Central Nervous System EMER G in G INFE C TI OUS DI S EA S E S P Ages 1 0 1 3 –11 86 Used with Permission of Robert A

Total Page:16

File Type:pdf, Size:1020Kb

Central Nervous System EMER G in G INFE C TI OUS DI S EA S E S P Ages 1 0 1 3 –11 86 Used with Permission of Robert A ® July 2008 Used with permission of Robert A. Adams A. Robert of permission with Used Central Nervous System Vol 14, No 7, July 2008 EMERGING INFECTIOUS DISEASES Pages 1013–1186 Peer-Reviewed Journal Tracking and Analyzing Disease Trends pages 1013–1186 EDITOR-IN-CHIEF D. Peter Drotman Managing Senior Editor EDITORIAL BOARD Polyxeni Potter, Atlanta, Georgia, USA Dennis Alexander, Addlestone Surrey, United Kingdom Senior Associate Editor Barry J. Beaty, Ft. Collins, Colorado, USA Brian W.J. Mahy, Atlanta, Georgia, USA Martin J. Blaser, New York, New York, USA David Brandling-Bennet, Washington, DC, USA Associate Editors Arturo Casadevall, New York, New York, USA Paul Arguin, Atlanta, Georgia, USA Kenneth C. Castro, Atlanta, Georgia, USA Charles Ben Beard, Ft. Collins, Colorado, USA Thomas Cleary, Houston, Texas, USA David Bell, Atlanta, Georgia, USA Anne DeGroot, Providence, Rhode Island, USA Charles H. Calisher, Ft. Collins, Colorado, USA Vincent Deubel, Shanghai, China Stephanie James, Bethesda, Maryland, USA Michael Drancourt, Marseille, France Paul V. Effl er, Honolulu, Hawaii, USA Ed Eitzen, Washington, DC, USA Nina Marano, Atlanta, Georgia, USA Duane J. Gubler, Honolulu, Hawaii, USA Martin I. Meltzer, Atlanta, Georgia, USA Richard L. Guerrant, Charlottesville, Virginia, USA David Morens, Bethesda, Maryland, USA Scott Halstead, Arlington, Virginia, USA J. Glenn Morris, Gainesville, Florida, USA Patrice Nordmann, Paris, France David L. Heymann, Geneva, Switzerland Marguerite Pappaioanou, Washington, DC, USA Daniel B. Jernigan, Atlanta, Georgia, USA Tanja Popovic, Atlanta, Georgia, USA Charles King, Cleveland, Ohio, USA Patricia M. Quinlisk, Des Moines, Iowa, USA Keith Klugman, Atlanta, Georgia, USA Jocelyn A. Rankin, Atlanta, Georgia, USA Takeshi Kurata, Tokyo, Japan Didier Raoult, Marseilles, France S.K. Lam, Kuala Lumpur, Malaysia Pierre Rollin, Atlanta, Georgia, USA Bruce R. Levin, Atlanta, Georgia, USA David Walker, Galveston, Texas, USA Myron Levine, Baltimore, Maryland, USA David Warnock, Atlanta, Georgia, USA Stuart Levy, Boston, Massachusetts, USA J. Todd Weber, Atlanta, Georgia, USA John S. MacKenzie, Perth, Australia Henrik C. Wegener, Copenhagen, Denmark Marian McDonald, Atlanta, Georgia, USA John E. McGowan, Jr., Atlanta, Georgia, USA Founding Editor K. Mills McNeill, Jackson, Mississippi, USA Joseph E. McDade, Rome, Georgia, USA Tom Marrie, Edmonton, Alberta, Canada Copy Editors Ban Mishu-Allos, Nashville, Tennessee, USA Thomas Gryczan, Anne Mather, Beverly Merritt, Philip P. Mortimer, London, United Kingdom Carol Snarey, P. Lynne Stockton, Cathy Young Fred A. Murphy, Galveston, Texas, USA Barbara E. Murray, Houston, Texas, USA Production P. Keith Murray, Geelong, Australia Reginald Tucker, Ann Jordan, Shannon O’Connor, Stephen M. Ostroff, Harrisburg, Pennsylvania, USA Carrie Huntington David H. Persing, Seattle, Washington, USA Editorial Assistant Richard Platt, Boston, Massachusetts, USA Susanne Justice Gabriel Rabinovich, Buenos Aires, Argentina Mario Raviglione, Geneva, Switzerland www.cdc.gov/eid Leslie Real, Atlanta, Georgia, USA David Relman, Palo Alto, California, USA Emerging Infectious Diseases Connie Schmaljohn, Frederick, Maryland, USA Emerging Infectious Diseases is published monthly by the Centers for Disease Tom Schwan, Hamilton, Montana, USA Control and Prevention, 1600 Clifton Road, Mailstop D61, Atlanta, GA 30333, Ira Schwartz, Valhalla, New York, USA USA. Telephone 404-639-1960, fax 404-639-1954, email [email protected]. Tom Shinnick, Atlanta, Georgia, USA The opinions expressed by authors contributing to this journal do not