Mycobiology Research Article

Total Page:16

File Type:pdf, Size:1020Kb

Mycobiology Research Article Mycobiology Research Article Unique Phylogenetic Lineage Found in the Fusarium-like Clade after Re-examining BCCM/ IHEM Fungal Culture Collection Material David Triest1,*, Koen De Cremer2, Denis Piérard3 and Marijke Hendrickx1 1 BCCM/IHEM Collection of Biomedical Fungi, Service of Mycology & Aerobiology, Scientific Institute of Public Health, 1050 Brussels, Belgium 2 Service of Health & Environment, Scientific Institute of Public Health, 1050 Brussels, Belgium 3 Department of Microbiology & Infection Control, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, 1090 Brussels, Belgium Abstract Recently, the Fusarium genus has been narrowed based upon phylogenetic analyses and a Fusarium-like clade was adopted. The few species of the Fusarium-like clade were moved to new, re-installed or existing genera or provisionally retained as “Fusarium.” Only a limited number of reference strains and DNA marker sequences are available for this clade and not much is known about its actual species diversity. Here, we report six strains, preserved by the Belgian fungal culture collection BCCM/ IHEM as a Fusarium species, that belong to the Fusarium-like clade. They showed a slow growth and produced pionnotes, typical morphological characteristics of many Fusarium-like species. Multilocus sequencing with comparative sequence analyses in GenBank and phylogenetic analyses, using reference sequences of type material, confirmed that they were indeed member of the Fusarium-like clade. One strain was identified as “Fusarium” ciliatum whereas another strain was identified as Fusicolla merismoides. The four remaining strains were shown to represent a unique phylogenetic lineage in the Fusarium-like clade and were also found morphologically distinct from other members of the Fusarium-like clade. Based upon phylogenetic considerations, a new genus, Pseudofusicolla gen. nov., and a new species, Pseudofusicolla belgica sp. nov., were installed for this lineage. A formal description is provided in this study. Additional sampling will be required to gather isolates other than the historical strains presented in the present study as well as to further reveal the actual species diversity in the Fusarium-like clade. Keywords Fusarium, Fusicolla, Microcera, Nectriaceae, Phylogeny, Pseudofusicolla In 2011, a phylogenetic study from Gräfenhan et al. [1] Fusarium clade.” In order to retain the monophyly of showed that the Fusarium genus (Hypocreales, Nectriaceae) Fusarium, Gräfenhan et al. [1] narrowed the generic concept was not monophyletic. They found that the genus was divided of Fusarium and the basal Fusarium clade was no longer into two groups in their phylogenic tree of Nectriaceae, considered as Fusarium sensu stricto. The few species and separated by a large number of species classified in genera lineages represented in this Fusarium-like clade were moved such as Neonectria and Volutella [1]. These groups were to new, re-installed or existing genera (i.e., Atractium, referred to as the “basal Fusarium clade” and the “terminal Microcera, Macroconia, Fusicolla, Dialonectria, and Stylonectria), or provisionally retained as “Fusarium” or as one of its teleomorphs (i.e., Nectria and Cosmospora), based upon Mycobiology 2016 September, 44(3): 121-130 phylogenetic and morphological analyses [1, 2]. http://dx.doi.org/10.5941/MYCO.2016.44.3.121 Recently, Lombard et al. [3] phylogenetically re-evaluated pISSN 1229-8093 • eISSN 2092-9323 © The Korean Society of Mycology the generic concepts in the Nectriaceae and confirmed the monophyly of each of these Fusarium-like genera. Lombard *Corresponding author E-mail: [email protected] et al. [3] also further narrowed Fusarium sensu Gräfenhan et al. [1] according to its internal phylogenetic structure Received March 29, 2016 Revised June 7, 2016 and thereby applied the “one fungus, one name” concept Accepted July 12, 2016 adopted in the International Code of Nomenclature for Algae, Fungi and Plants as of January 2013 in order to abolish This is an Open Access article distributed under the terms of the the dual naming system (cfr. teleomorphic name is preferred). Creative Commons Attribution Non-Commercial License (http:// They installed a new genus Bisifusarium and applied several creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, teleomorphic names for some important groups of Fusarium provided the original work is properly cited. anamorphs. In doing so, Lombard et al. [3] rejected the 121 122 Triest et al. “Fusarium-first” proposal made by the Fusarium working fragments of carnation leaf, at 23oC for 30 days under community [2] to conserve the name Fusarium above all alternating cycles of light (i.e., day) and dark (i.e., night) linked teleomorphic names for the sake of nomenclatural conditions. Growth rates were measured from the PDA stability as well as rejected their broad phylogenetic definition plates. Colony