process exhibits its leaching the silver from the ore with an aqueous solu greatest advantages in the treatment of solutions contain tion of alkali metal cyanide, a solution of sodium or ing the highly stable alkali metal silver cyanide complex, potassium silver cyanide being thereby obtained.
    [Show full text]
  • Page 1 of 4 Silver Oxide Batteries January 2016
    Page 1 of 4 Silver Oxide Batteries January 2016 PRODUCT SAFETY DATA SHEET PRODUCT NAME: Energizer Battery Type No.: Volts: 1.5 /cell TRADE NAMES: Energizer, Hearwell, Overtime Approximate Weight: CHEMICAL SYSTEM: Silver Oxide-Zinc Designed for Recharge: No Energizer has prepared copyrighted Product Safety Datasheets to provide information on the different Eveready/Energizer battery systems. Batteries are articles as defined under the GHS and exempt from GHS classification criteria (Section 1.3.2.1.1 of the GHS). The information and recommendations set forth herein are made in good faith, for information only, and are believed to be accurate as of the date of preparation. However, ENERGIZER BATTERY MANUFACTURING, INC. MAKES NO WARRANTY, EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THIS INFORMATION AND DISCLAIMS ALL LIABILITY FROM REFERENCE ON IT. SECTION 1 - MANUFACTURER INFORMATION Energizer Battery Manufacturing, Inc. Telephone Number for Information: 25225 Detroit Rd. 800-383-7323 (USA / CANADA) Westlake, OH 44145 Date Prepared: January 2016 SECTION 2 – HAZARDS IDENTIFICATION GHS classification: N/A Signal Word: N/A Hazard Classification: N/A Under normal conditions of use, the battery is hermetically sealed. Ingestion: Swallowing a battery can be harmful. Contents of an open battery can cause serious chemical burns of mouth, esophagus, and gastrointestinal tract. Inhalation: Contents of an open battery can cause respiratory irritation. Skin Contact: Contents of an open battery can cause skin irritation and/or chemical burns. Eye Contact: Contents of an open battery can cause severe irritation and chemical burns. SECTION 3 - INGREDIENTS IMPORTANT NOTE: The battery should not be opened or burned. Exposure to the ingredients contained within or their combustion products could be harmful.
    [Show full text]
  • Printed Textile-Based Ag2o–Zn Battery for Body Conformal Wearable Sensors
    sensors Communication Printed Textile-Based Ag2O–Zn Battery for Body Conformal Wearable Sensors Akash Kota * , Ashish Gogia, Amy T. Neidhard-Doll and Vamsy P. Chodavarapu Department of Electrical and Computer Engineering, University of Dayton, Dayton, OH 45469, USA; [email protected] (A.G.); [email protected] (A.T.N.-D.); [email protected] (V.P.C.) * Correspondence: [email protected] Abstract: Wearable electronics are playing an important role in the health care industry. Wearable sensors are either directly attached to the body surface or embedded into worn garments. Textile- based batteries can help towards development of body conformal wearable sensors. In this letter, we demonstrate a 2D planar textile-based primary Ag2O–Zn battery fabricated using the stencil printing method. A synthetic polyester woven fabric is used as the textile substrate and polyethylene oxide material is used as the separator. The demonstrated battery achieves an areal capacity of 0.6 mAh/cm2 with an active electrode area of 0.5 cm × 1 cm. Keywords: sensor power; textile battery; stencil printing; zinc-silver oxide; battery characteristics 1. Introduction The rapid development of wearable devices is fueled by the interest from the general population for real-time health and wellness monitoring [1,2]. Various human health and Citation: Kota, A.; Gogia, A.; wellness indicators including body temperature, peripheral capillary oxygen saturation Neidhard-Doll, A.T.; Chodavarapu, (SpO2) level, electrocardiogram, calories burned, exercise outcomes, and walking steps V.P. Printed Textile-Based Ag2O–Zn can be monitored non-invasively in real time by wearable devices. Wearable devices also Battery for Body Conformal Wearable play an important role in the development of smart bandages for wound healing applica- Sensors.
    [Show full text]
  • List of Reactive Chemicals
    LIST OF REACTIVE CHEMICALS Chemical Prefix Chemical Name Reactive Reactive Reactive CAS# Chemical Chemical Chemical Stimulus 1 Stimulus 2 Stimulus 3 111-90-0 "CARBITOL" SOLVENT D 111-15-9 "CELLOSOLVE" ACETATE D 110-80-5 "CELLOSOLVE" SOLVENT D 2- (2,4,6-TRINITROPHENYL)ETHYL ACETATE (1% IN ACETONE & BENZENE S 12427-38-2 AAMANGAN W 88-85-7 AATOX S 40487-42-1 AC 92553 S 105-57-7 ACETAL D 75-07-0 ACETALDEHYDE D 105-57-7 ACETALDEHYDE, DIETHYL ACETAL D 108-05-4 ACETIC ACID ETHENYL ESTER D 108-05-4 ACETIC ACID VINYL ESTER D 75-07-0 ACETIC ALDEHYDE D 101-25-7 ACETO DNPT T 126-84-1 ACETONE DIETHYL ACETAL D 108-05-4 ACETOXYETHYLENE D 108-05-4 1- ACETOXYETHYLENE D 37187-22-7 ACETYL ACETONE PEROXIDE, <=32% AS A PASTE T 37187-22-7 ACETYL ACETONE PEROXIDE, <=42% T 37187-22-7 ACETYL ACETONE PEROXIDE, >42% T S 644-31-5 ACETYL BENZOYL PEROXIDE (SOLID OR MORE THAN 45% IN SOLUTION) T S 644-31-5 ACETYL BENZOYL PEROXIDE, <=45% T 506-96-7 ACETYL BROMIDE W 75-36-5 ACETYL CHLORIDE W ACETYL CYCLOHEXANE SULFONYL PEROXIDE (>82% WITH <12% WATER) T S 3179-56-4 ACETYL CYCLOHEXANE SULFONYL PEROXIDE, <=32% T 3179-56-4 ACETYL CYCLOHEXANE SULFONYL PEROXIDE, <=82% T 674-82-8 ACETYL KETENE (POISON INHALATION HAZARD) D 110-22-5 ACETYL PEROXIDE, <=27% T 110-22-5 ACETYL PEROXIDE, SOLID, OR MORE THAN 27% IN SOLUTION T S 927-86-6 ACETYLCHOLINE PERCHLORATE O S 74-86-2 ACETYLENE D 74-86-2 ACETYLENE (LIQUID) D ACETYLENE SILVER NITRATE D 107-02-08 ACRALDEHYDE (POISON INHALATION HAZARD) D 79-10-7 ACROLEIC ACID D 107-02-08 ACROLEIN, INHIBITED (POISON INHALATION HAZARD) D 107-02-08 ACRYLALDEHYDE (POISON INHALATION HAZARD) D 79-10-7 ACRYLIC ACID D 141-32-2 ACRYLIC ACID BUTYL ESTER D 140-88-5 ACRYLIC ACID ETHYL ESTER D 96-33-3 ACRYLIC ACID METHYL ESTER D Stimulus - Stimuli is the thermal, physical or chemical input needed to induce a hazardous reaction.
    [Show full text]