necessar- Bonnie Smoak, Bethesda, Maryland, USA ily refl ect the opinions of the Centers for Disease Control and Prevention or the Dixie E. Snider, Atlanta, Georgia, USA institutions with which the authors are affi liated. Rosemary Soave, New York, New York, USA All material published in Emerging Infectious Diseases is in the public domain Frank Sorvillo, Los Angeles, California, USA and may be used and reprinted without special permission; proper citation, how- P. Frederick Sparling, Chapel Hill, North Carolina, USA ever, is required. Robert Swanepoel, Johannesburg, South Africa Phillip Tarr, St. Louis, Missouri, USA Use of trade names is for identifi cation only and does not imply endorsement by the Public Health Service or by the U.S. Department of Health and Human Timothy Tucker, Cape Town, South Africa Services. Elaine Tuomanen, Memphis, Tennessee, USA John Ward, Atlanta, Georgia, USA ∞ Emerging Infectious Diseases is printed on acid-free paper that meets the requirements of Mary E. Wilson, Cambridge, Massachusetts, USA ANSI/NISO 239.48-1992 (Permanence of Paper) Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 14, No. 7, July 2008 July 2008 On the Cover Toxinotype V Clostridium diffi cile Anne Adams (1940–2007) in Humans and Food Animals ...............1039 Pi (1998) M.A. Jhung et al. Gouache on paper. Such strains are uncommon causes of severe Used with permission human disease but may be increasing in incidence. of Robert A. Adams CME Activity Alcaligenes xylosoxidans About the Cover p. 1183 Bloodstream Infections in Outpatient Oncology Offi ce ...................1046 M.J. Kim et al. Gaps in infection control led to biofi lm production in central venous catheters and subsequent bloodstream infections. Testing for Coccidioidomycosis Perspective among Patients with Community- Acquired Pneumonia .............................. 1053 Spread of Vector-Borne D.C. Chang et al. Diseases and Neglect of Lack of testing may lead to underdiagnosis and Leishmaniasis, Europe .......................... 1013 underestimates of disease prevalence. J.-C. Dujardin et al. Exotic vector-borne diseases are gaining attention at Determinants of Cluster Size the expense of leishmaniasis. in Large, Population-Based Molecular Epidemiology Study Synopsis of Tuberculosis, Northern Malawi .........1060 Rickettsia felis as Emergent J.R. Glynn et al. Both epidemiologic and strain-related factors may Global Threat for Humans ..................... 1019 p. 1015 C.E. Pérez-Osorio et al. contribute to large clusters of TB patients. Incidence of human cases has increased as more public health authorities include it in differential Spotted Fever Group Rickettsiae diagnoses. in Ticks, Morocco ................................... 1067 M. Sarih et al. Identifi ed rickettsiae were 4 pathogens, 2 suspected Research pathogens, and 1 incompletely described species. Household Responses to School p. 1049 Closure Resulting from Outbreak of Transmission of Bartonella henselae Infl uenza B, North Carolina ................... 1024 by Ixodes ricinus .................................... 1074 A.J. Johnson et al. V. Cotté et al. Parents accepted school closure but children’s The causative agent of cat-scratch disease in presence in other public settings has implications for humans can be transmitted by this tick through pandemic planning. saliva. Attributable Outcomes of Characteristics of Dengue among Clostridium diffi cile–associated Ill Returned Travelers, 1997–2006 .........1081 Disease in Nonsurgical Patients ...........1031 E. Schwartz et al. E.R. Dubberke et al. Atypical patterns may indicate onset of endemic CDAD led to signifi cantly worse patient outcomes. activity. Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 14, No. 7, July 2008 Etiology of Childhood Acute Bacterial Meningitis, Turkey ..................1089 M. Ceyhan et al. July 2008 Vaccines to prevent this disease in this region must 1154 Optimizing Use of Multistream Infl uenza protect against serogroup W-135. Sentinel Surveillance Data E.H.Y. Lau et al. Wide Distribution of High-Virulence Borrelia burgdorferi Clone in Europe and North America ................................. 1097 Another Dimension W.-G. Qiu et al. 1182 Husband We found substantial population differentiation and C.S. Watson recent trans-Atlantic dispersal of this strain. Letters Dispatches 1158 Mycobacterium bohemicum and Cervical Lymphadenitis in Children 1105 AIDS Patient Death Caused by Novel Cryptococcus neoformans × 1159 Pertussis Surveillance in Private Pediatric C. gattii Hybrid Practices, France, 2002–2006 M. Bovers et al. 1161 Avian Mycoplasma lipofaciens 1109 Swine Trichinella Infection and Transmission to Veterinarian Geographic Information System Tools 1163 Urinary Tract Infection Caused by R. Burke et al. Capnophilic Escherichia coli 1112 Unique Pattern of Enzootic Primate p. 1106 1164 Duck Migration and Infl uenza A (H5N1) Viruses in Gibraltar Macaques 1166 Dihydrofolate Reductase I164L Mutation G.A. Engel et al. in Plasmodium falciparum, Madagascar 1116 Pneumocystis jirovecii Transmission 1168 Bartonella quintana and Coxiella burnetii from Immunocompetent Carriers to Infant as Causes of Endocarditis, India L. Rivero et al. 1169 Acute Gastroenteritis Caused by GI/2 1119 Sudden Onset of Pseudotuberculosis in Sapovirus, Taiwan, 2007 Humans, France, 2004–05 1171 Importation of West Nile Virus from P. Vincent et al. Nicaraugua to Spain 1123 Molecular Typing of Trypanosoma cruzi 1173 Outbreak of Pertussis, Kabul, Afghanistan Isolates, United States 1175 Anthropogenic Infl uence on Prevalence D.M. Roellig et al. of 2 Amphibian Pathogens 1126 Profi ciency of Nucleic Acid Tests for 1176 Avian Infl uenza Virus (H5N1) Mortality Infl uenza Viruses, Australasia Surveillance S. Stelzer-Braid et al. 1178 Klebsiella pneumoniae Carbapenemase–2, 1129 New qnr Gene Cassettes in p. 1113 Buenos Aires, Argentina Vibrio cholerae O1 É.L. Fonseca et al. 1132 Experimental Infection of Cattle with
Recommended publications
  • The Tonb System in Aeromonas Hydrophila NJ-35 Is Essential for Maca2b2 Efflux Pump-Mediated Macrolide Resistance
    Dong et al. Vet Res (2021) 52:63 https://doi.org/10.1186/s13567-021-00934-w RESEARCH ARTICLE Open Access The TonB system in Aeromonas hydrophila NJ-35 is essential for MacA2B2 efux pump-mediated macrolide resistance Yuhao Dong1, Qing Li2, Jinzhu Geng1, Qing Cao1, Dan Zhao1, Mingguo Jiang3, Shougang Li1, Chengping Lu1 and Yongjie Liu1* Abstract The TonB system is generally considered as an energy transporting device for the absorption of nutrients. Our recent study showed that deletion of this system caused a signifcantly increased sensitivity of Aeromonas hydrophila to the macrolides erythromycin and roxithromycin, but had no efect on other classes of antibiotics. In this study, we found the sensitivity of ΔtonB123 to all macrolides tested revealed a 8- to 16-fold increase compared with the wild-type (WT) strain, but this increase was not related with iron deprivation caused by tonB123 deletion. Further study demonstrated that the deletion of tonB123 did not damage the integrity of the bacterial membrane but did hinder the function of macrolide efux. Compared with the WT strain, deletion of macA2B2, one of two ATP-binding cassette (ABC) types of the macrolide efux pump, enhanced the sensitivity to the same levels as those of ΔtonB123. Interestingly, the dele- tion of macA2B2 in the ΔtonB123 mutant did not cause further increase in sensitivity to macrolide resistance, indicat- ing that the macrolide resistance aforded by the MacA2B2 pump was completely abrogated by tonB123 deletion. In addition, macA2B2 expression was not altered in the ΔtonB123 mutant, indicating that any infuence of TonB on MacA2B2-mediated macrolide resistance was at the pump activity level.