morphology, pigmentation, conidiogenesis, of Fusarium, which was based upon Fusarium sensu conidial characteristics, and presence of chlamydospores or Gräfenhan et al. [1] and the refinements made by O’Donnell other features were described from both the PDA and SNA et al. [4]. plates. Conidial measurements were taken from 20 randomly Species of the Fusarium-like clade are mostly slow growing selected conidia. A Nikon eclipse E600 microscope (Nikon, and produce a characteristic orange, conidial slime, known Tokyo, Japan) was used and pictures were recorded with as pionnotes, rather than an aerial mycelium [1]. Species the NIS-Elements BR 4.0 imaging software. The strains identification based upon morphology is difficult in the were described according to the terminology applied in Fusarium-like clade. They often occur as saprophytes in the “The Fusarium laboratory manual” of Leslie et al. [8]. soil, on trees or other fungi, and in aquatic environments [1, 2]. In contrast to the well-studied species diversity of Re-identification by multilocus sequencing. Multilocus Fusarium sensu Gräfenhan et al. [1], they have not been sequencing was applied on the six strains and comparative reported as plant pathogens or opportunistic human sequence analyses were performed in GenBank. The internal pathogens and only a few have been described to produce transcribed spacer (ITS) region and part of the ribosomal mycotoxins [2, 5]. Members of the Fusarium-like clade large subunit (LSU) were amplified as well as partial have therefore been largely neglected for a long period of fragments of the commonly used Fusarium DNA marker time. As a consequence, not much is known about the genes: translation elongation factor 1-alpha (TEF1α), beta- actual phylogenetic species diversity in this clade. It was tubulin (BT), and the second largest subunit of RNA only after the taxonomical revision of Gräfenhan et al. [1] polymerase II (RPB2). DNA extraction, PCR amplification, that some DNA marker sequences became available. and sequencing were achieved according to the protocol Among the Fusarium strains preserved by the Belgian applied by Beguin et al. [9]. Primers were described previously: culture collection of biomedical fungi BCCM/IHEM, six for ITS by White et al. [10], for LSU by Hopple and appeared to belong to the Fusarium-like clade based upon Vilgalys [11], for TEF1α by Carbone and Kohn [12], for their morphological appearance during re-identification [6]. BT by Glass and Donaldson [13], and for RPB2 by Van All six strains were slow growing and produced pionnotes, Hove et al. [14]. i.e., typical morphological characteristics of only some Fusarium, but many Fusarium-like species. The objective Phylogenetic analyses. In order to determine whether of the present study was to determine whether these strains our six strains belong to the Fusarium-like clade in the indeed belong to the Fusarium-like clade in the phylogeny phylogeny of the Nectriaceae, a Bayesian phylogenetic analysis of the Nectriaceae as well as to confirm their identity up to was conducted. Therefore, we used the ITS and RPB2 the genus and species level. This was achieved by performing reference sequences of type material published by Gräfenhan multilocus sequencing and phylogenetic analyses using et al. [1] and included our strains. The combined sequence reference sequences of type material. Also morphological dataset was first aligned by the ClustalW algorithm in analyses and mating experiments were performed. MEGA4 [15] and edited manually. Four ambiguously aligned regions (two in the ITS and two in the RPB2 gene marker) MATERIALS AND METHODS were excluded from the analysis. Subsequently, Bayesian inference analysis was executed with MrBayes3.2 [16], Strains. The six strains, used in this study, were collected applying the GTR + I + Γ model of evolution for both loci and preserved by the BCCM/IHEM fungal culture collection and estimating parameters separately for each locus. The after their isolation from different substrates (Table 1). All Monte Carlo Markov chain method was used with runs of were identified based upon their morphology and identified one million generations and sampling a tree every 100 as a Fusarium species at the time of their deposit in the generations. The first 25% of sampled trees were discarded collection, more than 20 years ago. They were recently (i.e., burn-in) and the consensus tree, with posterior subjected to re-identification, together with the other probabilities, was assessed from the remaining trees. The Fusarium strains in the BCCM/IHEM
Recommended publications
  • Thyronectria Revisited and Re-Instated
