Plant Ecol DOI 10.1007/s11258-010-9807-9

Classification of the Sieversio montanae-Nardetum strictae in a cross-section of the Eastern Alps

Christian Lu¨th • Erich Tasser • Georg Niedrist • Josef Dalla Via • Ulrike Tappeiner

Received: 21 April 2009 / Accepted: 15 June 2010 Ó Springer Science+Business Media B.V. 2010

Abstract The Sieversio montanae-Nardetum stric- land-use intensity the second and third, and the pH of tae is one of the most widespread communities the topsoil the fourth subassociation. For the Eastern in (sub-) alpine regions of the Alps. Our study Alps, the plant community of the Sieversio montanae- examines the composition, ecology and distribution Nardetum strictae should now be reclassified in the of this plant community in the Eastern Alps and order of Nardetalia and the class of Calluno-Ulicetea. addresses the issue of how the community is to be Finally, this plant community can be further classified classified in the phytosociological system of Nardus- by using the four above-mentioned subassociations. rich grasslands. Therefore, 357 vegetation releve´s were taken from the literature and 115 from our own Keywords Indicator values Indicator species inventories were recorded from 2005 to 2007 in Differential species Subassociation Western (mostly Tyrol) and Northern Land-use types European Alps (mostly South Tyrol). Additionally, indicator values of Ellenberg and land-use information were used to Abbreviations help better interpret the ecological site conditions of ANOVA Analysis of Variance the subgroups. The HCA revealed there the existence a.s.l. Above sea level of four groups of the Sieversio montanae-Nardetum DA Discriminant analysis strictae, which were classified to subassociations: (1) EIV Ellenberg indicator values typicum, (2) vaccinietosum, (3) trifolietosum praten- HCA Hierarchical cluster analysis sis, and (4) seslerietosum albicantis. Besides the ISA Indicator Species Analysis specific plant composition, altitude specifies the first,

C. Lu¨th U. Tappeiner (&) Introduction Institute of Ecology, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria Nardus-rich grasslands result from lightly used pas- e-mail: [email protected] tures or meadows (Peppler 1992). In central Europe, E. Tasser G. Niedrist U. Tappeiner because of preindustrial low land use (Peppler- Institut for Alpine Environment, European Academy of Lisbach and Petersen 2001), such grasslands were Bolzano/Bozen, Drususallee 1, 39100 Bozen, Italy most common and were to be found from forest-free lowlands up to high alpine regions (Preising 1949). J. Dalla Via Research Centre for Agriculture and Forestry Laimburg, However, since the second half of the twentieth Laimburg 6, 39051 Pfatten, Italy century, due to intensification of land use in favorable 123 Plant Ecol agricultural areas as well as abandonment of areas that mica schist or calcareous marl (Grabherr and Mucina are difficult to manage (Lavorel et al. 1998; Tappeiner 1993). As the Sieversio montanae-Nardetum strictae et al. 1998; Bakker and Berendse 1999; Tasser and offers a wide range of growing conditions (Grabherr Tappeiner 2002; Niedrist et al. 2008), these grassland and Mucina 1993), a broad spectrum of species can be communities have been decreasing (Peppler-Lisbach found, although some of them are regionally restricted. and Petersen 2001). Nowadays, even though grassland Phytosociological classification has so far paid insuf- communities dominated by Nardus stricta can be ficient attention to the influencing factors such as land- found nearly all over the world (Krajina 1933; Kissling use intensity, altitude, pH and slope (Grabherr and et al. 2005; Trivedi et al. 2008), they are relicts of Mucina 1993; Peppler-Lisbach and Petersen 2001) and traditional land use (Peppler 1992; Peppler-Lisbach their combination among each other. and Petersen 2001) and are only extensively found in For alpine regions in Austria, grasslands dominated high alpine regions where they constitute a large part of by Nardus stricta are already classified into different the cultural landscape (Grabherr and Mucina 1993). alliances and classes (Grabherr and Mucina 1993; Sieversio montanae-Nardetum strictae dominates Mucina et al. 1993). In the montane regions, Nardus alpine pastures (Oberdorfer 1978), and the species grasslands belong to the order Nardetalia (class of Nardus stricta establishes a close sward population Calluno-Ulicetea) (Krahulec 1985; Krahulec 1988; since grazing animals do not eat this plant species Mucina et al. 1993). On the other hand, subalpine to (Ellenberg 1996). In addition to pastures, this plant alpine Nardus-rich grasslands refer to the association community also develops in meadows, where it of Sieversio montanae-Nardetum strictae (Lu¨di 1948), exhibits a variety of structural differences including which belongs to the monotypic alliance Nardion higher growth, increased frequency of tall forbs and strictae and the order Festucetalia spadiceae (class of the absence of higher dwarf-shrubs such as Rhodo- Caricetea curvulae) (Grabherr and Mucina 1993). dendron ferrugineum (Grabherr and Mucina 1993). However, classification problems arise, because the Such structural differences can be influenced by land- Sieversio montanae-Nardetum strictae contains char- use types. For example, in high alpine regions acter species from lowlands that are present in the meadows are mostly mown once a year, unfertilized order Nardetalia (e.g. Carex pallescens, Hypericum or fertilized with manure, and grazed in autumn after perforatum) and species that are restricted to the the return of livestock from high alpine summer alpine zone, as well as character species of the pastures (Knapp and Knapp 1952; Mucina et al. Festucetalia spadiceae (e.g. Geum montanum, Hypo- 1993). Moreover, abandonment of such areas does chaeris uniflora) (Grabherr and Mucina 1993; Mucina not inevitably lead to the disappearance of Nardus et al. 1993). Despite these classification difficulties, in stricta, because deer start to graze favorably in such their seminal article Peppler-Lisbach and Petersen areas, thereby keeping them clear and allowing scrub (2001) support the notion that the alliance of the and/or forest communities to begin to slowly colonize alpine Nardion strictae can be integrated into the order the land (Stu¨ssi 1970; Peppler 1992). However, Nardetalia as proposed by other authors (Oberdorfer literature detailing the differences or similarities in 1959, 1978; Marschall and Dietl 1974; Krahulec the species composition of the Sieversio montanae- 1983). Nardetum strictae is currently not available for the The Sieversio montanae-Nardetum strictae has Eastern Alps. already been classified by several authors for spatially In subalpine and alpine regions, the Sieversio limited regions (e.g. Lu¨di 1948; Braun-Blanquet montanae-Nardetum strictae establishes mostly 1949; Hartl 1963; Bischof 1981). Although Peppler between 1,800 and 2,200 m a.s.l. (Oberdorfer 1978), (1992) and Peppler-Lisbach and Petersen (2001) but is also found in lower regions at about 1,600 m divide the association into two subassociations with a.s.l. (Peppler-Lisbach and Petersen 2001). According two variants each, their data mainly refer to , to the pH of the topsoil, the community establishes and only marginally include the Alps. For the Alps, usually above acidophilous bedrock (Gigon 1971; Heiselmayer (1985) divided the community into three Marschall and Dietl 1974; Oberdorfer 1978; Peppler subassociations; however, the author only refers to the 1992; Ellenberg 1996; Peppler-Lisbach and Schro¨der Radsta¨dter Tauern (Kleinarltal, Salzburg). Thus, to 2004), but is sometimes also found above calcareous date, a clear classification of this community in the 123 Plant Ecol

Eastern Alps is still missing (Grabherr and Mucina calcareous sedimentary rocks in the northern and 1993). Therefore, the major objective of this study was southern regions and of silicate bedrock in the central to clearly and comprehensively classify the Sieversio massif, sometimes even with superimposed calcareous montanae-Nardetum strictae for the entire Eastern isles (Bo¨gel and Schmidt 1976, Fig. 1). The pH values Alps by (1) generating a detailed inventory of this plant of the topsoil (0–10 cm) range from 3.7 to 7.8 community, (2) characterizing subgroups, and (3) (Niedrist et al. 2008), whereas high pH values are examining distribution patterns of this community. mainly found above calcareous bedrock and low pH values above silicate bedrock (Scheffer et al. 2002).

Methods Data collection

Research area A total of 357 vegetation releve´s from 27 different sites were taken from the literature (Appendix 1) Most of the vegetation releve´s were taken from Tyrol after the method of Braun-Blanquet (1964). Thereby (Austria) and South Tyrol (Italy) with some coming the plot size ranges from 12 to 25 m2.We from Vorarlberg (Austria) and Trentino (Italy). The incorporated only data on vegetation releve´s having research area is situated between 47°360–46°140 N and exact information on land use, geographical coordi- 10°080–12°420 E and covers an area of about nates, and site factors. Unfortunately, the data set 20,000 km2 (Fig. 1). Annual precipitation ranges from from literature just partially covers the research 800 to 2,200 mm with maximum rainfall from June to area. To cover the research area entirely, we July and mean annual temperatures between 0 and 8°C consulted local experts (farmers, park rangers and (Fliri 1998). High ranges of precipitation and annual district agrarian decision-makers). Altogether we temperature are caused by the fact that the vegetation detected a further 52 sites, where the Sieversio releve´s were taken from 1,200 to 2,650 m a.s.l. and montanae-Nardetum strictae occurs. We then that both the continental and oceanic climatic condi- recorded 115 vegetation releve´s and took also soil tions affect the vegetation in the research area (Fliri samples and pH measurements. Fieldwork took 1998). In general, the Eastern Alps are made up of place from 2005 to 2007. Vegetation releve´s were

