Novel Cyclic Adenosine Monophosphate (Camp) Signalling

Total Page:16

File Type:pdf, Size:1020Kb

Novel Cyclic Adenosine Monophosphate (Camp) Signalling University of Groningen Novel cyclic AMP signalling avenues in learning and memory Ostroveanu, A IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2009 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Ostroveanu, A. (2009). Novel cyclic AMP signalling avenues in learning and memory. s.n. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 10-10-2021 Novel cyclic AMP signalling avenues in learning and memory A. Ostroveanu The studies described in this thesis were performed at the Department of Molecular Neurobiology, Faculty of Mathematics and Natural Sciences, University of Groningen. Financial support from the graduate school of Behavioral and Cognitive Neuroscience and the University of Groningen for the publication of this thesis is gratefully acknowledged. school of behavioral and cognitive nenuroscience Cover photos: A. Ostroveanu Cover design: A. Ostroveanu Printed by: Ipskamp Drukkers RIJKSUNIVERSITEIT GRONINGEN Novel cyclic AMP signalling avenues in learning and memory Proefschrift ter verkrijging van het doctoraat in de Wiskunde en Natuurwetenschappen aan de Rijksuniversiteit Groningen op gezag van de Rector Magnificus, dr. F. Zwarts, in het openbaar te verdedigen op vrijdag 1 mei 2009 om 16.15 uur door Anghelus Ostroveanu geboren op 25 januari 1976 te Ciocanesti, Roemenie Promotores: Prof. dr. P.G.M. Luiten Prof. dr. E.A. van der Zee Prof. dr. U.L.M. Eisel Copromotor: Dr. I.M. Nijholt Beoordelingscommissie: Prof. dr. M. Schmidt Prof. dr. M. Verhage Prof. dr. B. Roozendaal ISBN: 978-90-367-3750-0 A man's real possession is his memory. In nothing else he is rich, in nothing else he is poor. Dreamthorp: Essays written in the Country Alexander Smith-Scottish essayist & poet (1830 - 1867) to my dear Oana and the loved ones left home Contents Chapter 1 Introduction and aim of the thesis 9 Chapter 2 A-kinase anchoring protein 150 in the mouse brain is concentrated 39 in areas involved in learning and memory Chapter 3 Both exposure to a novel context and associative learning induce an 63 upregulation of AKAP150 protein in mouse hippocampus Chapter 4 Inhibition of PKA anchoring to A-kinase anchoring proteins impairs 75 consolidation and facilitates extinction of contextual fear memories Chapter 5 Detailed analysis of mAKAP expression in the brain of young and 95 old mice Chapter 6 Exchange protein activated by cyclic AMP 2 (Epac2) plays a specific 119 and time-limited role in memory retrieval Chapter 7 General discussion 141 Summary of the thesis 171 Nederlandse samenvatting 175 Acknowledgements 179 List of publications 181 Curriculum vitae 183 Chapter 1 Introduction and aim of this thesis Chapter 1 Contents: 1. cAMP signaling in learning and memory 2. Cyclic AMP dependent protein kinase 3. PKA in learning and memory 4. Compartmentalization of PKA signaling through AKAPs 5. A-kinase anchoring protein 150 6. Muscle AKAP 7. Role of AKAPs in learning and memory 8. Tools for AKAP research 9. Exchange protein directly activated by cAMP 10. Aim and outline of the thesis 11. References 10 Introduction and aim of this thesis 1. cAMP signaling in learning and memory In the molecular mechanisms that underlie the formation of all memories from simple adaptive responses to complex declarative memories, nerve cells and their interacting functional networks are subject to a large variety of signaling molecules including neurotransmitters, hormones, cytokines and matrix molecules. All these messengers can exert their influence to the same nerve cell. At the same time each nerve cell according to the model of Hebb can participate in different memory traces and respond to a variety of temporal and spatial dynamics. An obvious question then coming up is how a single individual neuron can handle the myriads of stimuli necessary to build memories during life, or in other words: how do nerve cells organize the where and when in their extensive cellular domain? So far, a large number of signalling proteins have been shown to be involved in learning and memory processes. One of the most important molecules involved is cyclic adenosine monophosphate (cAMP, cyclic AMP or 3'-5'-cyclic adenosine monophosphate), a second messenger ubiquitously expressed and shown to be involved in many other biological processes besides learning and memory. This is e.g. evidenced by the fact that there are more than 90.000 scientific publications concerning cAMP since its discovery as a diffusible intracellular second messenger