    Persoonia 33, 2014: 182–211 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE http://dx.doi.org/10.3767/003158514X685211 Persistent hamathecial threads in the Nectriaceae, Hypocreales: Thyronectria revisited and re-instated W.M. Jaklitsch1, H. Voglmayr1,2 Key words Abstract Based on type studies and freshly collected material we here re-instate the genus Thyronectria (Nec- triaceae, Hypocreales). Species of this genus were recently for the most part classified in the genera Pleonectria act (Nectriaceae) or Mattirolia (Thyridiaceae), because Thyronectria and other genera had been identified as members Ascomycota of the Thyridiaceae due to the presence of paraphyses. Molecular phylogenies based on several markers (act, ITS, Hypocreales LSU rDNA, rpb1, rpb2, tef1, tub) revealed that the Nectriaceae contain members whose ascomata are characterised Mattirolia by long, more or less persistent, apical paraphyses. All of these belong to a single genus, Thyronectria, which thus Nectriaceae has representatives with hyaline, rosy, green or even dark brown and sometimes distoseptate ascospores. The new species type species of Thyronectria, T. rhodochlora, syn. T. patavina, syn. T. pyrrhochlora is re-described and illustrated. Pleonectria Within the Nectriaceae persistent, apical paraphyses are common in Thyronectria and rarely also occur in Nectria. pyrenomycetes The genus Mattirolia is revised and merged with Thyronectria and also Thyronectroidea is regarded as a synonym rpb1 of Thyronectria. The three new species T. asturiensis, T. caudata and T. obscura are added to the genus. Species rpb2 recently described in Pleonectria as well as some species of Mattirolia are combined in the genus, and a key to tef1 Thyronectria is provided. Five species are epitypified.
    [Show full text]
  • Phylogeny and Taxonomy of the Genus Cylindrocladiella
    Mycol Progress DOI 10.1007/s11557-011-0799-1 ORIGINAL ARTICLE Phylogeny and taxonomy of the genus Cylindrocladiella L. Lombard & R. G. Shivas & C. To-Anun & P. W. Crous Received: 10 June 2011 /Revised: 10 November 2011 /Accepted: 25 November 2011 # The Author(s) 2012. This article is published with open access at Springerlink.com Abstract The genus Cylindrocladiella was established to the 18 new Cylindrocladiella species described in this study accommodate Cylindrocladium-like fungi that have small, based on morphological and sequence data, several species cylindrical conidia and aseptate stipe extensions. Contemporary complexes remain unresolved. taxonomic studies of these fungi have relied on morphology and to a lesser extent on DNA sequence comparisons of the internal Keywords Cylindrocladiella . Cryptic species . Phylogeny. transcribed spacer regions (ITS 1, 2 and 5.8S gene) of the Taxonomy ribosomal RNA and the β-tubulin gene regions. In the present study, the identity of several Cylindrocladiella isolates collected over two decades was determined using morphology and phy- Introduction logenetic inference. A phylogeny constructed for these isolates employing the β-tubulin, histone H3, ITS, 28S large subunit and The genus Cylindrocladiella was established by Boesewinkel translation elongation factor 1-alpha gene regions resulted in the (1982) to accommodate five Cylindrocladium-like species identification of several cryptic species in the genus. In spite of producing small, cylindrical conidia. Cylindrocladiella, which is based on
    [Show full text]
  • An Ex-Type Culture Cannot Always Tell the Ultimate Truth
    An ex-type culture cannot always tell the CORRESPONDENCE ultimate truth This note is prompted by the case of the isolates accurately matching the description Domsch KH, Gams W, Anderson T-H (1980) generic name Ochroconis, a rather common of this species. The dried type culture Compendium of Soil Fungi. London: Academic genus of saprotrophic soil hyphomycetes, still shows the correct fungus and DNA Press. some of which grow occasionally on sequences of the other isolates representing Ellis MB (1971) Dematiaceous Hyphomycetes. Kew: humans and fish. Von Arx, in the 1970s, this species can be taken as correct. Commonwealth Mycological Institute. being mainly interested in producing Unfortunate consequences arise when Ellis MB (1976) More Dematiaceous Hyphomycetes. keys to identify fungal genera in culture a wrongly identified fungus is designated Kew: Commonwealth Mycological Institute. morphologically, did not believe that as an epitype of a species, as happened with Gams W (1971) Cephalosporium-artige Scolecobasidium terreum E.V. Abbott 1927 Hypocrea farinosa Berk. & Broome 1851 Schimmelpilze (Hyphomycetes). Stuttgart: G. with Y-shaped yellowish conidia, and for which Overton et al. (2000) designated Fischer. other species of this genus with darker, an epitype without studying the extant Gräfenhan T, Schroers H-J, Nirenberg HI, Seifert unbranched conidia were congeneric, holotype. It was left to Jaklitschet al. (2008) KA (2011) An overview of the taxonomy, as proposed by Barron & Busch (1962). to correct the situation and to resurrect the phylogeny, and typification of nectriaceous Therefore, he let his young staff member G. generic name Protocrea Petch 1937 for this fungi in Cosmospora, Acremonium, Fusarium, Sybren de Hoog describe a separate genus, fungus and its relatives, while Overton et al.’s Stilbella, and Volutella.