Fig. 1 Location of the research area in the Eastern Alps. Dark gray lines rivers and valleys; light-grey areas: regions with calcareous bedrock; white areas regions with silicate bedrock 123 Plant Ecol recorded according to the method of Braun-Blanquet the last human impact until now and took the (1964): the plot size was about 16 m2 (4 9 4 m); in reciprocal value of it: X some rare cases it was expanded up to 20 m2, when LU ¼ I a1 rock outcrops constituted a considerable portion of i h the plot area. At least two releve´s were recorded for The pasture utilization was indicated as ordinal data each site. The site factors of altitude and slope were type, ranging from 1 (low grazing intensity) to 3 measured and the managing farmers were inter- (intensive grazing) (for details see Tasser et al. 1998). viewed to obtain exact information on land use. Thus, we compiled a comprehensive data set of 472 vegetation releve´s (Fig. 1). Although the community Data analysis is established mostly above silicate bedrock (Grabh- err and Mucina 1993), we were able to incorporate We first compiled information on vegetation releve´s 149 releve´s, found above calcareous or mica schist from the literature (Appendix 1), unifying the plant bedrock. For statistical calculations, we transformed taxa by using the nomenclature of Fischer et al. the scale of Braun-Blanquet (1964) to percental (2005), since the incorporated data from the literature dominance values (according to Tasser and Tappe- span a period of more than 40 years. Species and iner 2004): r = 0.1%, ?=0.3%, 1 = 2.8%, subspecies were aggregated unless taxonomically 2m = 4.5%, 2a = 10%, 2b = 20.5%, 3 = 38%, uniformly used by the authors. This resulted in a 4 = 63%, and 5 = 88%. data set of 437 species. After analyzing the literature and collecting inter- We then integrated data from our studies on views about land use, we divided the grasslands into vegetation releve´s from literature and used Hierarchi- three main groups (Table 1): (1) meadows, which cal (agglomerative) Cluster Analysis (HCA) to reveal were subdivided into (a) fertilized meadows, mown groups. Thereby, we used the Euclidean distance once, seldom twice a year, but mainly grazed after measure and Ward’s linkage method and the group mowing and (b) unfertilized meadows, mown every membership at each step of cluster formation was year or infrequently every second to third year; (2) written to a file. We used the Euclidean distance pastures, with animals that are left more or less measure, because the stems of the dendrogram were unattended on the same site throughout the year; and much longer for the first 15 groups than the relative (3) young abandoned areas, lying fallow for not more Euclidean distance measure and, therefore, more than 30 years, which were previously mown. Note ‘‘natural’’ (Fig. 2). This leads to aggregations appro- that older-abandoned areas were excluded from our priate to achieve the goals of this study (McCune and study and that the year of the last management event Grace 2002). Moreover, large differences are weighted was based on the literature or interviews. Land-use more heavily than several small differences with the intensity (LUi) was classified according to Tappeiner Euclidean distance measure, which results in greater et al. 1998 (Tables 1, 2). For meadows, we summed sensitivity to outliers (McCune and Grace 2002). every human impact Ih (mowing, fertilization) and We then used Indicator Species Analysis (ISA), as divided it by the frequency of these interferences in this method combines information of the concentra- years a. The same procedure was applied for tion of species abundance in a particular group with abandoned areas: thereby we summed the years from the constancy of occurrence of a species in a particular

Table 1 Main land-use types, where the Sieversio montanae-Nardetum strictae establishes in the Eastern Alps along with their respective land use (ID), land use intensity (LUi) and number of vegetation releve´s

ID Name Land use LUi No.of releve´s

FM Fertilized meadows Fertilized, mown once a year and grazed in autumn 3 48 UM Unfertilized meadows Mown every year, seldom only every 2nd or 3rd year 0.33–1 274 PA Pastures With low to intensive grazing 1–3 102 AA Abandoned areas Abandoned for not more than 30 years 0.03–0.1 48

123 Plant Ecol

Table 2 Main ecological and floristic characteristics of the Alps and the respective land-use intensity (LUi). Abbreviations four groups revealed by Hierarchical Cluster Analysis (HCA) of land-use types are given in Table 1 of the Sieversio montanae-Nardetum strictae in the Eastern Group 1 Group 2 Group 3 Group 4

Number of releve´s 104 250 40 78 Number of sites 29 66 7 8 Altitude (m a.s.l.) Mean ± S.D. 1984 ± 240a 1855 ± 232b 1828 ± 171b 1846 ± 145b Slope (°) Mean ± S.D. 17.6 ± 8.6a 18.3 ± 9.7a 18.2 ± 7.3a 14.9 ± 6.2a pH (0–10 cm) Mean ± S.D. 4.54 ± 0.20a 4.56 ± 0.35a 4.54 ± 0.05a 4.75 ± 0.53b Land use types in % referring to the data in Table 1; (effective number per group) FM 5.1 (2) 23.5 (22) 61.7 (13) 28.4 (11) UM 21.5 (48) 30.0 (159) 20.7 (22) 20.3 (45) PA 58.0 (48) 23.3 (47) 7.3 (3) 4.8 (4) AA 15.4 (6) 23.2 (22) 10.3 (2) 46.5 (18) a a b a LUi mean ± S.D. 0.87 ± 0.47 0.98 ± 0.75 1.51 ± 1.02 0.85 ± 0.93 Indicator values of Ellenberg (EIV) L = light Mean ± S.D. 7.43 ± 0.36a 7.09 ± 0.50b 7.26 ± 0.39a,b 6.57 ± 0.72c T = temperature Mean ± S.D. 1.20 ± 0.46a 1.57 ± 0.53b 2.42 ± 0.53c 1.73 ± 0.73b K = continentality Mean ± S.D. 3.15 ± 0.29a 3.18 ± 0.42a 3.48 ± 0.20b 3.15 ± 0.38a F = moisture mean ± S.D. 2.56 ± 0.73a 3.45 ± 0.78b 4.10 ± 0.55c 3.49 ± 0.57b R = soil reaction Mean ± S.D. 3.13 ± 0.63a 3.45 ± 0.85b 4.44 ± 0.63c 4.23 ± 0.99c N = nitrogen Mean ± S.D. 2.43 ± 0.44a 2.65 ± 0.53b 3.26 ± 0.37c 3.09 ± 0.76c Number of species Mean ± S.D. 35.5 ± 12.5a 36.4 ± 12.8a 48.4 ± 8.3b 44.9 ± 9.9b 10 characteristic species (indicator value of the Indicator Species Analysis) x = indicator species with a relative abundance and a constancy of C50% x Nardus stricta (62) x Calluna vulgaris x Festuca rubra agg. x Alchemilla vulgaris (29) (67) s.l. (52) Geum montanum (24) Vaccinium x Trifolium pratense x Agrostis capillaris gaultherioides (23) (64) (47) Scorzoneroides Vaccinium myrtillus Hypochaeris uniflora x Galium helvetica (15) (22) (38) anisophyllon (47) Pedicularis tuberosa Vaccinium vitis-idaea Phleum com- x Trollius europaeus (13) (18) mutatum (36) (46) Phyteuma hemis- Anthoxanthum Mutellina x Geranium phaericum (13) alpinum (17) adonidifolia (35) sylvaticum (45) Hieracium hoppeanum Antennaria dioica x Luzula campestris x Rhinanthus (12) (14) (34) glacialis (40) Festuca halleri agg. Cetraria islandica Anthoxanthum x Phyteuma (10) (11) odoratum (34) orbiculare (39) comosa (10) Cladonia rangiferina Arnica montana (30) Briza media (39) (9) Festuca ovina agg. (9) Erica carnea (8) x Ranunculus x Sesleria albicans montanus (29) (33) Carex pallescens (7) Picea abies (8) Lotus corniculatus x Trifolium badium (29) (31) Letters indicate significant differences at P \ 0.01 of Bonferroni post-hoc tests; S.D. standard deviation group (McCune and Grace 2002). The ISA was also that occur in three or more vegetation releve´s and used to select the optimal number of clusters. There- averaged the resulting P values for each cluster step up fore, we calculated indicator values for 335 species to 15 levels of clustering (Fig. 3a). Furthermore, we 123 Plant Ecol also tallied the number of species that were shown to DA and ANOVA were done with SPSS 15.0.1 be significant indicators (P \ 0.05, i.e. differential (SPSS Inc. 1989–2006), HCA and ISA with PC-ORD species), then plotted this number against the cluster 5.01 (McCune and Mefford 1999). Maps were plotted steps (Fig. 3b). In order to pick the most ecologically in ArcViev 3.3 (ESRI Inc. 1992–2002). meaningful point to prune the dendrogram from the HCA, we took the cluster step with one of the lowest average P values and compared the highest number of Results species with P \ 0.05. Finally, we tested the classi- fication of the HCA with a Discriminant Analysis Classification of vegetation data (DA) using the stepwise method. Differential species for each group were also Figure 2 presents a truncated dendrogram of the HCA identified by the ISA, as P \ 0.05 after 3,000 showing the first 15 groups. Chaining of 1.86% is permutations of the Monte Carlo test. Furthermore higher than the one calculated with relative Euclidean with the ISA the relative abundance, the constancy distance (0.61%), but the loss of information was and the indicator value for 335 species were calcu- much higher for the first 15 groups (about 35% lated. Thereby the relative abundance is the propor- retained) than with the Euclidean distance measure tional abundance of a particular species in a particular (about 50% retained). group in relation to the abundance of that species in An objective criterion for choosing the number of all groups; the constancy expresses the proportional groups is given by the following ISA. This calcula- frequency of a species in each group. Both values are tion presents the lowest average P value of the Monte expressed as a percentage. Finally, the indicator value Carlo tests in group five, but with a difference of only was calculated by multiplying the relative abundance 0.003 from group four (Fig. 3a). As there are four and the constancy for each species, also expressed as more differential species (142) in group four than in a percentage (McCune and Grace 2002). Species with group five (Fig. 3b), which means a difference of a relative abundance and a constancy of C50% were 1.2%, we have decided to prune the dendrogram into identified as indicator species. four groups. The dendrogram in Fig. 2 shows a loss To explain ecological interrelations of the groups, of information at 73.8% (26.2% retained) for four we took site factors and the Ellenberg indicator value groups. (EIV, Ellenberg et al. 1992) of all (437) species into Discriminant analysis explained 97.5% of the 472 account. The EIVs used were L = light, T = tem- vegetation releve´s as correctly classified. We then perature, K = continentality, F = moisture, R = soil compared the abundance values of the species of the reaction and N = nitrogen. We weighted the EIVs 12 misclassified releve´s with the mean abundance with the abundance values of the species occurring in values of the four groups of the HCA, and discovered each group and compared the means with an Analysis that the species composition fitted more precisely to of Variance (ANOVA). Tests of significance were the predicted group found by the DA. Thus, the calculated with post-hoc tests of Bonferroni at classification of the misclassified releve´s was chan- P \ 0.01. ged accordingly. Table 2 summarizes the main