produced in response to hormone action (Sutherland and Rall, 1958). In the brain, activation of cAMP signaling occurs after stimulation of adenylyl cyclases by stimulatory G-proteins after binding of an extracellular ligand (e.g. adrenaline) to a GPCR and by Ca2+ through the Ca2+-binding protein calmodulin (Wang and Storm, 2003). Initially, the importance of cAMP signaling in learning and memory was demonstrated in genetic and pharmacological studies in invertebrate models for associative learning such as Aplysia (Byrne and Kandel, 1996), Drosophila (Waddell et al., 2000), and in honeybees (Apis mellifera) (Hammer and Menzel, 1995). Soon after, evidence for the role of cAMP in learning and memory in mammals was published. Genetic manipulations of several components of the cAMP pathway, such as augmentation of adenylyl cyclase activity (Pineda et al., 2004) or altering the expression of G-proteins (Bourtchouladze et al., 2006), 11 Chapter 1 led to severe memory impairments in mice. Although cAMP was acknowledged as crucial molecule in learning and memory, the precise role of cAMP in these processes remained unclear due to contradictory results from other pharmacological and genetic studies. While the elevation of cAMP levels in the hippocampus by forskolin, an activator of adenylyl cyclase, improved memory for passive avoidance tasks in rats (Bernabeu et al., 1997), pharmacological activation of the cAMP pathway in the prefrontal cortex was shown to impair working memory performance (Taylor et al., 1999). Very recently, it was shown that transgenic mice in which cAMP levels are spatially and temporally elevated in forebrain regions, exhibit enhanced memory consolidation and retrieval for contextual fear conditioning (Isiegas et al., 2008). Altogether, these results suggest that cAMP signals are mediated by different intracellular mechanisms and their actions dependent on the brain region involved. Thus cAMP appears to play a complex role in distinct cognitive processes in different brain regions. In this thesis we will investigate the role of two, recently discovered, cAMP signaling avenues, A-kinase anchoring proteins (AKAPs) and exchange protein activated by cAMP (Epac), in memory processes. 2. Cyclic AMP dependent protein kinase One of the main targets of cAMP is cAMP-dependent protein kinase (PKA). Mammalian PKA includes four regulatory (RIα, RIβ, RIIα, RIIβ) and three catalytic (Cα, Cβ, Cγ) subunits, each encoded by a separate gene (McKnight et al., 1988; Doskeland et al., 1993). Two major types of mammalian PKA, type I (PKA I, with RIα and RIβ dimers) and type II (PKA II, with RIIα and RIIβ dimers), were initially described by their pattern of elution from diethylaminoethylcellulose (DEAE) cellulose columns (Tasken et al., 1993, Francis and Corbin, 1999). Both type I and type II PKA are expressed in the mammalian brain (Cadd and McKnight, 1989). In the absence of cAMP, PKA consists of an inactive heterotetramer of two catalytic subunits bound to two regulatory subunits (Taylor et al, 1990). Each regulatory subunit contains two tandem cAMP binding sites, a high affinity 12 Introduction and aim of this thesis site and a low affinity site (Taylor et al., 1990). Activation of PKA occurs upon increasing cAMP levels. Accordingly, cAMP binding to these two sites located on the R subunits, results in the dissociation of the holoenzyme and the release of the monomeric C subunits which in turn can phosphorylate serine and threonine residues on targeted proteins (Taylor et al., 1990, Wang et al., 1991, Gibbs et al., 1992). The C subunits are broad-spectrum serine/threonine kinases that could potentially target numerous proteins, therefore signalling specificity for PKA is required. A basic specificity of PKA action is supported by the fact that there is a specific subcellular localization of PKA isoforms. For example, RI is found throughout the cytoplasm, whereas RII is localized to nuclei, nucleoli, the microtubule organizing center, the Golgi apparatus, and the plasma membrane (Griffiths et al., 1990, Li et al., 1988). Interestingly, even within the same subcellular compartment the PKA isoforms can have a differential localisation. For example RIIα and RIIβ have been demonstrated to localize differently in the Golgi-centrosomal area (Keryer et al., 1999). The specificity of PKA action can also be achieved by its affinity to cAMP. The PKA isoforms become activated at different concentrations of cAMP: type Iα is activated when the cAMP concentration reaches 10 nM, type Iβ at 100 nM, type IIα at 200 nM and type IIβ at 600 nM (Taylor et al, 1990).