    [Show full text]
  • (Hypocreales) Proposed for Acceptance Or Rejection
    IMA FUNGUS · VOLUME 4 · no 1: 41–51 doi:10.5598/imafungus.2013.04.01.05 Genera in Bionectriaceae, Hypocreaceae, and Nectriaceae (Hypocreales) ARTICLE proposed for acceptance or rejection Amy Y. Rossman1, Keith A. Seifert2, Gary J. Samuels3, Andrew M. Minnis4, Hans-Josef Schroers5, Lorenzo Lombard6, Pedro W. Crous6, Kadri Põldmaa7, Paul F. Cannon8, Richard C. Summerbell9, David M. Geiser10, Wen-ying Zhuang11, Yuuri Hirooka12, Cesar Herrera13, Catalina Salgado-Salazar13, and Priscila Chaverri13 1Systematic Mycology & Microbiology Laboratory, USDA-ARS, Beltsville, Maryland 20705, USA; corresponding author e-mail: Amy.Rossman@ ars.usda.gov 2Biodiversity (Mycology), Eastern Cereal and Oilseed Research Centre, Agriculture & Agri-Food Canada, Ottawa, ON K1A 0C6, Canada 3321 Hedgehog Mt. Rd., Deering, NH 03244, USA 4Center for Forest Mycology Research, Northern Research Station, USDA-U.S. Forest Service, One Gifford Pincheot Dr., Madison, WI 53726, USA 5Agricultural Institute of Slovenia, Hacquetova 17, 1000 Ljubljana, Slovenia 6CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands 7Institute of Ecology and Earth Sciences and Natural History Museum, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia 8Jodrell Laboratory, Royal Botanic Gardens, Kew, Surrey TW9 3AB, UK 9Sporometrics, Inc., 219 Dufferin Street, Suite 20C, Toronto, Ontario, Canada M6K 1Y9 10Department of Plant Pathology and Environmental Microbiology, 121 Buckhout Laboratory, The Pennsylvania State University, University Park, PA 16802 USA 11State
    [Show full text]
  • Culture Inventory
    For queries, contact the SFA leader: John Dunbar - [email protected] Fungal collection Putative ID Count Ascomycota Incertae sedis 4 Ascomycota Incertae sedis 3 Pseudogymnoascus 1 Basidiomycota Incertae sedis 1 Basidiomycota Incertae sedis 1 Capnodiales 29 Cladosporium 27 Mycosphaerella 1 Penidiella 1 Chaetothyriales 2 Exophiala 2 Coniochaetales 75 Coniochaeta 56 Lecythophora 19 Diaporthales 1 Prosthecium sp 1 Dothideales 16 Aureobasidium 16 Dothideomycetes incertae sedis 3 Dothideomycetes incertae sedis 3 Entylomatales 1 Entyloma 1 Eurotiales 393 Arthrinium 2 Aspergillus 172 Eladia 2 Emericella 5 Eurotiales 2 Neosartorya 1 Paecilomyces 13 Penicillium 176 Talaromyces 16 Thermomyces 4 Exobasidiomycetes incertae sedis 7 Tilletiopsis 7 Filobasidiales 53 Cryptococcus 53 Fungi incertae sedis 13 Fungi incertae sedis 12 Veroneae 1 Glomerellales 1 Glomerella 1 Helotiales 34 Geomyces 32 Helotiales 1 Phialocephala 1 Hypocreales 338 Acremonium 20 Bionectria 15 Cosmospora 1 Cylindrocarpon 2 Fusarium 45 Gibberella 1 Hypocrea 12 Ilyonectria 13 Lecanicillium 5 Myrothecium 9 Nectria 1 Pochonia 29 Purpureocillium 3 Sporothrix 1 Stachybotrys 3 Stanjemonium 2 Tolypocladium 1 Tolypocladium 2 Trichocladium 2 Trichoderma 171 Incertae sedis 20 Oidiodendron 20 Mortierellales 97 Massarineae 2 Mortierella 92 Mortierellales 3 Mortiererallales 2 Mortierella 2 Mucorales 109 Absidia 4 Backusella 1 Gongronella 1 Mucor 25 RhiZopus 13 Umbelopsis 60 Zygorhynchus 5 Myrmecridium 2 Myrmecridium 2 Onygenales 4 Auxarthron 3 Myceliophthora 1 Pezizales 2 PeZiZales 1 TerfeZia 1
    [Show full text]
  • Causal Agent, Biology and Management of the Leaf and Stem