Fig. 2 Dendrogram for the first 15 groups of the HCA using the Euclidean distance measure and the Wards method 123 Plant Ecol

Fig. 3 Results of Indicator Species Analysis (ISA) from step 2 to 15 during the clustering process. a Change in P value after 3,000 permutations of the Monte Carlo test averaged across 335 species, b Number of species with P \ 0.05 ecological and floristic characteristics of the four montanae-Nardetum strictae typicum (Peppler-Lis- groups and presents ten differential species with the bach and Petersen 2001). highest indicator values for each group. The results of the ISA of all 142 differential species are presented in Subassociation vaccinietosum Appendix 2. The second group, including most of the vegetation Characterization of the four groups releve´s, contains nearly all four land-use types. of the Sieversio montanae-Nardetum strictae However, compared to the others, this group has the highest number of unfertilized meadows and The four groups are ranked as subassociations abandoned areas (Table 2, numbers in brackets). In because of ecological differences and numerous addition to the abandoned areas, most of the unfer- specific indicator species that were found for each tilized meadows are mown every second to third year, group. On the basis of ecological characteristics and which explains the high number of dwarf-shrubs and floristic composition (see Table 2, Appendix 2), the lichens present. A highly significant separation of the four subassociations of the Sieversio montanae- means of the EIVs was found for the R and N values, Nardetum strictae can be characterized as follows: which are lower than in the third and fourth group, but higher than in the first one. Similar to the first Subassociation typicum group, the number of species is low and significantly different from the third and fourth groups. Because of The first group describes mainly pastures and is the differential species of the genus Vaccinium, this located at higher altitudes: the difference given by the group is identified as Sieversio montanae-Nardetum ecological factor altitude is, therefore, highly signif- strictae vaccinietosum (Hartl 1963). icant for the other groups. Of the EIVs, the T, F, R, and N values are significantly lower than in the other Subassociation trifolietosum pratensis groups (Table 2). Additionally, the group is charac- terized by having a low number of species, but the In the third group, slightly fertilized meadows are highest abundance rates of the community’s epony- found mainly. Therefore, the land-use intensity differs mous species Nardus stricta and Geum montanum. quite significantly from the other groups, and the N Together with Carex pallescens, Hieracium hoppea- value of the EIVs separates this group from the first and num, Phyteuma hemisphaericum, and Scorzoneroides second ones. Despite having a constancy of not more helvetica, Nardus stricta and Geum montanum are than 15%, the species Erigeron uniflorus occurs typical species found in the Sieversio montanae- exclusively in the third group (Appendix 2). This Nardetum strictae (Grabherr and Mucina 1993). This subassociation is called Sieversio montanae-Nardetum is why we identify this plant community as Sieversio strictae trifolietosum pratensis (Braun-Blanquet 1949)

123 Plant Ecol as Trifolium pratense (mostly Trifolium pratense ssp. of the Nardetalia (class of Calluno-Ulicetea) as nivale) is used as the eponymous species. already done by Oberdorfer (1978), Peppler (1992), and Peppler-Lisbach and Petersen (2001) for central Subassociation seslerietosum albicantis Europe. Our suggested classification is in contrast to Grabherr and Mucina (1993), who assigned the The fourth group specifies the community related to Sieversio montanae-Nardetum strictae community calcareous bedrock. Consequently, highly significant of the Eastern Alps to the Festucetalia spadiceae differences from the other groups are given for the (class of Caricetea curvulae). However, we believe pH values. Of the EIVs, the L value and—together that the reclassification of this plant community is with the third group—the R and the N values show valid for the following three key reasons: significant differences. Finally, all releve´s belonging 1. Character species of the class Calluno-Ulicetea to this group occur only in areas where limestone and the order Nardetalia (as given in Mucina et al. forms the bedrock (Fig. 1) and most of the sites 1993) are found more frequently in our vegetation (more than 80%) are abandoned areas or unfertilized releve´s than the character species of the class meadows (Table 2, number in brackets). The group is Caricetea curvulae and the order of Festucetalia also characterized by the highest number of indicator spadiceae (as given in Grabherr and Mucina 1993). species (Appendix 2). Because of the indicator Table 3 summarizes the character species provided in species Sesleria albicans, this fourth group is iden- the literature to date for the above-mentioned groups tified as Sieversio montanae-Nardetum strictae sesle- along with occurrence of the 472 vegetation releve´s rietosum albicantis; an original diagnosis for this included in our data set for the Eastern Alps. Worthy subassociation is given in Appendix 3. of note is the fact that the eponymous species Carex curvula was found in just 3% and Festuca paniculata (i.e. Festuca spadicea) in 4%, whereas Calluna Discussion vulgaris occurs in 40% and Nardus stricta in 100% of the vegetation releve´s studied. The Sieversio montanae-Nardetum strictae is the 2. Even though the Nardetalia communities are most common plant community in alpine pastures of dominated by grasses, we found a high number of the Eastern Alps (Grabherr and Mucina 1993), but it dwarf-shrubs in our 472 vegetation releve´s, such as can also be found in meadows and recently aban- Calluna vulgaris (40%), Erica carnea (7%), Junipe- doned areas. After HCA and ISA, four distinct rus communis ssp. nana (11%), Salix herbacea (3%), subassociations of the Sieversio montanae-Nardetum Salix retusa (2%), Thymus pulegioides (12%), Thy- strictae were identified and this phytosociological mus serpyllum (6%), Vaccinium gaultherioides classification was confirmed by DA. After comparing (34%), Vaccinium myrtillus (49%), and Vaccinium the Euclidean distance measure with Relative Euclid- vitis-idaea (36%). This evidence warrants a classifi- ean and Bray–Curtis measures, we found out that the cation into the class of dwarf-shrub heather (Calluno- classification in the first four groups was the same for Ulicetea). Moreover, in the 472 vegetation releve´s all the releve´s. We, therefore, took the Euclidean studied, only 121 (25.6%) contain none of the above- distance measure since most of the information is mentioned dwarf-shrubs. This means that in the retained in the first four groups. We furthermore majority, i.e. 74.4%, of our releve´s dwarf-shrubs are followed Whittaker (1962) and used species which present. Growth conditions for dwarf-shrubs become preferably occur in a specific group of the Sieversio less favorable toward higher elevations (Ellenberg montanae-Nardetum strictae to classify the subasso- 1996), which is confirmed by our study presented by ciations. Therefore, we took the ISA as a tool to the subassociation typicum. Finally, also land-use contrast performance of species across the groups of type can affect dwarf-shrubs growth (Bischof 1981; releve´s. This method is well suited to species data for Zoller et al. 1984; Tasser and Tappeiner 2002), e.g. describing community types (McCune and Grace when meadows are fertilized. This effect can be seen 2002). in the subassociation trifolietosum pratensis. Our analyses led us to the conclusion that this 3. As this plant community was subject to anthro- plant community should be integrated into the order pogenic and/or anthropo-zoogenic influence, we, 123 ln Ecol Plant

Table 3 Character species based on Mucina et al. (1993) for the class Calluno-Ulicetea and the order Nardetalia and based on Grabherr and Mucina (1993) for the class Caricetea curvulae and the order Festucetalia spadiceae and the occurrence in % of 472 releve´s from the Eastern Alps Calluno-Ulicetea Occurrence Nardetalia Occurrence Caricetea curvulae Occurrence Festucetalia spadicae Occurrence (%) (%) (%) (%)

