The Invasive Plant Alliaria Petiolata (Garlic Mustard) Inhibits

Total Page:16

File Type:pdf, Size:1020Kb

The Invasive Plant Alliaria Petiolata (Garlic Mustard) Inhibits Journal of Ecology 2008, 96, 777–783 doi: 10.1111/j.1365-2745.2008.01389.x TheBlackwell Publishing Ltd invasive plant Alliaria petiolata (garlic mustard) inhibits ectomycorrhizal fungi in its introduced range Benjamin E. Wolfe1*, Vikki L. Rodgers2, Kristina A. Stinson3 and Anne Pringle1 1Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; 2Department of Biology, Boston University, Boston, MA 02215, USA; and 3Harvard Forest, Harvard University, Petersham, MA 01366, USA Summary 1. Ectomycorrhizal (EM) fungi play key roles in forest ecosystems, but the potential effects of invasive plants on EM fungal communities have not been assessed. In this study, we tested whether the non-mycorrhizal herbaceous plant Alliaria petiolata (garlic mustard) can alter the abundance of EM fungal communities in North America. 2. In three forests in New England, USA, we compared EM root tip abundance in soils where A. petiolata had invaded to adjacent areas without a history of A. petiolata invasion. At one site, we also intensively sampled EM root tip abundance across the edges of A. petiolata patches to determine the spatial pattern of A. petiolata effects on EM fungi. In a glasshouse experiment, we experimentally invaded soils with A. petiolata and Impatiens capensis, a native species and compared EM fungal colonization of white pine (Pinus strobus) seedlings grown in both soils. We also measured the effect of the A. petiolata allelochemical benzyl isothiocyanate on the growth of three species of EM fungi in pure culture. 3. In the field, EM fungal root tip biomass was lower in invaded soils, with the strongest reductions observed in forests dominated by conifers. Alliaria petiolata invasion did not have a significant effect on total root biomass. The influence of A. petiolata on EM fungal abundance in the field was localized, with the strongest inhibition observed within 10 cm of the edge of A. petiolata patches. 4. Pine seedlings growing in soils that were experimentally invaded with A. petiolata also had lower EM fungal root tip biomass compared to uninvaded soils. The native species I. capensis caused sim- ilar reductions in EM fungal colonization. Growth of pure cultures of all three species of EM fungi was completely inhibited by benzyl isothiocyanate. 5. Synthesis. Alliaria petiolata inhibits the growth of EM fungi in forests of its introduced range. Changes in EM fungal communities caused by the invasion of A. petiolata may influence tree seedling establishment and biogeochemical cycling. Key-words: Alliaria petiolata, ectomycorrhizal fungi, exotic plant invasion, garlic mustard, invasive species, mycorrhizal fungi, Pinus strobus Journal of Ecology (2008) doi: 10.1111/j.1365-2745.2008.0@@@@.x species-specific responses to nutrient inputs (Peter et al. 2001; Introduction Lilleskov et al. 2002; Avis et al. 2003). Management practices As diverse and abundant constituents of forest microbial such as timber harvesting and prescribed burning can also communities, ectomycorrhizal (EM) fungi play key roles in cause changes in the composition and function of EM fungal the functioning of forest ecosystems (Aerts 2002; Read et al. communities (Jones et al. 2003; Lazaruk et al. 2005). 2004). Direct and indirect effects of human activities can alter The invasion of exotic plants into forests may be another the composition and function of EM fungal communities way by which human activities can indirectly impact EM by changing the abundance and composition of hosts and communities. Dominant native plant species have been properties of the soil. For example, studies in a number of shown to influence the abundance of EM fungi in the soil different ecosystems have shown that nutrient deposition and on roots of neighbouring plants through the production can alter the composition of EM fungal communities, with of inhibitory compounds or from competitive interactions (Nilsson et al. 1993; Walker et al. 1999; McHugh & Gehring *Correspondence author. E-mail: [email protected] 2006). When an exotic plant becomes dominant in a forest © 2008 The Authors. Journal compilation © 2008 British Ecological Society 778 B. E. Wolfe et al. community, it may also be capable of changing the com- Methods position and function of the EM fungal community using similar mechanisms. Although exotic plants have been EXPERIMENT 1: EFFECTS OF ALLIARIA PETIOLATA IN shown to affect other components of native soil communities THREE FORESTS (reviewed in Wolfe & Klironomos 2005), the potential impact We assessed the influence of A. petiolata invasion on EM fungi in of an exotic plant invasion on EM fungi has not been the field at three different forests in New England, USA. We chose assessed. our sites based on an abundance of A. petiolata at the sites and Allliaria petiolata (garlic mustard) is an exotic plant of dominance of these sites by EM tree species. The first site is a