    [Show full text]
  • “Candidatus Deianiraea Vastatrix” with the Ciliate Paramecium Suggests
    bioRxiv preprint doi: https://doi.org/10.1101/479196; this version posted November 27, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The extracellular association of the bacterium “Candidatus Deianiraea vastatrix” with the ciliate Paramecium suggests an alternative scenario for the evolution of Rickettsiales 5 Castelli M.1, Sabaneyeva E.2, Lanzoni O.3, Lebedeva N.4, Floriano A.M.5, Gaiarsa S.5,6, Benken K.7, Modeo L. 3, Bandi C.1, Potekhin A.8, Sassera D.5*, Petroni G.3* 1. Centro Romeo ed Enrica Invernizzi Ricerca Pediatrica, Dipartimento di Bioscienze, Università 10 degli studi di Milano, Milan, Italy 2. Department of Cytology and Histology, Faculty of Biology, Saint Petersburg State University, Saint-Petersburg, Russia 3. Dipartimento di Biologia, Università di Pisa, Pisa, Italy 4 Centre of Core Facilities “Culture Collections of Microorganisms”, Saint Petersburg State 15 University, Saint Petersburg, Russia 5. Dipartimento di Biologia e Biotecnologie, Università degli studi di Pavia, Pavia, Italy 6. UOC Microbiologia e Virologia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy 7. Core Facility Center for Microscopy and Microanalysis, Saint Petersburg State University, Saint- Petersburg, Russia 20 8. Department of Microbiology, Faculty of Biology, Saint Petersburg State University, Saint- Petersburg, Russia * Corresponding authors, contacts: [email protected] ; [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/479196; this version posted November 27, 2018.
    [Show full text]
  • Fleas and Flea-Borne Diseases
    International Journal of Infectious Diseases 14 (2010) e667–e676 Contents lists available at ScienceDirect International Journal of Infectious Diseases journal homepage: www.elsevier.com/locate/ijid Review Fleas and flea-borne diseases Idir Bitam a, Katharina Dittmar b, Philippe Parola a, Michael F. Whiting c, Didier Raoult a,* a Unite´ de Recherche en Maladies Infectieuses Tropicales Emergentes, CNRS-IRD UMR 6236, Faculte´ de Me´decine, Universite´ de la Me´diterrane´e, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France b Department of Biological Sciences, SUNY at Buffalo, Buffalo, NY, USA c Department of Biology, Brigham Young University, Provo, Utah, USA ARTICLE INFO SUMMARY Article history: Flea-borne infections are emerging or re-emerging throughout the world, and their incidence is on the Received 3 February 2009 rise. Furthermore, their distribution and that of their vectors is shifting and expanding. This publication Received in revised form 2 June 2009 reviews general flea biology and the distribution of the flea-borne diseases of public health importance Accepted 4 November 2009 throughout the world, their principal flea vectors, and the extent of their public health burden. Such an Corresponding Editor: William Cameron, overall review is necessary to understand the importance of this group of infections and the resources Ottawa, Canada that must be allocated to their control by public health authorities to ensure their timely diagnosis and treatment. Keywords: ß 2010 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved. Flea Siphonaptera Plague Yersinia pestis Rickettsia Bartonella Introduction to 16 families and 238 genera have been described, but only a minority is synanthropic, that is they live in close association with The past decades have seen a dramatic change in the geographic humans (Table 1).4,5 and host ranges of many vector-borne pathogens, and their diseases.
    [Show full text]
  • Case Report: Coinfection with Rickettsia Monacensis and Orientia Tsutsugamushi
    Am. J. Trop. Med. Hyg., 101(2), 2019, pp. 332–335 doi:10.4269/ajtmh.18-0631 Copyright © 2019 by The American Society of Tropical Medicine and Hygiene Case Report: Coinfection with Rickettsia monacensis and Orientia tsutsugamushi Seok Won Kim,1† Choon-Mee Kim,2† Dong-Min Kim,3* and Na Ra Yun3 1Department of Neurosurgery, College of Medicine, Chosun University, Gwangju, Republic of Korea; 2Premedical Science, College of Medicine, Chosun University, Gwangju, Republic of Korea; 3Department of Internal Medicine, College of Medicine, Chosun University, Gwangju, Republic of Korea Abstract. Rickettsia monacensis and Orientia tsutsugamushi are bacteria of the family Rickettsiaceae, which causes fever, rash, and eschar formation; outdoor activities are a risk factor for Rickettsiaceae infection. A 75-year-old woman presented with fever, rash, and eschar and was confirmed as being scrub typhus based on a nested-polymerase chain reaction (N-PCR) test for a 56-kDa gene of O. tsutsugamushi; the genome was identified as the Boryong genotype. In addition, a pan-Rickettsia real-time PCR test was positive and a N-PCR test using a Rickettsia-specific partial outer membrane protein A (rOmpA) confirmed R. monacensis. This is the first case wherein a patient suspected of having scrub typhus owing to the presence of rash and eschar was also found to be coinfected with O. tsutsugamushi and R. monacensis based on molecular testing. INTRODUCTION leukocyte count, 7,200/mm3; hemoglobin, 11.6 g/dL; platelet count, 232,000/mm3; and erythrocyte sedimentation rate, 31 Rickettsia monacensis is a pathogen that causes spotted mm/hours. C-reactive protein and procalcitonin levels were fever group rickettsial infection; the main symptoms of in- elevated at 9.26 mg/dL and 0.836 ng/mL (0–0.5 ng/mL), re- fection include fever, headache, and myalgia, as well as es- 1 spectively.