Antennaria dioica 26.06 Arnica montana 63.35 Agrostis rupestris 3.81 Campanula barbata 56.78 Anthoxanthum 51.91 Carex pallescens 6.99 Avenula versicolor 44.92 Centaurea nervosa 2.97 odoratum Calluna vulgaris 40.04 Galium pumilum 12.50 Gentiana acaulis 54.45 Crepis conyzifolia 32.42 Carex pilulifera 0.64 Galium saxatile 0.64 Gentiana punctata 1.69 Erigeron alpinus 1.91 Danthonia decumbens 4.03 Genista tinctoria 0.00 Gentiana purpurea 0.00 Festuca paniculata 3.60 Genista sagittalis 0.00 Hieracium lactucella 0.85 Phyteuma confusum 0.00 Geum montanum 48.52 Hieracium pilosella 50.85 Hypericum maculatum 16.31 Phyteuma hemisphaericum 9.75 Hypochoeris uniflora 26.69 Luzula campestris 20.34 Hypericum perforatum 0.00 Potentilla aurea 58.26 Paradisea liliastrum 3.18 Luzula multiflora 47.25 Nardus stricta 100.00 Pulsatilla alpina ssp. alba 0.00 Phyteuma betonicifolium 20.13 Lycopodium clavatum 0.00 Thesium pyrenaicum 2.33 Scorzoneroides helvetica 18.86 Plantago serpentina 0.00 Polygala serpyllifolia 0.00 Trifolium alpinum 12.71 Pulsatilla alpina ssp. 23.94 apiifolia Potentilla erecta 76.91 Ranunculus villarsii 0.00 Veronica fruticulosa 0.21 Mean percentage 26.50 20.30 18.59 16.95 123 Plant Ecol therefore, integrated the community into the group of that occur exclusively in one group, except Erigeron mainly anthropogenic vegetation (Mucina et al. uniflorus in group three, indicating that the groups are 1993) and not into the group of natural forest-free highly correlated with each other. vegetation (Grabherr and Mucina 1993). Although The Sieversio montanae-Nardetum strictae plant many species of the Sieversio montanae-Nardetum community in the Eastern Alps has already been strictae occur in natural forest-free areas, such as classified into subassociations (Braun-Blanquet 1949; channels of avalanches and troughs (Oberdorfer Hartl 1963; Bischof 1981; Heiselmayer 1985, see 1978; Grabherr and Mucina 1993), the current Appendix 1 for diploma and doctoral theses). How- species composition of the community refers pri- ever, many of these classifications included regional marily to anthropogenic influences. For example, it peculiarities of some restricted species, thus giving an is found growing on recently abandoned areas that inaccurate reflection of the subassociation composi- now attract deer for grazing (Stu¨ssi 1970; Peppler tion of this plant community. Nevertheless, in 1992 1992). Peppler provided a comprehensive study and classi- Our study shows that the alliance Nardion strictae fication of this plant community for the German with the association Sieversio montanae-Nardetum region that marginally included the Eastern Alps. strictae should remain unchanged. This alliance was Therefore, we have extended this study to include a also proposed by Oberdorfer (1978), Krahulec classification of this plant community for the Eastern (1983), Peppler (1992), and Peppler-Lisbach and Alps. Furthermore, the classification into subassoci- Petersen (2001). We further suggest that the character ations is confirmed by the fact that three of the four species of the Nardion strictae as given in Grabherr groups were classified into the subassociation level and Mucina (1993) should be maintained, because by Braun-Blanquet (1949) for the subassociation they separate the continental and lower located trifolietosum pratensis, by Hartl (1963) for the alliance Nardo-Agrostion tenuis of the Eastern Alps. subassociation vaccinietosum and by Peppler-Lis- However, we do not extend this classification to the bach and Petersen (2001) for the subassociation species Gnaphalium sylvaticum and Veratrum album, typicum. Our fourth group revealed the highest because they are specified as character species in both number of differential and indicator species (Appen- alliances by Mucina et al. (1993) and Grabherr and dix 2), so that a classification of this group at Mucina (1993). subassociation level is justified. HCA confirmed by the DA and ISA of our data set The first group represents the typical subassocia- classified the plant community into four distinct tion of the Sieversio montanae-Nardetum strictae. groups. Note that we merged two of the five groups The typical species composition detailed in Grabherr determined by ISA because of strong similarities with and Mucina (1993) corresponds to most of our the group of calciphile Sieversio montanae-Nardetum differential species, such as Carex pallescens, Geum strictae and since there are no significant differences montanum, Hieracium hoppeanum, Nardus stricta, in site factors for these two groups. Finally, the EVIs Phyteuma hemisphaericum, and Scorzoneroides hel- for the species in these two subjects were also not vetica. This first group is mainly found in pastures, significantly different. Therefore, we feel justified to which is the most common land-use type for the simplify the dendrogram produced by the HCA to Sieversio montanae-Nardetum strictae (Oberdorfer only four groups. 1978; Peppler-Lisbach and Petersen 2001). The Since we found numerous indicator species for significant difference in elevation (Table 2)is each group (Appendix 2), as well as highly significant explained by the fact that most of the lightly used differences in their ecology (Table 2), we further pastures are located near and above the timber line, classified this plant community into the subassocia- where grazing animals are left more or less unat- tion level. We did not classify the groups into tended (Tasser et al. 2003). This group also produced independent associations for the following two key the highest L value of the EVIs, which confirms this reasons: (1) The differential species as determined by subassociation to be found above the tree line. ISA and the resulting indicator species for each group Since unfertilized meadows are increasingly aban- also occur in other groups, albeit at differing doned (Macdonald et al. 2000; Tasser et al. 2001, percentages of occurrence; (2) there are no species 2007), we focused on this land-use type in regard to 123 Plant Ecol the classification of the Sieversio montanae-Narde- calcareous bedrock (Fig. 1) having a pH value tum strictae plant community. Moreover, also the significantly higher than for the other three groups. high number of dwarf-shrubs present in the second Therefore, a classification into a separate association group is explained by land-use type: 50.6% of the would be legitimate. However, the HCA shows that releve´s which belong to meadows mown every this group is split from the other groups at last second to third year or to abandoned areas occur in (Fig. 2). Moreover, there are no species that occur this group—conditions that are ideal for dwarf-shrubs exclusively in this group. Therefore, the group must growth. Finally, we propose that species such as be considered as an equivalent subgroup and not as Calluna vulgaris, Vaccinium gaultherioides, Vacci- an independent association. Finally, Peppler-Lisbach nium myrtillus, and Vaccinium vitis-idaea should be and Petersen (2001) describe a calciphile Soldanella used for defining this group in future, as done by alpina variant of the subassociation—trifolietosum Hartl (1963) too. pratensis, which corresponds to our subassociation— Easily accessible meadows of the Sieversio mont- seslerietosum albicantis of the Sieversio montanae- anae-Nardetum strictae are mostly fertilized with Nardetum strictae. Appendix 3 compares the con- manure, mown once a year and grazed in autumn stancy of our original diagnosis of the subassociation after the return of livestock from high alpine summer seslerietosum albicantis with the constancy table of pastures (Knapp and Knapp 1952; Mucina et al. Peppler-Lisbach and Petersen (2001). For acceptance 1993). Such intensification of land use includes of the subassociation, we additionally present 10 massive extension of forest roads (Krausmann et al. releve´s from five different sites (two releve´s for each 2003; Mottet et al. 2006) that make agricultural areas site), according to Article 7, Recommendation 7A of accessible and subsequently lead to an increase of the International Code of Phytosociological Nomen- vehicles and manure in the alpine and subalpine belt clature (i.e. ICPN, Weber et al. 2000) and added the (Pavlu˚ et al. 2005; Sto¨cklin et al. 2007; Liira et al. constancy values extracted from all 78 releve´s 2008). This intensification of land use results in a belonging to this subassociation. subassociation of the community having a high The Sieversio montanae-Nardetum strictae is most biodiversity (Table 2), because species that grow species-rich in the subassociation trifolietosum prat- well in either meadows or pastures or both occur ensis with the land-use type mowing, slightly fertil- more frequently. In accordance with Braun-Blanquet izing and grazing in autumn. This traditional hay (1949) and Peppler-Lisbach and Petersen (2001), we meadow management preserves sites with high maintain the name of the subassociation, named after biodiversity (Garcia 1992; Myklestad and Sætersdal the most common species Trifolium pratense.A 2004; Maurer et al. 2006). Therefore, agri-environ- similar type was described by Heiselmayer (1982)as mental measures, which are among the most impor- Trifolio pratensis-Nardetum and by Dietl (1995)as tant instruments for the promotion of environmentally Hypochoero-Nardetum. adapted agricultural land use (Matzdorf et al. 2008), Currently, there is limited information on the should focus on traditional hay management. Sieversio montanae-Nardetum strictae plant commu- nity that establishes above calcareous bedrock Acknowledgments We thank Prof. Dr. Robert Crawford for (Grabherr and Mucina 1993). We found the highest his useful language revision and Dr. Ruth Willmott (BioScript International) for her editorial support. We thank the provincial percentage of this plant community type in aban- government of Tyrol for enabling analysis of the soil samples. doned areas, i.e. in areas with the lowest land-use This study was funded by the European Union within the intensity (Table 2). The ISA revealed 56 differential scope of the Interreg IIIA-Italy/Austria-Project ‘‘DNA- species and 11 indicator species with more than 50% Characterization for certification and valorisation of mountain hay’’, supported by the provincial governments of Tyrol and relative abundance and constancy (Appendix 2), South Tyrol. which is by far the highest among all the groups. The differential species Sesleria albicans, Phyteuma orbiculare, and Trifolium badium are calciphile Appendix (Fischer et al. 2005). Additionally, all vegetation releve´s belonging to this group were found above See Tables 4, 5, 6

123 Plant Ecol

Table 4 Sources for information on the vegetation releve´s from literature Author Title Type of Year of Location No. of publication publication releve´s

Brunner, B. Die Vegetation von Bergma¨hdern im Diploma thesis, 1999 Obernberg, 83 Landschaftsschutzgebiet No¨ßlachjoch- University of North Tyrol Obernberg-Tribulaun Innsbruck (AT) Dalla Torre, M. Die Vegetation der subalpinen und alpinen Dissertation, 1982 St. Christina, 4 Stufe in der Puez-Geisler Gruppe University of Gro¨den, South Innsbruck (AT) Tyrol Dierschke, H. Gru¨nland-Gesellschaften im oberen Phytocoenologia 1979 Galtu¨r, Paznaun, 13 Paznauner Tal 6: 287-303 North Tyrol Dirrhammer, H. Die Vegetation im oberen Lechtal Diploma thesis, 2008 Elbigenalp, 17 University of Lechtal, North Innsbruck (AT) Tyrol Duelli, M. Die Vegetation des Gaißbergtales. Ein Dissertation, 1977 Gaißbergtal, 24 Versuch, das Datenmaterial mit Hilfe der University of Obergurgl, EDV-Anlage zu bearbeiten Innsbruck (AT) North Tyrol Egger, G. Die Bu¨rstlingsrasen vom Nationalpark Hohe Personal unpubl. 2006 Hohe Tauern, 15 Tauern in Tirol releve´s East Tyrol Ender, M. Vegetation von gema¨hten Bergwiesen und Diploma thesis, 1997 Tannberg, 35 deren Sukzession nach Auflassung der University of Vorarlberg Mahd Innsbruck (AT) Flecker, K. Die Vegetation von Schipisten und Diploma thesis, 1996 Lech, Vorarlberg 10 angrenzenden Bergma¨hdern im Raum University of Hochtannberg Innsbruck (AT) Gufler, R. Analyse der Vegetations- und Diploma thesis, 1999 Kaserstatt, 5 Erosionsverteilung in Abha¨ngigkeit von University of Stubaital, Bewirtschaftungsa¨nderungen am Beispiel Innsbruck (AT) North Tyrol Kaserstattalm Keim, K. Die Vegetationsverha¨ltnisse des Dissertation, 1967 Pflersch, South 26 Pflerschertales University of Tyrol Innsbruck (AT) Lechner, C. Die Vegetation im Bereich des Diploma thesis, 1995 Nauders, North 19 Dreila¨nderecks bei Nauders am University of Tyrol Reschenpass Innsbruck, (AT) Lechner, G. Die Vegetaion der inneren Pfunderer Ta¨ler Dissertation, 1969 Pfunders, South 16 University of Tyrol Innsbruck (AT) Mayer, R. Die Vegetation der Bergma¨hder im Valsertal Diploma thesis, 2002 Vals, North 11 und ihre Dynamik University of Tyrol Innsbruck (AT) Mulser, J. Analyse der Vegetationsverteilung in Diploma thesis 1998 Walten, 12 Abha¨ngigkeit der University of Passeiertal, Bewirtschaftungsa¨nderung auf den Waltner Innsbruck (AT) South Tyrol Ma¨hdern Nieder brunner, Vegetation der Sextener Dolomiten Dissertation, 1975 Sexten, South 11 F. (subalpine und alpine Stufe) University of Tyrol Innsbruck (AT) Oberhammer M. Die Vegetation der alpinen Stufe in den Dissertation, 1979 Prags, 1 o¨stlichen Pragser Dolomiten University of Dolomites, Innsbruck South Tyrol