temperate latitudes that has the potential to alter EM fungal stand of P. strobus (hereafter called ‘Pine Stand’) in Falls Village, communities. It is an herbaceous biennial in the family CT. The understorey at this site consists of Trientalis borealis, Fragaria Brassicaceae that does not form mycorrhizal associations. virginiana and Arisaema triphyllum. The second site is a mixed It is one of the few plant species that has been able to success- deciduous conifer forest (hereafter called ‘Mixed Forest’) located in fully invade forest understorey plant communities of North Salisbury, CT with Tsuga canadensis, Quercus rubra and Populus America (Nuzzo 2000). In many forests A. petiolata can become deltoides as the dominant EM trees and Maianthemum canadense, the dominant understorey species, often forming distinct, Smilacina racemosa and Solidago spp. as understorey herbaceous plant species. The third site is an urban forest (hereafter called high density patches (Winterer et al. 2005). Previous studies ‘Urban Forest’) at the Arnold Arboretum in Boston, MA, where have shown that arbuscular mycorrhizal (AM) fungi are both native (T. canadensis) and exotic (Picea abies) conifers are the almost completely eliminated from the roots of tree seedlings dominant tree species and the understorey consists of Dennstaedtia growing in soils where A. petiolata had invaded (Roberts & punctilobula, Solidago flexicaulis and M. canadense. Anderson 2001; Stinson et al. 2006). This species has the Within an area approximately 40 × 40 m2 at each of the three sites, potential to degrade local mycorrhizal mutualisms leading to we established 1 m2 plots in twelve locations: six plots were in areas a positive feedback that favours its growth over those of invaded by A. petiolata and six plots were in adjacent areas without native mycorrhizal-dependent species (Vogelsang et al. 2005; A. petiolata. Uninvaded plots were at least 2 m but not greater than Reinhart & Callaway 2006). Previous work with A. petiolata 5 m from the nearest A. petiolata plant. To minimize major differ- was based on mycorrhizal associations resynthesized in the ences in soil characteristics uninvaded plots were placed near glasshouse. Therefore, the strength of the effects of A. petiolata invaded plots. Areas invaded by A. petiolata had densities of at least 100 plants m–2. on mycorrhizal fungi colonizing mature tree roots in the In the third week of June 2006, two cores (5 cm diameter to a field is unknown. Moreover, these studies were in forests depth of 5 cm) were taken from randomly selected locations dominated by AM fungi, so responses of EM fungi to within each plot. We chose this sampling depth because at these A. petiolata are unknown. Given that EM and AM fungi are sites A. petiolata root density and EM root tip density are greatest phylogenetically distinct (James et al. 2006) and functionally within the top 5 cm of soil (B. Wolfe, personal observation). The divergent (Aerts 2002), their responses to A. petiolata invasion cores were placed on ice in a cooler and moved to storage at 4 °C may be different. within 24 h. In this study, we characterized the interactions between Within 48 h of collection, coarse roots, including EM roots, were A. petiolata and EM fungi through experiments in the field, removed from each core and EM fungal root tips were separated glasshouse and laboratory. In the field, we measured the from the coarse roots using a dissecting scope. Both coarse roots abundance of EM fungal root tips in three forests in plots with and EM root tips were dried for 36 h in a drying oven and were weighed to obtain total dry weight root biomass and total dry and without A. petiolata. We predicted that plots invaded by weight EM root biomass. Values for coarse root biomass per core, A. petiolata would have a lower abundance of EM fungal EM root tip biomass per core and standardized root tip biomass per root tips. We also recorded the spatial extent of the effect of core (EM root tip biomass/mg total root tip biomass) of the two A. petiolata on EM fungi. Because the putative allelochemicals cores from each plot were averaged to generate a mean value for of A. petiolata are highly volatile (Vaughn & Berhow 1999), each plot. we predicted that the inhibitory effects of A. petiolata on EM Two-way fixed factor anovas were used to determine the effects fungi extend outside of A. petiolata patches. In a glasshouse of site and presence/absence of A. petiolata on (i) coarse root biomass, experiment, we assessed the effect of the experimental (ii) EM root tip biomass and (iii) standardized root tip biomass. To invasion of A. petiolata and a native weedy plant species improve normality, standardized root tip biomass was log(x + 1) Impatiens capensis on growth and EM colonization of Pinus transformed prior to analysis. Post hoc comparisons were done strobus (white pine) seedlings. We predicted that A. petiolata using Tukey HSD tests. would reduce the growth and EM colonization of seedlings and would have a greater effect than the native plant species.