Recommended publications
  • Protein-Coding Variants Implicate Novel Genes Related to Lipid Homeostasis
    bioRxiv preprint doi: https://doi.org/10.1101/352674; this version posted June 30, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 PROTEIN-CODING VARIANTS IMPLICATE NOVEL GENES RELATED TO LIPID HOMEOSTASIS 2 CONTRIBUTING TO BODY FAT DISTRIBUTION 3 Anne E Justice¥,1,2, Tugce Karaderi¥,3,4, Heather M Highland¥,1,5, Kristin L Young¥,1, Mariaelisa Graff¥,1, 4 Yingchang Lu¥,6,7,8, Valérie Turcot9, Paul L Auer10, Rebecca S Fine11,12,13, Xiuqing Guo14, Claudia 5 Schurmann7,8, Adelheid Lempradl15, Eirini Marouli16, Anubha Mahajan3, Thomas W Winkler17, Adam E 6 Locke18,19, Carolina Medina-Gomez20,21, Tõnu Esko11,13,22, Sailaja Vedantam11,12,13, Ayush Giri23, Ken Sin 7 Lo9, Tamuno Alfred7, Poorva Mudgal24, Maggie CY Ng24,25, Nancy L Heard-Costa26,27, Mary F Feitosa28, 8 Alisa K Manning11,29,30 , Sara M Willems31, Suthesh Sivapalaratnam30,32,33, Goncalo Abecasis18, Dewan S 9 Alam34, Matthew Allison35, Philippe Amouyel36,37,38, Zorayr Arzumanyan14, Beverley Balkau39, Lisa 10 Bastarache40, Sven Bergmann41,42, Lawrence F Bielak43, Matthias Blüher44,45, Michael Boehnke18, Heiner 11 Boeing46, Eric Boerwinkle47,48, Carsten A Böger49, Jette Bork-Jensen50, Erwin P Bottinger7, Donald W 12 Bowden24,25,51, Ivan Brandslund52,53, Linda Broer21, Amber A Burt54, Adam S Butterworth55,56, Mark J 13 Caulfield16,57, Giancarlo Cesana58, John C Chambers59,60,61,62,63, Daniel I Chasman11,64,65,66, Yii-Der Ida 14 Chen14, Rajiv Chowdhury55, Cramer Christensen67,
    [Show full text]
  • Increased Microvascular Permeability in Mice Lacking Epac1 (Rapgef3)
    Increased microvascular permeability in mice lacking Epac1 (Rapgef3) Kopperud, R. K.; Rygh, C. Brekke; Karlsen, T. V.; Krakstad, C.; Kleppe, R.; Hoivik, E. A.; Bakke, M.; Tenstad, O.; Selheim, F.; Lidén, Å.; Madsen, Lise; Pavlin, T.; Taxt, T.; Kristiansen, Karsten; Curry, F. -R. E.; Reed, R. K.; Døskeland, S. O. Published in: Acta Physiologica DOI: 10.1111/apha.12697 Publication date: 2017 Document version Publisher's PDF, also known as Version of record Document license: CC BY-NC-ND Citation for published version (APA): Kopperud, R. K., Rygh, C. B., Karlsen, T. V., Krakstad, C., Kleppe, R., Hoivik, E. A., Bakke, M., Tenstad, O., Selheim, F., Lidén, Å., Madsen, L., Pavlin, T., Taxt, T., Kristiansen, K., Curry, F. -R. E., Reed, R. K., & Døskeland, S. O. (2017). Increased microvascular permeability in mice lacking Epac1 (Rapgef3). Acta Physiologica, 219(2), 441-452. https://doi.org/10.1111/apha.12697 Download date: 30. Sep. 2021 Acta Physiol 2017, 219, 441–452 Increased microvascular permeability in mice lacking Epac1 (Rapgef3) † § R. K. Kopperud,1,2,*, C. Brekke Rygh,1,*, T. V. Karlsen,1 C. Krakstad,1 R. Kleppe,1 † ¶ ‡ E. A. Hoivik,1, M. Bakke,1 O. Tenstad,1 F. Selheim,1 A. Liden, 1, L. Madsen,1,3, T. Pavlin,1 T. Taxt,1 K. Kristiansen,3 F.-R. E. Curry,4 R. K. Reed1,2 and S. O. Døskeland1 1 Department of Biomedicine, University of Bergen, Bergen, Norway 2 Centre for Cancer Biomarkers (CCBIO), University of Bergen, Bergen, Norway 3 Department of Biology, University of Copenhagen, Copenhagen, Denmark 4 Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA, USA Received 18 February 2016, Abstract revision requested 15 March Aim: Maintenance of the blood and extracellular volume requires tight con- 2016, trol of endothelial macromolecule permeability, which is regulated by cAMP revision received 12 April 2016, signalling.