123 Plant Ecol

Table 4 continued Author Title Type of Year of Location No. of publication publication releve´s

Putzer, J. Pflanzengesellschaften im Raum von Brixen Dissertation, 1967 Brixen, South 5 mit besonderer Beru¨cksichtigung der University of Tyrol Trockenvegetation Innsbruck (AT) Smettan, H. Die Pflanzengesellschaften des Dissertation, 1981 Kaisergebirge, 2 Kaisergebirges/Tirol. University of North Tyrol Innsbruck (AT) Steinmair, V. Die Vegetation von unterschiedlich genutzten Diploma thesis, 1999 Pla¨tzwiese, 20 Almfla¨chen auf der Pla¨tzwiese University of Prags, South Innsbruck (AT) Tyrol Tasser, E. Vegetationsaufnahmen von Bu¨rstlingsrasen Personal unpubl. 2005 Mt. Bondone, 22 des Monte Bondone releve´s Trentino, Italy Thomaser, J. Die Vegetation des Peitlerkofels in Su¨dtirol. Vero¨ff. Museum 1967 Gardertal 2 Ferdinandeum 47: 67–119 Wallossek, C. Vegetationskundlich-o¨kologische Dissertationes 1990 Lafatscher Joch, 4 Untersuchungen in der alpinen Stufe am Botanicae 154 Latemar, South SW-Rand der Dolomiten (IT) Tyrol

Table 5 Results of the Indicator Species Analysis (ISA) for 142 significant (P \ 0.05) species Species name Rel. abundance (%) Constancy (%) Indicator values Monte Carlo test of significance of observed maximum indicator values for species with 3,000 permutations No. of releve´s No. of releve´s No. of releve´s MaxGr Value Mean s.d. P Gr1 Gr2 Gr3 Gr4 Gr1 Gr2 Gr3 Gr4 Gr1 Gr2 Gr3 Gr4 100 255 40 77 100 255 40 77 100 255 40 77

Sieversio montanae-Nardetum strictae typicum Nardus stricta 62 12 18 8 100 100 100 100 62 12 18 8 1 61.6 28.1 1.67 0.0003 Geum montanum 41 21 28 10 59 47 73 29 24 10 20 3 1 24.2 16.5 2.57 0.0123 Scorzoneriodes helvetica 51 21 4 25 30 18 8 13 15 4 0 3 1 15.2 7.7 1.97 0.0067 Pedicularis tuberosa 51 33 16 1 25 16 20 1 13 5 3 0 1 12.7 6.8 1.85 0.0160 Phyteuma hemisphaericum 58 30 11 0 22 8 8 0 13 2 1 0 1 12.9 5.1 1.78 0.0047 Hieracium hoppeanum 53 8 21 18 23 6 20 4 12 0 4 1 1 12.2 5.2 1.73 0.0077 Festuca halleri agg. 58 22 12 8 17 7 5 5 10 2 1 0 1 9.8 4.9 1.86 0.0237 Polygala comosa 7318091450310 1 0 0 1 10.3 3.6 1.45 0.0037 Festuca ovina agg. 703000135009 2 0 0 1 9.1 3.5 1.51 0.0087 Carex pallescens 51 17 25 7 13 6 8 3 7 1 2 0 1 6.7 3.8 1.44 0.0500 Centaurea nervosa 67 15 19 0 10 0 8 0 7 0 1 0 1 6.7 2.5 1.31 0.0153 Danthonia decumbens 722540 93506 1 0 0 1 6.4 2.8 1.34 0.0273 Gentiana lutea 92008 60066 0 0 1 1 5.5 2.5 1.32 0.0363 Gnaphalium sylvaticum 98200 60006 0 0 0 1 5.9 1.6 0.93 0.0040 Carex capillaris 90307 61035 0 0 0 1 5.4 2.1 1.15 0.0230 Ranunculus bulbosus 891100 52004 0 0 0 1 4.4 1.9 1.06 0.0290

123 Plant Ecol

Table 5 continued Species name Rel. abundance (%) Constancy (%) Indicator values Monte Carlo test of significance of observed maximum indicator values for species with 3,000 permutations No. of releve´s No. of releve´s No. of releve´s MaxGr Value Mean s.d. P Gr1 Gr2 Gr3 Gr4 Gr1 Gr2 Gr3 Gr4 Gr1 Gr2 Gr3 Gr4 100 255 40 77 100 255 40 77 100 255 40 77

Sieversio montanae-Nardetum strictae vaccinietosum Calluna vulgaris 30 58 8 4 41 50 28 12 12 29 2 0 2 29 13.9 2.33 0.0003 Vaccinium gaultherioides 20 53 18 9 32 43 25 13 6 23 5 1 2 22.6 12.4 2.32 0.0017 Vaccinium myrtillus 24 39 15 23 39 56 35 47 9 22 5 11 2 21.5 16.3 2.31 0.0340 Vaccinium vitis-idaea 32 50 8 16 35 42 20 26 11 18 2 4 2 18.3 12.5 2.16 0.0203 Anthoxanthum alpinum 42 50 2 6 38 35 3 5 16 17 0 0 2 17.2 10.3 2.09 0.0097 Antennaria dioica 35 47 16 2 35 30 25 3 12 14 4 0 2 13.9 9.9 2.05 0.0473 Cetraria islandica 23 64 0 13 14 16 0 4 3 11 0 1 2 10.5 5.8 1.77 0.0250 Cladonia rangferina 12 82 0 6 3 11 0 3 0 9 0 0 2 8.7 3.8 1.46 0.0130 Erica carnea 7780154100108 0 0 2 7.9 4.1 1.62 0.0313 Picea abies 2980019 0008 0 0 2 8.4 3.4 1.53 0.0147 Silene nutans 1990018 0008 0 0 2 7.8 3.2 1.44 0.0147 Cladonia arbuscula 12880026 0006 0 0 2 5.5 2.7 1.22 0.0343 Hieracium lachenalii 28720029 0016 0 0 2 6.5 3.2 1.38 0.0327 Sieversio montanae-Nardetum strictae trifolietosum pratensis Festuca rubra agg. 8 7 67 18 74 76 100 91 6 5 67 16 3 67.1 24.1 2.30 0.0003 Trifolium pratense 10 11 68 11 53 55 95 55 5 6 64 6 3 64.4 18.8 2.59 0.0003 Plantago alpina 610769955031038 0 3 38 4.7 1.60 0.0003 Hypochaeris uniflora 5 7844272545221238 1 3 37.7 12.6 3.30 0.0003 Potentilla aurea 17 15 44 24 71 48 85 61 12 7 37 15 3 37.5 18.8 2.55 0.0003 Phleum commutatum 5137571194851136 0 3 35.5 5.8 1.80 0.0003 Leucantthemum vulgare 15 12 45 28 39 45 80 68 6 5 36 19 3 36.3 16.4 2.34 0.0003 Mutellina adonidifolia 9 783029154333 135 0 3 35.5 8.5 2.37 0.0003 Luzula campestris 15 13 55 17 20 15 63 18 3 2 34 3 3 34.5 8.2 2.03 0.0003 Anthoxanthum odoratum 10 14 40 35 37 46 85 74 4 7 34 26 3 34.2 16.8 2.32 0.0003 Rhinanthus alectorolophus 1 9 88 1 8 13 38 4 0 1 33 0 3 32.9 6.4 2.00 0.0003 Traunsteinera globosa 2 4849453850032 0 3 31.5 4.2 1.60 0.0003 Hieracium pilosella 15 19 48 18 41 52 65 53 6 10 31 9 3 31.3 17 2.59 0.0013 Campanula barbata 19 25 37 18 48 58 80 52 9 15 30 10 3 29.6 18.4 2.50 0.0023 Arnica montana 22 28 38 12 62 65 78 53 14 18 30 7 3 29.8 20.2 2.52 0.0053 Primula elatior 14 3 77 6 8 2 38 4 1 0 29 0 3 28.9 3.8 1.41 0.0003 Ranunculus montanus 13 12 58 17 26 21 50 21 3 3 29 3 3 29.1 9.3 2.05 0.0003 Campanula scheuchzeri 14 20 31 35 59 68 93 78 8 13 29 27 3 29.1 21 2.06 0.0027 Lotus corniculatus s.l. 16 20 33 31 58 67 90 78 9 13 29 25 3 29.4 21 2.17 0.0043 Crepis pontana 0 4933033030028 0 3 27.9 3.2 1.46 0.0003 Avenula versicolor 20 23 38 19 39 44 73 42 8 10 28 8 3 27.7 15 2.28 0.0010 Gymnadenia conopsea 19 25 48 8 31 38 58 16 6 10 28 1 3 27.7 12.7 2.58 0.0007 Gentiana acaulis 28 22 37 13 61 52 75 44 17 11 28 6 3 28.1 17.4 2.16 0.0020 Luzula sylvatica 5246752183850425 0 3 25 6.3 1.83 0.0003

123 Plant Ecol

Table 5 continued Species name Rel. abundance (%) Constancy (%) Indicator values Monte Carlo test of significance of observed maximum indicator values for species with 3,000 permutations No. of releve´s No. of releve´s No. of releve´s MaxGr Value Mean s.d. P Gr1 Gr2 Gr3 Gr4 Gr1 Gr2 Gr3 Gr4 Gr1 Gr2 Gr3 Gr4 100 255 40 77 100 255 40 77 100 255 40 77