Recommended publications
  • Abstract Alliaria Petiolata (Garlic
    ABSTRACT ALLIARIA PETIOLATA (GARLIC MUSTARD) RESPONSE TO HERBICIDE AND JUNE PRECIPITATION, AND SUBSEQUENT EFFECTS ON THE FOREST FLOOR COMMUNITY by Wendy Wenger Hochstedler The impact of invasive plant species on native plants is largely assumed to be negative, but supporting evidence is sparse. We examined the long-term effects of herbicide on Alliaria petiolata and the subsequent effects on the plant community in southwestern Ohio. November herbicide application effectively killed A. petiolata, but did not reduce recruitment; spring densities of A. petiolata rosettes were not lower in sprayed plots. Only modest differences were noted in forest floor vegetation, suggesting A. petiolata rosettes competed with other plant species. We tested the hypothesis that higher June precipitation promotes rosette growth and survival with a rain shelter experiment. The three different water treatments affected soil moisture, but not A. petiolata growth or survival. Dry treatments may not have replicated drought years based on water availability measurements. June precipitation is probably not a reliable predictor of A. petiolata rosette survival in years with above average precipitation. ALLIARIA PETIOLATA (GARLIC MUSTARD) RESPONSE TO HERBICIDE AND JUNE PRECIPITATION, AND SUBSEQUENT EFFECTS ON THE FOREST FLOOR COMMUNITY A Thesis Submitted to the Faculty of Miami University in partial fulfillment of the requirements for the degree of Master of Science Department of Botany by Wendy Wenger Hochstedler Miami University Oxford, Ohio 2006 Advisor ____________________________________
    [Show full text]
  • Exotic Invasive of the Quarter: Garlic Mustard (Alliaria Petiolata)
    You Ain’t From around Here! Exotic Invasive of the Quarter: Garlic Mustard (Alliaria petiolata) By: Jennifer Gagnon, Virginia Tech The other day I was in the garden, looking at my 5‐foot‐tall horseradish plant, wondering when I should don goggles and rubber gloves and attempt a root harvest (I’m a little intimidated by the whole thing!). Horseradish is an invasive plant, so I always check carefully to make sure it hasn’t spread outside the garden. Which got me to thinking about other edible invasives, namely garlic mustard, an exotic invasive so prolific, I can’t believe I’ve gone 7 years without writing about it. This bugger is everywhere! In fact, in many woodland and floodplain environments in the Northeastern US, it is the dominant understory species. Garlic mustard, which is indeed in the mustard family (along with cabbage and broccoli), has a lot of nicknames, such as garlic root, hedge garlic, Jack‐in‐the‐bush, penny hedge, poor man's mustard, and my personal favorite, sauce‐alone. This plant, native to Europe, western and central Asia, NW Africa, Scandinavia, and India, was first found in the US on Long Island, NY in 1868. Garlic mustard has been considered widespread and invasive since 2000 and is listed as noxious or restricted in AL, CT, MA, MN, NH, OR, VT, WV, and WA. Like many of our invasive plants, garlic mustard was brought to the US intentionally – for culinary or medicinal purposes. The first‐year leaves, flowers, and fruits have a mild garlic flavor and can be chopped up and used in salads and sauces (hence the nickname sauce‐ alone?).