    CAUSAL AGENT, BIOLOGY AND MANAGEMENT OF THE LEAF AND STEM DISEASE OF BOXWOOD {BUXUS SPP.) A Thesis Presented to The Faculty of Graduate Studies of The University of Guelph by FANG SHI In partial fulfillment of requirements for the degree of Master of Science May, 2011 ©Fang Shi, 2011 Library and Archives Bibliotheque et 1*1 Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington OttawaONK1A0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-82801-4 Our file Notre reference ISBN: 978-0-494-82801-4 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library and permettant a la Bibliotheque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lnternet, preter, telecommunication or on the Internet, distribuer et vendre des theses partout dans le loan, distribute and sell theses monde, a des fins commerciales ou autres, sur worldwide, for commercial or non­ support microforme, papier, electronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in this et des droits moraux qui protege cette these. Ni thesis. Neither the thesis nor la these ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent etre imprimes ou autrement printed or otherwise reproduced reproduits sans son autorisation.
    [Show full text]
  • An Overview of the Taxonomy, Phylogeny, and Typification of Nectriaceous Fungi in Cosmospora, Acremonium, Fusarium, Stilbella, and Volutella
    available online at www.studiesinmycology.org StudieS in Mycology 68: 79–113. 2011. doi:10.3114/sim.2011.68.04 An overview of the taxonomy, phylogeny, and typification of nectriaceous fungi in Cosmospora, Acremonium, Fusarium, Stilbella, and Volutella T. Gräfenhan1, 4*, H.-J. Schroers2, H.I. Nirenberg3 and K.A. Seifert1 1Eastern Cereal and Oilseed Research Centre, Biodiversity (Mycology and Botany), 960 Carling Ave., Ottawa, Ontario, K1A 0C6, Canada; 2Agricultural Institute of Slovenia, 1000 Ljubljana, Slovenia; 3Julius-Kühn-Institute, Institute for Epidemiology and Pathogen Diagnostics, Königin-Luise-Str. 19, D-14195 Berlin, Germany; 4Current address: Grain Research Laboratory, Canadian Grain Commission, 1404-303 Main Street, Winnipeg, Manitoba, R3C 3G8, Canada *Correspondence: [email protected] Abstract: A comprehensive phylogenetic reassessment of the ascomycete genus Cosmospora (Hypocreales, Nectriaceae) is undertaken using fresh isolates and historical strains, sequences of two protein encoding genes, the second largest subunit of RNA polymerase II (rpb2), and a new phylogenetic marker, the larger subunit of ATP citrate lyase (acl1). The result is an extensive revision of taxonomic concepts, typification, and nomenclatural details of many anamorph- and teleomorph-typified genera of theNectriaceae, most notably Cosmospora and Fusarium. The combined phylogenetic analysis shows that the present concept of Fusarium is not monophyletic and that the genus divides into two large groups, one basal in the family, the other terminal, separated by a large group of species classified in genera such as Calonectria, Neonectria, and Volutella. All accepted genera received high statistical support in the phylogenetic analyses. Preliminary polythetic morphological descriptions are presented for each genus, providing details of perithecia, micro- and/or macro-conidial synanamorphs, cultural characters, and ecological traits.
    [Show full text]
  • What If Esca Disease of Grapevine Were Not a Fungal Disease?