Anemone narcissiflora 0 5 79 16 0 4 30 16 0 0 24 2 3 23.7 3.9 1.50 0.0003 Heracleum sphondylium 0 10 87 3 0 2 28 5 0 0 24 0 3 23.9 3.6 1.57 0.0003 Myosotis alpestris 4 8 60 28 6 11 40 36 0 1 24 10 3 23.9 7.1 1.99 0.0007 Crepis conyzifolia 11 13 55 21 22 26 40 62 2 3 22 13 3 21.9 12.3 2.58 0.0070 Polygala alpestris 16 12 43 28 29 18 48 43 5 2 21 12 3 20.6 9.8 1.97 0.0010 Crepis aurea 17 12 44 27 21 15 38 45 4 2 17 12 3 16.6 9.3 2.33 0.0130 Pseudorchis albida 13 17 70 0 9 9 25 0 1 2 17 0 3 17.5 4.8 1.75 0.0003 Thesium alpinum 11 24 36 29 23 34 48 32 3 8 17 10 3 16.9 11.9 2.33 0.0397 Euphrasia officinalis s.l. 15 26 37 22 23 35 48 18 4 9 17 4 3 17.4 11 2.07 0.0117 Crocus albiflorus 23 17 41 19 33 25 40 39 7 4 16 7 3 16.5 10.9 2.05 0.0200 Erigeron uniflorus 0 01000001500015 0 3 15 1.5 0.89 0.0003 Euphrasia minima 25 28 42 4 16 12 35 1 4 3 15 0 3 14.7 6 1.74 0.0017 Phyteuma ovatum 1 6930121500014 0 3 14 2.1 1.15 0.0003 Ajuga reptans 1 3 84 13 1 0 15 4 0 0 13 0 3 12.5 2.1 1.10 0.0003 Gentianella campestris 17 21 56 6 13 11 23 4 2 2 13 0 3 12.6 5.5 1.86 0.0080 Pimpinella major 11 18 36 35 10 11 33 23 1 2 12 8 3 11.7 6.5 1.84 0.0190 Botrychium lunaria 20 16 36 28 14 16 33 25 3 3 12 7 3 11.6 7.7 1.95 0.0467 Trisetum flavescens 3 5 71 21 2 3 15 8 0 0 11 2 3 10.7 3.3 1.53 0.0033 Carduus defloratus 5115827351880110 2 3 10.1 3.9 1.53 0.0053 Crepis pyrenaica 2 9 50 38 1 4 18 16 0 0 9 6 3 8.8 3.5 1.40 0.0090 Poa trivialis 0 4 69 26 2 1 13 4 0 0 9 1 3 8.7 2.1 1.09 0.0007 Phleum hirsutum 717423347231401 9 5 3 9.5 4.5 1.51 0.0140 Silene latifolia 51946307620801 9 2 3 9.2 4.2 1.61 0.0157 Aster alpinus 0 18 82 0 0 3 10 0 0 1 8 0 3 8.2 2.2 1.19 0.0027 Gnaphalium norvegicum 013870018000 7 0 3 6.5 1.7 0.98 0.0043 Scabiosa canescens 0 1990008000 7 0 3 7.4 1.4 0.84 0.0017 Poa annua 35 7 59 0 3 2 10 0 1 0 6 0 3 5.9 2.5 1.28 0.0243 Cyanus montanus 0 1990005000 5 0 3 4.9 1.2 0.77 0.0070 Gentianella anisodonta 300700408010 5 0 3 5.2 1.8 0.98 0.0113 Thesium pyrenaicum 1024670228001 5 0 3 5 2.1 1.16 0.0313 Dactylorhiza majalis 1045926108300 4 1 3 4.5 1.6 0.91 0.0147 Epipactis palustris 260714105100 4 0 3 3.5 1.4 0.79 0.0317 Hieracium alpinum 166780105000 4 0 3 3.9 1.3 0.80 0.0250 Sieversio montanae-Nardetum strictae seslerietosum albicantis Alchemilla vulgaris agg. 168 1760423883877 3 1452 4 52 16.9 2.44 0.0003 Agrostis capillaris 9 101565373845713 4 747 4 46.8 15 2.41 0.0003 Galium anisophyllon 17 13 18 52 42 28 40 91 7 4 7 47 4 46.9 14 2.14 0.0003 Trollius europaeus 7 132456233952832 5 1346 4 46.2 14.9 2.31 0.0003 Geranium sylvaticum 3 1 18 78 12 5 33 57 0 0 6 45 4 44.7 7.8 2.08 0.0003

123 Plant Ecol

Table 5 continued Species name Rel. abundance (%) Constancy (%) Indicator values Monte Carlo test of significance of observed maximum indicator values for species with 3,000 permutations No. of releve´s No. of releve´s No. of releve´s MaxGr Value Mean s.d. P Gr1 Gr2 Gr3 Gr4 Gr1 Gr2 Gr3 Gr4 Gr1 Gr2 Gr3 Gr4 100 255 40 77 100 255 40 77 100 255 40 77

Rhinanthus glacialis 1071766263155613 21040 4 40 13.4 2.54 0.0003 Briza media 17 21 17 44 48 56 50 88 8 12 9 39 4 38.8 18.4 2.21 0.0003 Phyteuma orbiculare 1172755231848713 11339 4 39.1 10.9 2.08 0.0003 Rumex alpestris 1 4 20 75 4 4 25 45 0 0 5 34 4 34 6 1.90 0.0003 Leontodon hispidus 18 13 25 44 49 48 52 77 9 6 13 34 4 34 17.4 2.32 0.0003 Sesleria albicans 710186488155111333 4 32.6 7.3 2.26 0.0003 Trifolium badium 7 9 28 56 24 20 55 56 2 2 15 31 4 31.2 10.9 2.15 0.0003 Potentilla erecta 24 21 23 32 75 72 90 88 18 15 21 29 4 28.6 22.7 1.96 0.0090 Silene vulgaris 2 123353122345560 31529 4 29.5 10.3 2.09 0.0003 Plantago lanceolata 13 8 20 60 6 13 20 47 1 1 4 28 4 27.8 7.5 1.97 0.0003 Ranunculus nemorosus 1373446191925612 1 928 4 27.9 10.3 2.34 0.0003 Achillea millefolium 10 27 19 44 25 35 38 61 2 9 7 27 4 26.8 12.9 2.25 0.0003 Phleum rhaeticum 1083349131115481 1 524 4 23.8 7.3 1.85 0.0003 Deschampsia cespitosa 20 11 21 48 22 15 25 47 4 2 5 23 4 22.6 8.9 2.01 0.0010 Avenula pubescens 6 5 31 59 15 6 20 38 1 0 6 22 4 22.1 6.5 1.87 0.0003 Luzula luzuloides 9 37 5 49 13 23 13 45 1 9 1 22 4 22.2 9.5 2.26 0.0017 Anthyllis vulneraria ssp. 8 9 38 45 17 18 45 45 1 2 17 20 4 20.4 9.5 2.08 0.0010 alpicola Bartsia alpina 21 13 20 46 23 18 28 44 5 2 6 20 4 20.5 9 1.87 0.0007 Laserpitium latifolium 2 7 3 88 4 11 10 22 0 1 0 20 4 19.5 5.8 2.02 0.0003 Chaerophyllum villarsii 5 7 29 58 13 17 52 34 1 1 15 20 4 19.7 9 2.22 0.0017 Biscutella laevigata 16 17 13 53 13 12 15 35 2 2 2 19 4 18.7 7 1.93 0.0007 Centaurea pseudophrygia 1 6 33 59 5 15 28 32 0 1 9 19 4 19.3 7.5 2.11 0.0010 Trifolium medium 0 6 4900103210 1 019 4 18.7 5.1 1.84 0.0007 Cerastium fontanum agg. 15 13 29 43 23 20 38 45 4 3 11 19 4 19.4 9.7 2.01 0.0030 Knautia maxima 1 7 29 63 6 8 20 29 0 1 6 18 4 17.9 5.9 1.84 0.0003 Plantago media 17 20 3 61 14 9 10 30 2 2 0 18 4 18.1 6.9 2.22 0.0027 Veronica chamaedrys 1 7 48 44 2 9 15 40 0 1 7 18 4 17.6 6.1 1.86 0.0010 Astrantia major 0122860351900017 4 16.8 3.2 1.36 0.0003 Knautia longifolia 4 16905381900017 4 17.4 4 1.65 0.0003 Poa alpina 22 14 25 38 22 16 33 44 5 2 8 17 4 16.9 9 2.05 0.0067 Soldanella alpina 20 10 37 32 32 24 45 55 7 3 17 17 4 17.3 11.5 2.15 0.0203 Thymus pulegioides 22 18 4 57 4 11 5 30 1 2 0 17 4 16.9 5.6 1.68 0.0003 Trifolium montanum 22 23 13 42 25 27 30 42 6 6 4 17 4 17.4 10.9 2.09 0.0127 Dactylis glomerata 1 23 10 67 2 13 15 23 0 3 1 16 4 15.7 5.8 1.72 0.0010 Scabiosa lucida 1511669141428222 2 215 4 15.2 7.7 2.29 0.0133 Carex montana 15 19 0 66 16 11 0 21 2 2 0 14 4 13.7 5.6 1.69 0.0027 Hippocrepis comosa 20 12 9 59 10 7 5 25 2 1 0 14 4 14.5 4.9 1.61 0.0017 Astragalus glyciphyllos 0 20980101300013 4 12.8 2.3 1.20 0.0003

123 Plant Ecol

Table 5 continued Species name Rel. abundance (%) Constancy (%) Indicator values Monte Carlo test of significance of observed maximum indicator values for species with 3,000 permutations No. of releve´s No. of releve´s No. of releve´s MaxGr Value Mean s.d. P Gr1 Gr2 Gr3 Gr4 Gr1 Gr2 Gr3 Gr4 Gr1 Gr2 Gr3 Gr4 100 255 40 77 100 255 40 77 100 255 40 77

Hypericum maculatum 12 14 32 42 14 11 30 31 2 1 10 13 4 13.2 7 1.91 0.0107 Avenula pratensis 8 4 0 88 3 3 0 13 0 0 0 11 4 11.5 3.1 1.43 0.0010 Carex ornithopoda 30 14 4 52 7 5 8 22 2 1 0 11 4 11.5 4.6 1.65 0.0040 Helianthemum ovatum 18 25 0 57 7 9 0 19 1 2 0 11 4 11.1 4.8 1.57 0.0040 Cirsium heterophyllum 0 6 28 66 0 4 10 14 0 0 3 9 4 9.4 3.6 1.51 0.0053 Linum catharticum 16729485 2131410 4 7 4 6.8 3.3 1.37 0.0233 Rhytidiadelphus squarrosus 7 0 37 56 2 0 5 12 0 0 2 7 4 6.5 2.5 1.27 0.0133 Taraxacum officinale 11278051391007 4 7.3 2.6 1.28 0.0090 Carex ferruginea 24606931091006 4 6.3 2.2 1.16 0.0097 Buphthalmum salicifolium 02207802060005 4 5.1 2 1.13 0.0240 Carex panicea 5 0128310360005 4 5.4 1.7 1.06 0.0127 Pedicularis rostratocapitata 02207801050004 4 4 1.7 0.98 0.0337 Lathyrus laevigatus 04105900050003 4 3 1.5 0.91 0.0487 Relative abundance (%) = Percent of average abundance of a given species in a given group of vegetation releve´s over the average abundance of that species in all releve´s; Constancy (%) = Percent of releve´s in a given group where a given species is present; Indicator values = Percent of perfect indication based on combining the values for relative abundance and constancy

Table 6 Constancy table of Peppler-Lisbach and Petersen subassociation seslerietosum albicantis with the factors alti- (2001) and constancy values of our original diagnosis and 10 tude, pH, slope, and land-use intensity (LUi). The fifth releve´ releve´s after the method of Braun-Blanquet (1964) of the (OV in bold) constitutes the nomenclatural type

Source Peppler-Lisbach and Petersen (2001) Own 10 Releve´s of the subassociation seslerietosum albicantis

Subassociation typicum trifolietosum pratensis sesl.