    [Show full text]
  • Floristic Quality Assessment Report
    FLORISTIC QUALITY ASSESSMENT IN INDIANA: THE CONCEPT, USE, AND DEVELOPMENT OF COEFFICIENTS OF CONSERVATISM Tulip poplar (Liriodendron tulipifera) the State tree of Indiana June 2004 Final Report for ARN A305-4-53 EPA Wetland Program Development Grant CD975586-01 Prepared by: Paul E. Rothrock, Ph.D. Taylor University Upland, IN 46989-1001 Introduction Since the early nineteenth century the Indiana landscape has undergone a massive transformation (Jackson 1997). In the pre-settlement period, Indiana was an almost unbroken blanket of forests, prairies, and wetlands. Much of the land was cleared, plowed, or drained for lumber, the raising of crops, and a range of urban and industrial activities. Indiana’s native biota is now restricted to relatively small and often isolated tracts across the State. This fragmentation and reduction of the State’s biological diversity has challenged Hoosiers to look carefully at how to monitor further changes within our remnant natural communities and how to effectively conserve and even restore many of these valuable places within our State. To meet this monitoring, conservation, and restoration challenge, one needs to develop a variety of appropriate analytical tools. Ideally these techniques should be simple to learn and apply, give consistent results between different observers, and be repeatable. Floristic Assessment, which includes metrics such as the Floristic Quality Index (FQI) and Mean C values, has gained wide acceptance among environmental scientists and decision-makers, land stewards, and restoration ecologists in Indiana’s neighboring states and regions: Illinois (Taft et al. 1997), Michigan (Herman et al. 1996), Missouri (Ladd 1996), and Wisconsin (Bernthal 2003) as well as northern Ohio (Andreas 1993) and southern Ontario (Oldham et al.
    [Show full text]
  • Garlic Mustard Alliariaoriental Bittersweet Petiolata Control Guidelines Fact Sheet
    Garlic mustard Oriental bittersweet Alliaria petiolata Control Guidelines Fact Sheet NH Department of Agriculture, Markets & Food, Division of Plant Industry, 29 Hazen Dr, Concord, NH 03301 (603) 271-3488 Common Name: Garlic mustard Latin Name: Alliaria petiolata New Hampshire Invasive Species Status: Prohibited (Agr 3800) Native to: Europe leaves (summer) Garlic mustard – Portsmouth, NH Basal rosette (spring/summer) Flowers (spring) Pods called siliques (late summer) Spring emergence Escaped onto compost pile Clump form (summer) Seed set (late summer) 1 Description: Biennial, 2nd year plants flower and reach 2-3 /2' tall. Leaves: Triangular, coarsely toothed, heart-shaped. Flowers: Umbel, small, 4-petals, white, April-May. Fruit: Pods, seeds turn black when mature. Zone: 4-8. Habitat: Prefers moist shaded floodplains, forests and roadsides, adaptable to most soil and light conditions. Spread: Seeds spread by water and wildlife. Comments: Plants spread quickly into natural areas leading to competition and displacement of native species. Controls: Small populations can be hand pulled while large populations can be continuously cut back to prevent flowering and seed production. Herbicide treatments are also effective. General Considerations Garlic mustard is herbaceous biennial developing a rosette of leaves the first growing season and maturing into a tall, 4’ (1.22 m) high, erect plant the second year. Crushing the stems will release the scent of garlic, hence its name. Rosettes produce a single flowering stem, but on occasion can produce multiple stems. Flowers are white with 4-petals and clustered in racemes. Seeds are produced in erect, slender, four-sided pods, called siliques, beginning in May. Each silique contains between 12-19 seeds, and the number of siliques per plant can vary greatly from 1 to more than 200.
    [Show full text]
  • Garlic Mustard (Alliaria Petiolata)
    Garlic Mustard (Alliaria petiolata) Best Management Practices in Ontario ontario.ca/invasivespecies BLEED Foreword These Best Management Practices (BMPs) provide guidance for managing invasive Garlic Mustard (Alliaria petiolata) in Ontario. Funding and leadership for the production of this document was provided by the Ontario Ministry of Natural Resources (OMNR). The BMPs were developed by the Ontario Invasive Plant Council (OIPC), and its partners to facilitate the invasive plant control initiatives of individuals and organizations concerned with the protection of biodiversity, agricultural lands, infrastructure, crops and natural lands. These BMPs are based on the most effective and environmentally safe control practices known from research and experience. They reflect current provincial and federal legislation regarding pesticide usage, habitat disturbance and species at risk protection. These BMPs are subject to change as legislation is updated or new research findings emerge. They are not intended to provide legal advice, and interested parties are advised to refer to the applicable legislation to address specific circumstances. Check the website of the Ontario Invasive Plant Council (www.ontarioinvasiveplants.ca) for updates. Anderson, Hayley. 2012. Invasive Garlic Mustard (Alliaria petiolata) Best Management Practices in Ontario. Ontario Invasive Plant Council. Peterborough, ON. Printed April 2013 Peterborough, Ontario ISBN: (to be confirmed) This document was prepared for the Ontario Ministry of Natural Resources by the Ontario Invasive Plant Council. Inquiries regarding this document can be directed to the Ontario Invasive Plant Council PO Box 2800, 4601 Guthrie Drive Peterborough, ON K9J 8L5 Phone: (705) 748-6324 | Email: [email protected] For more information on invasive plants in Ontario, visit www.ontario.ca/invasivespecies, www.ontarioinvasiveplants.ca, www.invadingspecies.com or www.invasivespeciescentre.ca Cover photo courtesy of Central Lake Ontario Conservation Authority.