    [Show full text]
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]
  • Selective Small-Molecule EPAC Activators
    Heriot-Watt University Research Gateway Selective small-molecule EPAC activators Citation for published version: Luchowska-Staska, U, Morgan, D, Yarwood, SJ & Barker, G 2019, 'Selective small-molecule EPAC activators', Biochemical Society Transactions, vol. 47, no. 5, pp. 1415-1427. https://doi.org/10.1042/BST20190254 Digital Object Identifier (DOI): 10.1042/BST20190254 Link: Link to publication record in Heriot-Watt Research Portal Document Version: Publisher's PDF, also known as Version of record Published In: Biochemical Society Transactions Publisher Rights Statement: © 2019 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY). General rights Copyright for the publications made accessible via Heriot-Watt Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy Heriot-Watt University has made every reasonable effort to ensure that the content in Heriot-Watt Research Portal complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 30. Sep. 2021 Biochemical Society Transactions (2019) https://doi.org/10.1042/BST20190254 Review Article Selective small-molecule EPAC activators Urszula Luchowska-Stanská 1, David Morgan2, Stephen J. Yarwood1 and Graeme Barker2 1 2 Institute of Biological Chemistry, Biophysics, and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, U.K.; Institute of Chemical Sciences, Heriot-Watt University, Downloaded from https://portlandpress.com/biochemsoctrans/article-pdf/doi/10.1042/BST20190254/857286/bst-2019-0254c.pdf by Heriot-Watt University user on 21 October 2019 Edinburgh EH14 4AS, U.K.
    [Show full text]
  • Small Gtpases of the Ras and Rho Families Switch On/Off Signaling
    International Journal of Molecular Sciences Review Small GTPases of the Ras and Rho Families Switch on/off Signaling Pathways in Neurodegenerative Diseases Alazne Arrazola Sastre 1,2, Miriam Luque Montoro 1, Patricia Gálvez-Martín 3,4 , Hadriano M Lacerda 5, Alejandro Lucia 6,7, Francisco Llavero 1,6,* and José Luis Zugaza 1,2,8,* 1 Achucarro Basque Center for Neuroscience, Science Park of the Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48940 Leioa, Spain; [email protected] (A.A.S.); [email protected] (M.L.M.) 2 Department of Genetics, Physical Anthropology, and Animal Physiology, Faculty of Science and Technology, UPV/EHU, 48940 Leioa, Spain 3 Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, 180041 Granada, Spain; [email protected] 4 R&D Human Health, Bioibérica S.A.U., 08950 Barcelona, Spain 5 Three R Labs, Science Park of the UPV/EHU, 48940 Leioa, Spain; [email protected] 6 Faculty of Sport Science, European University of Madrid, 28670 Madrid, Spain; [email protected] 7 Research Institute of the Hospital 12 de Octubre (i+12), 28041 Madrid, Spain 8 IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain * Correspondence: [email protected] (F.L.); [email protected] (J.L.Z.) Received: 25 July 2020; Accepted: 29 August 2020; Published: 31 August 2020 Abstract: Small guanosine triphosphatases (GTPases) of the Ras superfamily are key regulators of many key cellular events such as proliferation, differentiation, cell cycle regulation, migration, or apoptosis. To control these biological responses, GTPases activity is regulated by guanine nucleotide exchange factors (GEFs), GTPase activating proteins (GAPs), and in some small GTPases also guanine nucleotide dissociation inhibitors (GDIs).