Site LV LV RP RP OV OV SD SD HT HT Number of releve´s 50321767165411781 1 1 1 1 11111 Mean altitude (*10; m a.s.l.) 161 194 158 153 192 154 196 185 178 187 164 162 176 180 198 198 192 175 Mean number of species 28 30 26 40 37 48 43 45 23 35 46 52 49 40 36 33 40 28 Mean pH (0–10 cm) 4.8 6.6 6.4 4.5 5.8 4.7 5.1 5 5.6 6.1 4.7 Mean slope (°) 15 5 10 24 18 12 10 15 20 10 10

LUi 0.5 0.5 0.1 0.1 0.5 3 0.3 0.3 1 1 Sieversio-Nardetum Plantago alpina III II III III IV IV IV ? Campanula barbata I IV I III V III V III 1 Gebtiana punctata III III III II III I II Gentiana acaulis I III II IV II V III 1 Phleum alpinumagg. II III I II II II III III 1 1 2m 1 ? Carex sempervirens IIV?? III III IV III 4 4 2a 4 3 Euphrasia minima I III II III II IV r Persicaria vivipara rII? II III II IV II 1 1 ??

123 Plant Ecol

Table 6 continued

Source Peppler-Lisbach and Petersen (2001) Own 10 Releve´s of the subassociation seslerietosum albicantis

Subassociation typicum trifolietosum pratensis sesl.

Crocus alpiflorus ? II ? II ? III 1 11 Plantago atrata r ? II III Galium anisophyllon ? r I I II III V 1 1 1 12m??1 Phyteume betonicifolium ? II ? II II I II r Hieracium aurathiacum ? II I II ??? Gentiana purpurea I ? II ? Crepisconyzifolia rII r II ? IV ? Gentiana punctata rr ?? I Sieversio-Nardetum trifolietosum pratensis Trifolium pratense r ? IV II IV III III 2m ? Poa alpina I ??III II IV III II 1 1 Lotus corniculatus agg. r III II IV III IV 1 1 1 2m 2a ? Crepis aurea ?? ? III II IV III II 1 ? Leucanthemum vulgare agg. r r III III III IV III ? 1 2m ? 1 Carlina acaulis s.l. ??III I III II V ? 111 ? 111 Prunella vulgaris III ? III I Hieracium angustifolium et shaeroceph. r I II I II ? 1 Trifolium repens rII? II ? Trichophorum cespitosum-variant Trichophorum cespitosum ? IV ? Molinia caerulea r I IV r ??? 2m Carex nigra ? r III ? Ir Soldanella alpina-variant Selagnella selaginoides r ? I I IV IV I 2m Soldanella alpina r r I II IVIVIII12m 1 1 1 Bartsia alpina r III IV II 1 2m 1 Ranunculus montanus ? r ? I ? III III I 2m 1 Aster bellidiastrum r r II II I 1 1 Tofieldia calyculata ? rIIr Sieversio-Nardetum seslerietosum albicantis Sesleria albicans IV 3 2a 2m 1 2m 111 Trifolioum badium III 2m ?? Silene vulgaris III ? 111?? Anthyllis vulneraria III ??2m ?? Luzula luzuloides III 1 1 ? Trifolium montanum II 1 ? Carex pallescens-form Carex pallescens VI V V I V I ? Carex pilulifera II IV II II Veratrum album II II III I III I ? r Hieracium pilosella II I I III III I III 1 1 1 1 Helictotrichon versicolor-form Avenochloa versicolor r V r V V III 1 Agrostis rupestris I III ? III I IV Hypochaeris uniflora r III IV II II ? 1 Nardetalia Nardus stricta VV V V VV IVV rr 2a2m2b 12b2a? 1 123 Plant Ecol

Table 6 continued

Source Peppler-Lisbach and Petersen (2001) Own 10 Releve´s of the subassociation seslerietosum albicantis

Subassociation typicum trifolietosum pratensis sesl.

Arnica montana III IV IV IV V III V III ? 11 ? Luzula multiflora III III III IV II III IV III 1 ? Hieracium lactucella I ? I III I II I Veronica officinalis I I II I ? Antennaria dioica ? I I II II II ? Danthonia decumbens rI? II Luzula campestris IIIII I I II 2m1 ? Gentianella campestris r ?? II ? Calluno-Ulicetea Vaccinium myrtillus V IV V IV IV IV V III 2m 1 ? Avenella flexuosa III V III II V II IV III ?? Callun a vulgaris II III IV III I II II I Pleurozium schreberi I III II I ? I ? Vaccinium vitis-idaea II II II II II I II II ? 1 1 ? Remaining species Alchemilla vulgaris s.l. ? r III III IV III IV 1 2a 111?? Anthoxanthum odoratum agg. V V V V V V V IV 2m 1 2m 2m 2a 4 Festuca rubra agg. V V V V V V V V 2a 2m 1 2a 2b 2a ?? Potentilla erecta V III V V III V III V 1 2m 2m 2m 2m 12m2m?? Agrostis capillaris IV II III V III IV IV IV 2a 2a 1 31 ? Solidago virgaurea s.l. III IV III III IV II V I ? Deschampsia cespitosa II I II III III IV III II ? 1 Vaccinium gaultherioides I III III I IV II IV I 2m 1 Leontodon hispidus s.l. I I III II IV III IV III 2m ? 20 1 2a Ranunculus nemorosus r II I II II IV 1 13 Phyteuma orbiculare r ??I III IV 1 1 1 1 1 ? 11? Trollius europaeus r ? I I I III V 1 1 1 ? 2a Willemetia stipitata IIIII? II ? Briza media r r I II II I V 1 1 1 1 2m 1 2m ? 2a Carex panicea r ? rIII Thymus praecox ssp. polytrichus rr I IIIIIIII 12m? Hypericum maculatum I ? II ? I ? II 1 ? Hieracium murorum r ??II ? I ?? ? Cerastium holosteoides r I I I I II III 1 1 Carexferruginea r r I I II I Carex flacca ? r ? IIII 1 Rhinanthus glacialis rrII ? IV 2a 2m ? 2a Geranium sylvaticum r ? I I II III 2a ??1 Achillea millefolium rII??IV 1 1 ?? Ranunculus acris II r I ?? ? Coeloglossum viride ??rIII I Geum montanum II 2a Polygala alpestris ?? II III 1 1 11? Knautia maxima r r II II ?? Plantago lanceolata III 1 2a ? Rumex alpestris III 1 ? Helianthemum nummularium s.l. I 2m 1 ?? 123 Plant Ecol

Table 6 continued

Source Peppler-Lisbach and Petersen (2001) Own 10 Releve´s of the subassociation seslerietosum albicantis

Subassociation typicum trifolietosum pratensis sesl.

Trifolium medium I2m2m33 Carex montana I2m2m12a Plantago media II 1 ? 1 ? Dactylis glomerata II 1 1 2a ? Pimpinella major II ?? 1 ? Biscutella laevigata II 1 1 1 Chaerophyllum villarsii II 2b 3 ? Veronica chamaedrys II 1 ?? Thymus pulegioides II 1 2a 1 Centaurea pseudophrygia II ? 12a Carex ornitopodoides II 1 1 ? Avenula pubescens II 1 2b Hippocrepis comosa II 2m Knautia longifolia II ? Thesium alpinum II 2m ? Astrantia major I11 Buphtalmum salicifolium I ?? Avenula pratensis I32a Colchicum autumnale I ?? Anthyllis vulneraria ssp. polyphylla I ?? ? Prunella grandiflora I1 1 ?