    [Show full text]
  • Impacts and Treatment of Garlic Mustard (Alliaria Petiolata): Application of Research to Populations in the Portland, Oregon Metro Area
    Impacts and treatment of garlic mustard (Alliaria petiolata): application of research to populations in the Portland, Oregon metro area Garlic mustard (Alliaria petiolata) may be the most notorious invasive plant of forest understories in North America. It is thought to spread quickly into undisturbed forests and displace native species, including tree seedlings (Rodgers et al. 2008). Garlic mustard has been managed intensively to avoid impacts on native habitat. Recently, however, some have called into question the magnitude of the threat posed by garlic mustard (e.g. Lankau et al. 2009; Cipollini and Cipollini 2016). The purpose of this review is to summarize prominent research on the invasiveness of garlic mustard and the efficacy of control efforts. The relevance of this research to management in the Portland, Oregon metropolitan region is discussed. Garlic Mustard Background Garlic mustard is native to Eurasia, and was originally introduced to North America for culinary uses (Grieve 1959). It was documented on the East Coast of the United States in the 1860s (Rodgers et al 2008). By the 1980s garlic mustard had caught ecologists’ attention as a potentially invasive species of forest understories (Becker et al. 2011). Observations of rapid colonization (Rodgers et al. 2008), as well as life-history traits characteristic of strong invaders (Baker 1974) suggest that garlic mustard may be invasive. It attracts generalist pollinators, can self-pollinate (Cavers 1979; Anderson et al. 1996), and produces numerous seeds (Cavers 1979). It also has a rosette growth form (Cavers 1979), considered by Baker (1974) to be a competitive advantage. Garlic Mustard Dispersal and Establishment Garlic mustard spreads exclusively by seed, with no vegetative reproduction (Cavers et al.
    [Show full text]
  • Garlic Mustard (Alliaria Petiolata) Restricted DESCRIPTION
    Weed Identification and Control Sheet: www.goodoak.com/weeds WI NR-40: Garlic Mustard (Alliaria petiolata) Restricted DESCRIPTION: This European plant, introduced for food or medicine in the mid 19th century, now threatens wood- lands throughout the eastern half of North America. Research has found that garlic mustard releases a chemical called sinigrin into the soil which kills soil fungi. Native plants rely on these same fungi for help extracting nutrients, by removing them the garlic mustard weakens the native plants too. Garlic mustard can rapidly invade and dominate both back yards and high quality natural areas. It forms dense mono- cultures, displacing and eliminating native plant species and dependent wild- life. Seeds can stay viable in the seed bank for at least 7 years, so it is best to control garlic mustard while they are still few in number. Once a population is found land owners will need to repeatedly check their property for new plants for at least a decade. Garlic mustard gets its name from the garlic-like smell produced by crushed leaves. The root crown has a distinctive purple color. This biennial spe- cies starts in its first year as a small basal rosette less than 6” high with round- ed, kidney shaped, yellowish-green leaves with scalloped edges and embossed veins. These rosettes remain green through winter. During spring in its second year the plant bolts, sending up a flowering stalk 2 to 5’ high. Second year plant leaves are triangular with more sharply toothed margins. Small, white, four-pet- aled flowers develop in clusters at the top of the stems by lateApril to May.