    Fungal Diversity (2012) 54:51–67 DOI 10.1007/s13225-012-0171-z What if esca disease of grapevine were not a fungal disease? Valérie Hofstetter & Bart Buyck & Daniel Croll & Olivier Viret & Arnaud Couloux & Katia Gindro Received: 20 March 2012 /Accepted: 1 April 2012 /Published online: 24 April 2012 # The Author(s) 2012. This article is published with open access at Springerlink.com Abstract Esca disease, which attacks the wood of grape- healthy and diseased adult plants and presumed esca patho- vine, has become increasingly devastating during the past gens were widespread and occurred in similar frequencies in three decades and represents today a major concern in all both plant types. Pioneer esca-associated fungi are not trans- wine-producing countries. This disease is attributed to a mitted from adult to nursery plants through the grafting group of systematically diverse fungi that are considered process. Consequently the presumed esca-associated fungal to be latent pathogens, however, this has not been conclu- pathogens are most likely saprobes decaying already senes- sively established. This study presents the first in-depth cent or dead wood resulting from intensive pruning, frost or comparison between the mycota of healthy and diseased other mecanical injuries as grafting. The cause of esca plants taken from the same vineyard to determine which disease therefore remains elusive and requires well execu- fungi become invasive when foliar symptoms of esca ap- tive scientific study. These results question the assumed pear. An unprecedented high fungal diversity, 158 species, pathogenicity of fungi in other diseases of plants or animals is here reported exclusively from grapevine wood in a single where identical mycota are retrieved from both diseased and Swiss vineyard plot.
    [Show full text]
  • Fungal Systematics: Is a New Age of Enlightenment at Hand?
    PERSPECTIVES Nomenclature for Algae, Fungi, and Plants ESSAY (ICN). To many scientists, these may seem like overdue, common-sense measures, but Fungal systematics: is a new age to some fungal taxonomists, the changes were seismic11. of enlightenment at hand? In the long run, a unitary nomenclature system for pleomorphic fungi, along with the other changes, will promote effective David S. Hibbett and John W. Taylor communication. In the short term, however, Abstract | Fungal taxonomists pursue a seemingly impossible quest: to discover the abandonment of dual nomenclature will require mycologists to work together and give names to all of the world’s mushrooms, moulds and yeasts. Taxonomists to resolve the correct names for large num‑ have a reputation for being traditionalists, but as we outline here, the community bers of fungi, including many economically has recently embraced the modernization of its nomenclatural rules by discarding important pathogens and industrial organ‑ the requirement for Latin descriptions, endorsing electronic publication and isms. Here, we consider the opportunities ending the dual system of nomenclature, which used different names for the sexual and challenges posed by the repeal of dual nomenclature and the parallels and con‑ and asexual phases of pleomorphic species. The next, and more difficult, step will trasts between nomenclatural practices for be to develop community standards for sequence-based classification. fungi and prokaryotes. We also explore the options for fungal taxonomy based on Taxonomists create the language of bio‑ efforts to classify taxa that are discovered environmental sequences and ask whether diversity, enabling communication about through metagenomics5. sequence-based taxonomy can be reconciled different organisms among basic and In the lead‑up to the last IBC in July with the ICN.
    [Show full text]
  • Pseudocosmospora Hypoxylicola (Nectriaceae), a New Species from the French Alps
    Pseudocosmospora hypoxylicola (Nectriaceae), a new species from the French Alps Christian LECHAT Abstract: Pseudocosmospora hypoxylicola is described and illustrated based on material occurring on stro- Jacques FOURNIER mata of Hypoxylon fuscum on Alnus alnobetula in France. The placement of this fungus in the genus Pseudo- cosmospora and its status as a distinct species are based on the study of its sexual and asexual morphs, colour of colony in culture and phylogenetic comparison of ITS1-5.8S-ITS2 and LSU sequences with those of cos- mospora-like fungi having an acremonium-like asexual morph. Ascomycete.org, 12 (1) : 6–10 Keywords: Ascomycota, fungicolous Nectriaceae, Hypocreales, Hypoxylon, rdnA, taxonomy. Mise en ligne le 15/02/2020 10.25664/ART-0290 Résumé : Pseudocosmospora hypoxylicola est décrite et illustrée d’après du matériel récolté sur des stromas d’Hypoxylon fuscum sur Alnus alnobetula en France. Le placement de ce champignon dans le genre Pseudo- cosmospora et son statut d’espèce nouvelle reposent sur l’étude des stades sexué et asexué, la couleur de la colonie en culture et sur la comparaison phylogénétique des séquences ITS1-5.8S-ITS2 et LSU avec celles d’espèces de type cosmospora ayant une forme asexuée de type acremonium. Mots-clés : Adn ribosomal, Ascomycota, Hypocréales, Hypoxylon, Nectriaceae fongicoles, taxinomie. Introduction these were corrected. Phylogenetic analyses were performed online at www.phylogeny.lirmm.fr (dErEEPEr et al., 2008). maximum likeli- hood phylogenetic analyses were performed with PhymL 3.0 aLrT In the course of a field survey of Ascomycota in the French Alps (ZWIcKL, 2006), using the GTr + I + Γ model of evolution.