    [Show full text]
  • Anxiety and Depression with Neurogenesis Defects in Exchange
    OPEN Citation: Transl Psychiatry (2016) 6, e881; doi:10.1038/tp.2016.129 www.nature.com/tp ORIGINAL ARTICLE Anxiety and depression with neurogenesis defects in exchange protein directly activated by cAMP 2-deficient mice are ameliorated by a selective serotonin reuptake inhibitor, Prozac L Zhou1,10,SLMa2,10, PKK Yeung1,3, YH Wong4,5, KWK Tsim5,6,KFSo1,7,8,9, LCW Lam2 and SK Chung1,3,7 Intracellular cAMP and serotonin are important modulators of anxiety and depression. Fluoxetine, a selective serotonin reuptake inhibitor (SSRI) also known as Prozac, is widely used against depression, potentially by activating cAMP response element-binding protein (CREB) and increasing brain-derived neurotrophic factor (BDNF) through protein kinase A (PKA). However, the role of Epac1 and Epac2 (Rap guanine nucleotide exchange factors, RAPGEF3 and RAPGEF4, respectively) as potential downstream targets of SSRI/cAMP in mood regulations is not yet clear. Here, we investigated the phenotypes of Epac1 (Epac1− / −) or Epac2 (Epac2− / −) knockout mice by comparing them with their wild-type counterparts. Surprisingly, Epac2− / − mice exhibited a wide range of mood disorders, including anxiety and depression with learning and memory deficits in contextual and cued fear-conditioning tests without affecting Epac1 expression or PKA activity. Interestingly, rs17746510, one of the three single-nucleotide polymorphisms (SNPs) in RAPGEF4 associated with cognitive decline in Chinese Alzheimer’s disease (AD) patients, was significantly correlated with apathy and mood disturbance, whereas no significant association was observed between RAPGEF3 SNPs and the risk of AD or neuropsychiatric inventory scores. To further determine the detailed role of Epac2 in SSRI/serotonin/cAMP-involved mood disorders, we treated Epac2− / − mice with a SSRI, Prozac.
    [Show full text]
  • Elucidating the Role of EPAC-Rap1 Signaling Pathway in the Blood
    Elucidating the Role of EPAC-Rap1 Signaling Pathway in the Blood-Retinal Barrier By Carla Jhoana Ramos A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Cellular and Molecular Biology) in The University of Michigan 2017 Doctoral Committee: Professor David A. Antonetti, Chair Professor Christin Carter-Su Associate Professor Philip J. Gage Professor Ben Margolis Assistant Professor Ann L. Miller Image of exchange factor directly activated by cAMP (EPAC), Ras-related protein (Rap1) and Zonula occludens-1 (ZO-1) immunofluorescent staining in bovine retinal endothelial cells, obtained by confocal microscopy. Carla Jhoana Ramos [email protected] ORCID iD: 0000-0001-5041-6758 © Carla Jhoana Ramos 2017 DEDICATION This dissertation is dedicated to my mother Victoria de Jesus Larios de Ramos, my father Jose Carlos Ramos, and my younger brother Hilmar Ramos. My parents migrated from El Salvador to the USA in search of better opportunities and dedicated their lives to providing us with a good education. They have instilled in me determination, perseverance and strength. Finally, my experience observing my mother cope with more than 26 years of diabetes and 10 years of mild diabetic retinopathy led me into diabetes research at the University of Michigan. ii ACKNOWLEDGEMENTS The completion of this dissertation has been made possible by the support from my community of mentors, friends and family. I would like to first thank my mentor David Antonetti, who gave me the opportunity to train in his laboratory under his guidance during these last 6 years. Additionally, I would like to thank my thesis committee: Ben Margolis, Christin Carter-Su, Philip Gage, and Ann Miller whose suggestions, questions, and scientific discussions helped improve the quality of this thesis and for their constant support and encouragement.