Sites in North Tyrol are from Lech Valley (LV), Reschenpass (RP), Obernberg Valley (OV), in South Tyrol the Sesto Dolomites (SD) and in East Tyrol the Hohe Tauern National Park (HT)

References Fliri F (1998) Naturchronik von Tirol, Oberpinzgau, Vorarl- berg, Trentino. Beitra¨ge zur Klimatologie von Tirol. Bakker JP, Berendse F (1999) Constraints in the restoration of Universita¨tsverlag Wagner, Innsbruck ecological diversity in grassland and heathland commu- Garcia A (1992) Conserving the species-rich meadows of nities. Trends Ecol Evol 14:63–68 Europe. Agric Ecosyst Environ 40:219–232 Bischof N (1981) Gema¨hte Magerrasen in der subalpinen Stufe Gigon A (1971) Vergleich alpiner Rasen auf Silikat- und auf der Zentralalpen. Bauhinia 7:81–128 Karbonatboden. Vero¨ff Geobot Inst ETH, Stiftung Ru¨bel 48 Bo¨gel H, Schmidt K (1976) Kleine Geologie der Ostalpen. Ott. Grabherr G, Mucina L (1993) Die Pflanzengesellschaften ¨ Thun Osterreichs, Teil2 Natu¨rliche waldfreie Vegetation. Gus- Braun-Blanquet J (1949) U¨ bersicht der Pflanzengesellschaften tav Fischer Jena, Stuttgart, New York Ra¨tiens (IV). Plant Ecol 2:20–37 Hartl H (1963) Die Vegetation des Eisenhutes im Ka¨rntner Braun-Blanquet J (1964) Pflanzensoziologie. Grundzu¨ge der Nockgebiet. Carinthia II 73(153):293–336 Vegetationskunde, 3rd edn. Springer, Wien Heiselmayer P (1982) Die Pflanzengesellschaften des Tap- Dietl W (1995) Wiesen und Weiden im Berggebiet. Montagna penkars (Radsta¨dter Tauern). Stapfia 10:161–202 6:1–8 Heiselmayer P (1985) Zur Vegetation stark beweideter Gebiete Ellenberg H (1996) Die Vegetation Mitteleuropas mit den in den Radsta¨dter Tauern (Hinteres Kleinarltal, Salzburg). ¨ Alpen, 5th edn. Eugen-Ulmer, Stuttgart Verh Zool-Bot Ges Osterr, Wien 123:247–262 Ellenberg H, Weber HE, Du¨ll R, Wirth V, Werner W, Paulißen Kissling WD, Lord JM, Schnittler M (2005) Agamospermous D (1992) Zeigerwerte von Pflanzen in Mitteleuropa, 3rd seed production of the invasive tussock grass Nardus edn. Goltze, Go¨ttingen stricta L. (Poaceae) in New Zealand – evidence from ESRI Inc (1992–2002) ArcView Gis 3.3. Environmental Sys- pollination experiments. Flora 201(2):144–151 ¨ tem Research Institute, Inc., Redland Knapp G, Knapp R (1952) Uber Goldhaferwiesen (Trisetum Fischer MA, Adler W, Oswald K (2005) Exkursionsflora von flavescentis) im no¨rdlichen Vorarlberg und im Allga¨u. O¨ sterreich, Liechtenstein und Su¨dtirol, 2nd edn. Land Sonderdr Landwirt Jahrbuch Bayern 29(5/6):239–256 Obero¨sterreich, Biologiezentrum der OO¨ Landesregierung Krahulec F (1983) Zur Nomenklatur der ho¨heren Einheiten der Linz mitteleuropa¨ischen Pflanzengesellschaften der Ordnung

123 Plant Ecol

Nardetalia s.l.: Berichtigungen und Typisierungen. Fol Niedrist G, Tasser E, Lu¨th Ch, Dalla Via J, Tappeiner U (2008) Geobot Phytotax 18:207–210 Plant diversity declines with recent land use changes in Krahulec F (1985) The chorologic pattern of Europaean Nar- European Alps. Plant Ecol. doi:10.1007/s11258-008-9487-x dus-rich communities. Plant Ecol 59:119–123 Oberdorfer E (1959) Borstgras–und Krummseggenrasen in den Krahulec F (1988) Nomenclatural remarks on the association Alpen. Beitr Naturkund Forschungen SW-Deutschl names of Nardus stricta-rich communities in Central 18:117–143 Europe. Fol Geobot Phytotax 23:173–179 Oberdorfer E (1978) Su¨ddeutsche Pflanzengesellschaften. 2. Krajina V (1933) Die Pflanzengesellschaften des Mlynica- Aufl., Teil 2. Gustav Fischer Stuttgart, New York Tales in den Vysoke´ Tatry (Hohe Tatra) Teil 1 Pavlu˚ V, Hejcman M, Pavlu˚ L, Gaisler J, Nezˇerkova´ P, And- Krausmann F, Haberl H, Schulz NB, Erb K-H, Darge E, Gaube aluz MG (2005) Vegetation changes after cessation of V (2003) Land-use change and socio-economic metabo- grazing management in the Jizerske´ Mountains (Czech lism in Austria – Part I: driving forces of land-use change: Republic). Ann Bot Fenn 42:343–349 1950–1995. Land Use Policy 22:1–20 Peppler C (1992) Die Borstgrasrasen (Nardetalia) West- Lavorel S, Touzard B, Lebreton JD, Clement B (1998) Iden- deutschlands. Gebr Borntr Stuttgart tifying functional groups for response to disturbance in an Peppler-Lisbach C, Petersen J (2001) Calluno-Ulicetea, Pt. 1 abandoned pasture. Acta Oecol 19:227–240 Nardetalia strictae. Synopsis Pflanzenges Deutschl 8:1– Liira J, Schmidt T, Aavik T, Arens P, Augenstein I, Bailey D, 116 Billeter R, Buka´cˇek R, Burel F, De Blust G, De Cock R, Peppler-Lisbach C, Schro¨der B (2004) Predicting the species Dirksen J, Edwards PJ, Hamersky´ R, Herzog F, Klotz S, composition of Nardus stricta communities by logistic Ku¨hn I, Le Coeur D, Miklova´ P, Roubalova M, Schweiger regression modelling. J Veg Sci 15:623–634 O, Smulders MJM, van Wingerden WKRE, Bugter R, Preising E (1949) Nardo-Callunetea. Zur Systematik der Zobel M (2008) Plant functional group composition and Zwergstrauch-Heiden und Magertriften Europas mit large-scale species richness in European agricultural Ausnahme des Mediterran-Gebietes, der Arktis und der landscapes. J Veg Sci 19:3–14 Hochgebirge. Mitt Flor-Soziol Arbeitsgem 82–94 Lu¨di W (1948) Die Pflanzengesellschaften der Schinigeplatte Scheffer F, Schachtschabe, Blume H-P, Bru¨mme G, Schwert- bei Interlaken und ihre Beziehungen zur Umwelt. Eine mann U, Horn R, Ko¨gel-Knabner I, Stahr K, Wilke B-M vergleichende o¨kologische Untersuchung. Vero¨ff Geobot (2002) Lehrbuch der Bodenkunde, 15th edn. Spektrum, Inst ETH, Stiftung Ru¨bel 23 Berlin Macdonald DV, Crabtree RJ, Wiesinger G, Dax T, Stamou N, SPSS Inc (1989-2006) SPSS for Windows. Version 15.0.1. Fleury P, Gutierez Lazpita JA, Gibon A (2000) Agricul- SPSS Inc., Chicago tural abandonment in mountain areas of Europe: envi- Sto¨cklin J, Bosshard A, Klaus G, Rudmann-Maurer K, Fischer ronmental consequences and policy report. J Environ M (2007) Landnutzung und biologische Vielfalt in den Manage 59:47–69 Alpen. Hochschulver AG ETH Zu¨rich Marschall F, Dietl W (1974) Beitra¨ge zur Kenntnis der Bors- Stu¨ssi B (1970) Naturbedingte Entwicklung subalpiner Wei- tgrasrasen in der Schweiz. Schw Landwirt Forschung derasen auf Alp La Schera im Schweizer Nationalpark 13(1/2):115–127 wa¨hrend der Reservatsperiode 1939–1965. Erg wis- Matzdorf B, Kaiser T, Rohner MS (2008) Developing biodi- senschaftl Unters Schweizer National 13:1–385 versity indicator to design efficient agri-environmental Tappeiner U, Tasser E, Tappeiner G (1998) Modelling vege- schemes for extensively used grassland. Ecol Indic tation patterns using natural and anthropogenic influence 8(3):256–269 factors: preliminary, experience with a GIS based model Maurer K, Weyand A, Fischer M, Sto¨cklin J (2006) Old cul- applied to an Alpine area. Ecol Model 113:225–227 tural traditions, in addition to land use and topography, are Tasser E, Tappeiner U (2002) Impact of land use changes on shaping plant diversity of grasslands in the Alps. Biol mountain vegetation. Appl Veg Sci 5:173–184 Conserv 130:438–446 Tasser E, Tappeiner U (2004) New model to predict rooting in McCune B, Grace JB (2002) Analysis of ecological commu- diverse plant compositions. Ecol Model 185:195–211 nities. MjM Software design, Glenden Beach Tasser E, Tappeiner U, Mulser J, Tappeiner G, Mayr V, Os- McCune B, Mefford MJ (1999) PC-ORD. Multivariate analysis tendorf B (1998) Kausalanalyse von Vegetationsvera¨n- of ecological data, version 5.01. 1995–2005. MjM Soft- derungen im Gebirge in Abha¨ngigkeit von Landnutzung ware design, Glenden Beach und Standortfaktoren. Verh Ges O¨ kol 28:107–115 Mottet A, Ladet A, Coque´ N, Gibon A (2006) Agricultural Tasser E, Tappeiner U, Cernusca A (2001) Su¨dtirols Almen im land-use change and its drivers in mountain landscapes: a Wandel. O¨ kologische Folgen von Landnutzungsa¨nderun- case study in the pyrenees. Agric Ecosyst Environ 114(2– gen. Europ Akad Bozen, Bozen 4):296–310 Tasser E, Mader M, Tappeiner U (2003) Effects of land use in Mucina L, Grabherr G, Ellmauer T (1993) Die Pflanzenge- alpine grasslands on the probability of landslides. Basic sellschaften O¨ sterreichs, Teil 1 Anthropogene Vegetation. Appl Ecol 4:271–280 Gustav Fischer Jena, Stuttgart, New York Tasser E, Walde J, Tappeiner U, Teutsch A, Noggler W (2007) Myklestad A˚ , Sætersdal M (2004) The importance of tradi- Land-use changes and natural reforestation in the Eastern tional meadow management techniques for conservation Central Alps. Agric Ecosyst Environ 118:115–129 of species richness in Norway. Biol Con- Trivedi MR, Morecroft MD, Berry PM, Dawson TP (2008) serv 118:133–139 Potential effects of climate change on plant communities

123 Plant Ecol

in three montane nature reserves in Scotland, UK. Biol Zoller H, Bischof N, Eberhardt A, Kienzel U (1984) Bio- Conserv 141(6):1665–1675 zo¨nosen von Grenzertragsfla¨chen und Brachland in den Weber HE, Moravec J, Theurillat J-P (2000) International code Berggebieten der Schweiz. Hinweise zur Sukzession, zum of phytotaxonomical nomenclature, 3rd edn. J Veg Sci Naturschutzwert und zur Pflege. Phytocoenologia 12(2/ 11:739–768 3):373–395 Whittaker RH (1962) Classification of natural communities. Bot Rev 28:1–239

123