    [Show full text]
  • Systematics of Plant Pathogenic Fungi: Why It Matters
    This article is from the October 2008 issue of published by The American Phytopathological Society For more information on this and other topics related to plant pathology, we invite you to visit APSnet at www.apsnet.org Amy Y. Rossman Systematic Mycology & Microbiology Laboratory, USDA-Agricultural Research Service, Beltsville, MD Mary E. Palm-Hernández Molecular Diagnostics Laboratory, USDA-Animal and Plant Health Inspection Service, Beltsville, MD Systematics of Plant Pathogenic Fungi: Why It Matters Systematics is the study of biological di- comparison of portions of the genome are with that name suggests that this organism versity; more specifically, it is the science also used to characterize fungi, especially is more likely to decay dead cellulosic that discovers, describes, and classifies all in determining species concepts and rela- material. organisms. Taxonomy, nomenclature, and tionships among fungi at all levels ranging As an example of scientific names phylogeny are all part of systematics. Fun- from population genetics to the phylogeny changing to reflect increased knowledge, gal systematic studies result in the discov- of major groups of fungi as well as fungal- one can examine a fungal pathogen caus- ery and description of fungi, the principles like organisms. ing root rot of woody plants known for of nomenclature guide the naming of or- many years as Armillaria mellea (Vahl:Fr.) ganisms, and phylogenetic studies contrib- What’s in a name? Karst., which has the common names in ute to the classification of taxa into geneti- Names are the means by which informa- English of honey mushroom, shoestring, or cally related groups. A taxon (pl.
    [Show full text]
  • A New Species of Fusicolla (Hypocreales), F
    A new species of Fusicolla (Hypocreales), F. ossicola, from Belgium Christian LECHAT Abstract: Fusicolla ossicola sp. nov. is described and illustrated based on material collected on bone of wild Amy ROSSMAN boar in Belgium. This species is placed in the genus Fusicolla based on morphological characters such as changing color in lactic acid and the fusarium-like asexual morph produced in culture. A phylogenetic com- parison of its ITS and LSU sequences was made with those of known Fusicolla species and 13 nectriaceous species having a fusarium-like asexual morph. Fusicolla ossicola is characterized by pale yellow to pale brown- Ascomycete.org, 9 (6) : 225-228. ish orange, non-stromatic ascomata, not changing color in 3% KOH but becoming bright orange in lactic Novembre 2017 acid and a fusarium-like asexual morph. Furthermore, the systematic position and identity of Cosmospora Mise en ligne le 20/11/2017 matuoi Hosoya & Tubaki are discussed. Keywords: Ascomycota, bone, cosmospora-like, fusarium-like, Hypocreales, ribosomal DNA, taxonomy. Résumé : Fusicolla ossicola sp. nov. est décrite et illustrée d’après du matériel récolté sur os de sanglier en Belgique. Le placement de cette nouvelle espèce dans le genre Fusicolla repose sur les caractères morpho- logiques, tels que le changement de couleur dans l’acide lactique et le stade asexué fusarium-morphe obtenu en culture. La comparaison phylogénétique de ses séquences ITS et LSU avec celles des espèces de Fusicolla connues et 13 espèces de Nectriaceae ayant un stade asexué de type fusarium. Fusicolla ossicola est carac- térisée par des ascomes jaune pâle à orange brunâtre pâle, sans stroma, ne changeant pas de couleur dans KOH à 3% mais devenant orange vif dans l’acide lactique et un stade asexué de type fusarium.
    [Show full text]