    [Show full text]
  • Rnai Screen Indicates Widespread Biological Function for Human Natural Antisense Transcripts
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central RNAi Screen Indicates Widespread Biological Function for Human Natural Antisense Transcripts Mohammad Ali Faghihi1, Jannet Kocerha1¤, Farzaneh Modarresi1,Pa¨r G. Engstro¨ m3, Alistair M. Chalk4, Shaun P. Brothers1, Eric Koesema2, Georges St. Laurent III5,6, Claes Wahlestedt1,2* 1 Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America, 2 Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida, United States of America, 3 Bioinformatics Institute, Hinxton, Cambridge, United Kingdom, 4 National Centre for Adult Stem Cell Research, Eskitis Institute for Cell and Molecular Therapies, Griffith University, Brisbane, Australia, 5 Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States of America, 6 Immunovirology-Biogenisis Group, University of Antioquia, Medellin, Colombia Abstract Natural antisense transcripts represent a class of regulatory RNA molecules, which are characterized by their complementary sequence to another RNA transcript. Extensive sequencing efforts suggest that natural antisense transcripts are prevalent throughout the mammalian genome; however, their biological significance has not been well defined. We performed a loss- of-function RNA interference (RNAi) screen, which targeted 797 evolutionary conserved antisense transcripts, and found evidence for a regulatory role for a number of natural antisense transcripts. Specifically, we found that natural antisense transcripts for CCPG1 and RAPGEF3 may functionally disrupt signaling pathways and corresponding biological phenotypes, such as cell viability, either independently or in parallel with the corresponding sense transcript. Our results show that the large-scale siRNA screen can be applied to evaluate natural antisense transcript modulation of fundamental cellular events.
    [Show full text]
  • The Role of TWIST1 in Multiple Myeloma
    The Role of TWIST1 in Multiple Myeloma Chee Man Cheong, BHSc (Hons) Myeloma Research Group Discipline of Physiology Adelaide Medical School Faculty of Health and Medical Sciences The University of Adelaide & Cancer Theme South Australian Health & Medical Research Institute (SAHMRI) A thesis submitted for the degree of Doctor of Philosophy December 2016 TABLE OF CONTENTS TABLE OF CONTENTS ................................................................. i LIST OF FIGURES ....................................................................... iv LIST OF TABLES ........................................................................ vii ABSTRACT .................................................................................... ix DECLARATION ............................................................................ xi ACKNOWLEDGEMENTS .......................................................... xii LIST OF ABBREVIATIONS ..................................................... xiv LIST OF PUBLICATIONS ........................................................ xvii Chapter 1 : Introduction ................................................................ 1 1.1 Overview ............................................................................................................2 1.2 Multiple Myeloma ..............................................................................................3 1.2.1 Clinical manifestations of multiple myeloma ....................................................... 3 1.2.2 Epidemiology of multiple myeloma .....................................................................
    [Show full text]
  • Exploring the Role of Rapgef6 in Neuropsychiatric Disorders
    Exploring the Role of Rapgef6 in Neuropsychiatric Disorders Rebecca Jeannette Levy Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy under the Executive Committee of the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2013 © 2012 Rebecca Jeannette Levy All rights reserved ABSTRACT Exploring the role of Rapgef6 in neuropsychiatric disorders Rebecca Jeannette Levy Schizophrenia is highly heritable yet there are few confirmed, causal mutations. In human genetic studies, we discovered CNVs impacting RAPGEF6 and RAPGEF2. Behavioral analysis of a mouse modeling Rapgef6 deletion determined that amygdala function was the most impaired behavioral domain as measured by reduced fear conditioning and anxiolysis. More disseminated behavioral functions such as startle and prepulse inhibition were also reduced, while locomotion was increased. Hippocampal-dependent spatial memory was intact, as was prefrontal cortex function on a working memory task. Neural activation as measured by cFOS levels demonstrated a reduction in hippocampal and amygdala activation after fear conditioning. In vivo neural morphology assessment found CA3 spine density and primary dendrite number were reduced in knock out animals but additional hippocampal measurements were unaffected. Furthermore, amygdala spine density and prefrontal cortex dendrites were not changed. Considering all levels of analysis, the Rapgef6 mouse was most impaired in hippocampal and amygdala function, brain regions implicated in schizophrenia pathophysiology at a variety of levels. The exact cause of Rapgef6 pathology has not yet been determined, but the dysfunction appears to be due to subtle spine density changes as well as synaptic hypoactivity. Continued investigation may yield a deeper understanding of amygdala and hippocampal pathophysiology, particularly contributing to negative symptoms, as well as novel therapeutic targets in schizophrenia.