    [Show full text]
  • Floristic Quality Assessment and Monitoring of Brown Bridge Quiet Area Wetlands
    Floristic Quality Assessment and Monitoring of Brown Bridge Quiet Area Wetlands Prepared by: Phyllis J. Higman Michigan Natural Features Inventory P.O. Box 13036 Lansing, MI 48901-3036 For: Grand Traverse Conservation District 1450 Cass Road, Traverse City, Michigan, 49685 October 30, 2013 Report Number 2013-17 Acknowledgements This work was made possible by a Great Hyde assisted with early surveys and delivery of Lake Restoration Initiative grant through the a workshop for local stewards. Brian Klatt and Environmental Protection Agency, awarded to Glenn Palmgren provided valuable guidance on the Grand Traverse Conservation District in sampling strategies and Reb Ratliff provided Traverse City, Michigan. Many thanks to Robin enthusiastic energy to kick off the field sampling Christensen for writing the grant and for inviting and assemble necessary field gear. Thanks to us to do this work. Suzan Campbell and Daria you all. Cover photos by Phyllis J. Higman, 2012- 2013. Clockwise from left to right: Brown Bridge Pond, Brown Bridge Dam, The Boardman River Coursing through the Brown Bridge Quiet Area after Dam Removal, and Newly Exposed Bottomlands at Brown Bridge Quiet Area after Dam Removal. Copyright 2013 Michigan State University Board of Trustees. Michigan State University Extension programs and materials are open to all without regard to race, color, national origin, gender, religion, age, disability, political beliefs, sexual orientation, marital status, or family status. Table of Contents Table of Contents ....................................................................................................................................
    [Show full text]
  • 100 Years of Change in the Flora of the Carolinas
    ASTERACEAE 224 Zinnia Linnaeus 1759 (Zinnia) A genus of about 17 species, herbs, of sw. North America south to South America. References: Smith in FNA (2006c); Cronquist (1980)=SE. 1 Achenes wingless; receptacular bracts (chaff) toothed or erose on the lip..............................................................Z. peruviana 1 Achenes winged; receptacular bracts (chaff) with a differentiated fimbriate lip........................................................Z. violacea * Zinnia peruviana (Linnaeus) Linnaeus, Zinnia. Cp (GA, NC, SC): disturbed areas; rare (commonly cultivated), introduced from the New World tropics. May-November. [= FNA, K, SE; ? Z. pauciflora Linnaeus – S] * Zinnia violacea Cavanilles, Garden Zinnia. Cp (GA, NC, SC): disturbed areas; rare (commonly cultivated), introduced from the New World tropics. May-November. [= FNA, K; ? Z. elegans Jacquin – S, SE] BALSAMINACEAE A. Richard 1822 (Touch-me-not Family) A family of 2 genera and 850-1000 species, primarily of the Old World tropics. References: Fischer in Kubitzki (2004). Impatiens Linnaeus (Jewelweed, Touch-me-not, Snapweed, Balsam) A genus of 850-1000 species, herbs and subshrubs, primarily tropical and north temperate Old World. References: Fischer in Kubitzki (2004). 1 Corolla purple, pink, or white; plants 3-6 (-8) dm tall; stems puberulent or glabrous; [cultivated alien, rarely escaped]. 2 Sepal spur strongly recurved; stems puberulent..............................................................................................I. balsamina 2 Sepal spur slightly
    [Show full text]
  • Species Lists
    Appendix B: Sepcies Lists Appendix B: Species Lists In this appendix: Plants Mammals Birds Pollinators Fish and Mussels Reptiles and Amphibians Plants Scientific Name Common Name Abutilon theophrasti velvetleaf Acalypha ostryifolia pineland threeseed mercury Acalypha rhomboidea common threeseed mercury Acalypha virginica Virginia threeseed mercury Alliaria petiolata garlic mustard Amaranthus tamariscinus tall amaranth Ambrosia artemisifolia annual ragweed Ambrosia trifida great ragweed Ammannia coccinea valley redstem Amorpha brachycarpa leadplant Ampelopsis cordata heartleaf peppervine Amphicarpaea bracteata var. comosa American hogpeanut Amsonia illustris Ozark bluestar Anemone canadensis Canadian anemone Apocynum cannabinum Indian hemp Aristolochia tomentosa Woolly dutchman's pipe Artemisia annua sweet sagewort Asarum canadense Canadian wildginger Asclepias incarnata swamp milkweed Asclepias purpurascens purple milkweed Asclepias syriaca common milkweed Asclepias verticillata whorled milkweed Aster lateriflorus calico aster Aster pilosus hairy white oldfield aster Aster subulatus eastern annual saltmarsh aster Bergia texana Texas bergia Bidens cernua nodding beggerstick Bidens connata purplestem beggarticks Boehmeria cylindrica smallspike false nettle Callitriche terrestris terrestrial water-starwort Calystegia sepium hedge false bindweed Campsis radicans trumpet creeper Cardamine hirsuta hairy bittercress Carex crus-corvi ravenfoot sedge Carex hyalinolepis shoreline sedge, thinscale sedge Carex molesta troublesome sedge Cassia fasciculata