    [Show full text]
  • Rickettsia Felis: Molecular Characterization of a New Member of the Spotted Fever Group
    International Journal of Systematic and Evolutionary Microbiology (2001), 51, 339–347 Printed in Great Britain Rickettsia felis: molecular characterization of a new member of the spotted fever group Donald H. Bouyer,1 John Stenos,2 Patricia Crocquet-Valdes,1 Cecilia G. Moron,1 Vsevolod L. Popov,1 Jorge E. Zavala-Velazquez,3 Lane D. Foil,4 Diane R. Stothard,5 Abdu F. Azad6 and David H. Walker1 Author for correspondence: David H. Walker. Tel: j1 409 772 2856. Fax: j1 409 772 2500. e-mail: dwalker!utmb.edu 1 Department of Pathology, In this report, placement of Rickettsia felis in the spotted fever group (SFG) WHO Collaborating Center rather than the typhus group (TG) of Rickettsia is proposed. The organism, for Tropical Diseases, University of Texas Medical which was first observed in cat fleas (Ctenocephalides felis) by electron Branch, 301 University microscopy, has not yet been reported to have been cultivated reproducibly, Blvd, Galveston, TX thereby limiting the standard rickettsial typing by serological means. To 77555-0609, USA overcome this challenge, several genes were selected as targets to be utilized 2 Australian Rickettsial for the classification of R. felis. DNA from cat fleas naturally infected with R. Reference Laboratory, Douglas Hocking Medical felis was amplified by PCR utilizing primer sets specific for the 190 kDa surface Institute, Geelong antigen (rOmpA) and 17 kDa antigen genes. The entire 5513 bp rompA gene Hospital, Geelong, was sequenced, characterized and found to have several unique features when Australia compared to the rompA genes of other Rickettsia. Phylogenetic analysis of the 3 Department of Tropical partial sequence of the 17 kDa antigen gene indicated that R.
    [Show full text]
  • Delineation of Aeromonas Hydrophila Pathotypes by Dectection of Putative Virulence Factors Using Polymerase Chain Reaction and N
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DigitalCommons@Kennesaw State University Kennesaw State University DigitalCommons@Kennesaw State University Master of Science in Integrative Biology Theses Biology & Physics Summer 7-20-2015 Delineation of Aeromonas hydrophila Pathotypes by Dectection of Putative Virulence Factors using Polymerase Chain Reaction and Nematode Challenge Assay John Metz Kennesaw State University, [email protected] Follow this and additional works at: http://digitalcommons.kennesaw.edu/integrbiol_etd Part of the Integrative Biology Commons Recommended Citation Metz, John, "Delineation of Aeromonas hydrophila Pathotypes by Dectection of Putative Virulence Factors using Polymerase Chain Reaction and Nematode Challenge Assay" (2015). Master of Science in Integrative Biology Theses. Paper 7. This Thesis is brought to you for free and open access by the Biology & Physics at DigitalCommons@Kennesaw State University. It has been accepted for inclusion in Master of Science in Integrative Biology Theses by an authorized administrator of DigitalCommons@Kennesaw State University. For more information, please contact [email protected]. Delineation of Aeromonas hydrophila Pathotypes by Detection of Putative Virulence Factors using Polymerase Chain Reaction and Nematode Challenge Assay John Michael Metz Submitted in partial fulfillment of the requirements for the Master of Science Degree in Integrative Biology Thesis Advisor: Donald J. McGarey, Ph.D Department of Molecular and Cellular Biology Kennesaw State University ABSTRACT Aeromonas hydrophila is a Gram-negative, bacterial pathogen of humans and other vertebrates. Human diseases caused by A. hydrophila range from mild gastroenteritis to soft tissue infections including cellulitis and acute necrotizing fasciitis. When seen in fish it causes dermal ulcers and fatal septicemia, which are detrimental to aquaculture stocks and has major economic impact to the industry.