    [Show full text]
  • Supporting Information
    Supporting Information Nguyen et al. 10.1073/pnas.1604720113 SI Materials and Methods medium containing DMEM, 10% FBS, and 1 mM L-glutamine. Cells Plasmid Construction. Sixty-three human GEF cDNAs were gen- were coated in 0.1% gelatin from porcine skin (Sigma) before plating erated from human brain tissue mRNAs, and the Gateway system on the flask. Cell medium was changed every 24 h. (Invitrogen) was used to construct a library of CFP-conjugated GEF plasmids. The mCherry-Lifeact vector was constructed by inserting siRNA Transfection and Real-Time PCR. The NIH 3T3 cells were the F-actin peptide–encoding sequence into the mCherry-C1 vector transfected with 25 nM mouse siRNA-PLEKHG3 (SC-152313; (22). Raichu-Rac1 and Raichu-Cdc42 were described previously Santa Cruz). The MDA-MB-231 and HUVEC cells were trans- (43). PTriEx-mVenus-PA-Rac1 (Addgene plasmid #22007) was a fected with 10 nM of human PLEKHG3-siRNA (SR308671; gift from K.M.H. GFP-TEM4 was generously provided by Natalia OriGene). Cells were cultured for 30 h after transfection. To Mitin at the University of North Carolina at Chapel Hill, Chapel analyze the expression of PLEKHG3 mRNAs, total RNA was Hill, NC (19). Lyn-CIBN-mCerulean was cloned by inserting the isolated using TRIzol (Life Technologies) and reverse-transcribed to myristoylation and CIBN sequences into the mCerulean-N1 vector. cDNAs using SuperScript III (Invitrogen). The generated cDNA was amplified using a 2× real-time PCR smart kit containing The mCitrine-PHRCRY2-iSH2 construct was cloned by inserting PHR and the iSH2 domain of p85beta (amino acids 420–615) EvaGreen (SolGent).
    [Show full text]
  • Genome-Wide Gene Expression Profiling of Randall's Plaques In
    CLINICAL RESEARCH www.jasn.org Genome-Wide Gene Expression Profiling of Randall’s Plaques in Calcium Oxalate Stone Formers † † Kazumi Taguchi,* Shuzo Hamamoto,* Atsushi Okada,* Rei Unno,* Hideyuki Kamisawa,* Taku Naiki,* Ryosuke Ando,* Kentaro Mizuno,* Noriyasu Kawai,* Keiichi Tozawa,* Kenjiro Kohri,* and Takahiro Yasui* *Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan; and †Department of Urology, Social Medical Corporation Kojunkai Daido Hospital, Daido Clinic, Nagoya, Japan ABSTRACT Randall plaques (RPs) can contribute to the formation of idiopathic calcium oxalate (CaOx) kidney stones; however, genes related to RP formation have not been identified. We previously reported the potential therapeutic role of osteopontin (OPN) and macrophages in CaOx kidney stone formation, discovered using genome-recombined mice and genome-wide analyses. Here, to characterize the genetic patho- genesis of RPs, we used microarrays and immunohistology to compare gene expression among renal papillary RP and non-RP tissues of 23 CaOx stone formers (SFs) (age- and sex-matched) and normal papillary tissue of seven controls. Transmission electron microscopy showed OPN and collagen expression inside and around RPs, respectively. Cluster analysis revealed that the papillary gene expression of CaOx SFs differed significantly from that of controls. Disease and function analysis of gene expression revealed activation of cellular hyperpolarization, reproductive development, and molecular transport in papillary tissue from RPs and non-RP regions of CaOx SFs. Compared with non-RP tissue, RP tissue showed upregulation (˃2-fold) of LCN2, IL11, PTGS1, GPX3,andMMD and downregulation (0.5-fold) of SLC12A1 and NALCN (P,0.01). In network and toxicity analyses, these genes associated with activated mitogen- activated protein kinase, the Akt/phosphatidylinositol 3-kinase pathway, and proinflammatory cytokines that cause renal injury and oxidative stress.
    [Show full text]