    [Show full text]
  • USFWS Consultation on Transmission System Right-Of-Way Program
    United States Department of the Interior FISH AND WILDLIFE SERVICE Tennessee ES Office 446 Neal Street Cookeville, Tennessee 38501 December 18, 2018 Mr. John T. Baxter Manager, Biological Compliance Tennessee Valley Authority 400 West Summit Hill Drive Knoxville, TN 37902 Re: FWS #2018-F-0958; Programmatic Consultation for Right-of-Way Vegetation Management that May Affect Endangered or Threatened Plants in the Tennessee Valley Authority Service Area Dear Mr. Baxter: This letter acknowledges the U.S. Fish and Wildlife Service’s (Service) November 21, 2018, receipt of your November 19, 2015, letter requesting initiation of formal section 7 consultation under the Endangered Species Act (Act). The consultation concerns the possible effects of your proposed Programmatic Strategy for Right-of-Way Vegetation Management that May Affect Endangered or Threatened Plants in the Tennessee Valley Authority Service Area (TVA) (the Proposed Action) on 18 federally listed plants, including: • Price's potato-bean (Apios priceana) • Braun's rock-cress (Arabis perstellata) • Pyne's ground plum (Astragalus bibullatus) • Morefield's leather-flower (Clematis morefieldii) • Alabama leather flower (Clematis socialis) • leafy prairie-clover (Dalea foliosa) • whorled sunflower (Helianthus verticillatus) • small whorled pogonia (Isotria medeoloides) • fleshy-fruit gladecress (Leavenworthia crassa) • lyre-leaf bladderpod (Lesquerella lyrata) • Spring Creek bladderpod (Lesquerella perforata) • Mohr's Barbara's buttons (Marshallia mohrii) • Cumberland sandwort (Minuartia cumberlandensis) • Short’s bladderpod (Physaria globosa) • white fringeless orchid (Platanthera integrilabia) • green pitcher plant (Sarracenia oreophila) • large-flowered skullcap (Scutellaria montana) • Tennessee yellow-eyed grass (Xyris tennesseensis) Listed species (LE=listed as endangered; LT=listed as threatened) and designated critical habitats (DCH) that TVA has determined the proposed Action is not likely to adversely affect (NLAA).
    [Show full text]
  • Isolation and Characterization of Microsatellite Loci in the Invasive Alliaria Petiolata (Brassicaceae)
    Molecular Ecology Notes (2004) 4, 173–175 doi: 10.1111/j.1471-8286.2004.00606.x PRIMERBlackwell Publishing, Ltd. NOTE Isolation and characterization of microsatellite loci in the invasive Alliaria petiolata (Brassicaceae) W. DURKA,* O. BOSSDORF* and B. GAUTSCHI† *UFZ-Environmental Research Centre Leipzig-Halle GmbH, Department of Community Ecology, Theodor-Lieser-Strasse 4, D-06110 Halle, Germany, †ECOGENICS GmbH, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland Abstract Eight novel polymorphic microsatellite loci are presented for garlic mustard (Alliaria petiolata, Brassicaceae) a European herb that is a serious invader of North American decidu- ous forests. The microsatellites will be useful tools to analyse pathways of introduction of garlic mustard, as well as its evolutionary potential in the invasive range. Keywords: biological invasions, Garlic mustard, microsatellite, population genetics Received 4 September 2003; revision received 30 October 2003; accepted 19 December 2003 Garlic mustard [Alliaria petiolata (M. Bieb.) Cavara and was extracted using DNeasy kits (QIAGEN). An enriched Grande] is a hexaploid (2n = 6x = 42) member of the library was made by ECOGENICS GmbH (Zurich, Switzer- mustard family (Brassicaceae) native to the Eurasian land) from size-selected genomic DNA ligated into TSPAD- temperate zone. In Europe, it occurs in mesic semishade linker (Tenzer et al. 1999) and enriched by magnetic habitats such as forest edges and moist woodlands. The bead selection with biotin-labelled (CA)13 and (GA)13 oligo- species has been introduced to North America in the 19th nucleotide repeats (Gautschi et al. 2000a; Gautschi et al. century. It has continuously expanded its range and is now 2000b). Of 384 recombinant colonies screened, 88 gave present in 34 US states and four Canadian provinces a positive signal after hybridization.
    [Show full text]