    [Show full text]
  • Genome Project Reveals a Putative Rickettsial Endosymbiont
    GBE Bacterial DNA Sifted from the Trichoplax adhaerens (Animalia: Placozoa) Genome Project Reveals a Putative Rickettsial Endosymbiont Timothy Driscoll1,y, Joseph J. Gillespie1,2,*,y, Eric K. Nordberg1,AbduF.Azad2, and Bruno W. Sobral1,3 1Virginia Bioinformatics Institute at Virginia Polytechnic Institute and State University 2Department of Microbiology and Immunology, University of Maryland School of Medicine 3Present address: Nestle´ Institute of Health Sciences SA, Campus EPFL, Quartier de L’innovation, Lausanne, Switzerland *Corresponding author: E-mail: [email protected]. yThese authors contributed equally to this work. Accepted: March 1, 2013 Abstract Eukaryotic genome sequencing projects often yield bacterial DNA sequences, data typically considered as microbial contamination. However, these sequences may also indicate either symbiont genes or lateral gene transfer (LGT) to host genomes. These bacterial sequences can provide clues about eukaryote–microbe interactions. Here, we used the genome of the primitive animal Trichoplax adhaerens (Metazoa: Placozoa), which is known to harbor an uncharacterized Gram-negative endosymbiont, to search for the presence of bacterial DNA sequences. Bioinformatic and phylogenomic analyses of extracted data from the genome assembly (181 bacterial coding sequences [CDS]) and trace read archive (16S rDNA) revealed a dominant proteobacterial profile strongly skewed to Rickettsiales (Alphaproteobacteria) genomes. By way of phylogenetic analysis of 16S rDNA and 113 proteins conserved across proteobacterial genomes, as well as identification of 27 rickettsial signature genes, we propose a Rickettsiales endosymbiont of T. adhaerens (RETA). The majority (93%) of the identified bacterial CDS belongs to small scaffolds containing prokaryotic-like genes; however, 12 CDS were identified on large scaffolds comprised of eukaryotic-like genes, suggesting that T.
    [Show full text]
  • Ohio Department of Health, Bureau of Infectious Diseases Disease Name Class A, Requires Immediate Phone Call to Local Health
    Ohio Department of Health, Bureau of Infectious Diseases Reporting specifics for select diseases reportable by ELR Class A, requires immediate phone Susceptibilities specimen type Reportable test name (can change if Disease Name other specifics+ call to local health required* specifics~ state/federal case definition or department reporting requirements change) Culture independent diagnostic tests' (CIDT), like BioFire panel or BD MAX, E. histolytica Stain specimen = stool, bile results should be sent as E. histolytica DNA fluid, duodenal fluid, 260373001^DETECTED^SCT with E. histolytica Antigen Amebiasis (Entamoeba histolytica) No No tissue large intestine, disease/organism-specific DNA LOINC E. histolytica Antibody tissue small intestine codes OR a generic CIDT-LOINC code E. histolytica IgM with organism-specific DNA SNOMED E. histolytica IgG codes E. histolytica Total Antibody Ova and Parasite Anthrax Antibody Anthrax Antigen Anthrax EITB Acute Anthrax EITB Convalescent Anthrax Yes No Culture ELISA PCR Stain/microscopy Stain/spore ID Eastern Equine Encephalitis virus Antibody Eastern Equine Encephalitis virus IgG Antibody Eastern Equine Encephalitis virus IgM Arboviral neuroinvasive and non- Eastern Equine Encephalitis virus RNA neuroinvasive disease: Eastern equine California serogroup virus Antibody encephalitis virus disease; LaCrosse Equivocal results are accepted for all California serogroup virus IgG Antibody virus disease (other California arborviral diseases; California serogroup virus IgM Antibody specimen = blood, serum, serogroup
    [Show full text]
  • Expansion of Tick-Borne Rickettsioses in the World
    microorganisms Review Expansion of Tick-Borne Rickettsioses in the World Mariusz Piotrowski * and Anna Rymaszewska Institute of Biology, University of Szczecin, 70-453 Szczecin, Poland; [email protected] * Correspondence: [email protected] Received: 24 September 2020; Accepted: 25 November 2020; Published: 30 November 2020 Abstract: Tick-borne rickettsioses are caused by obligate intracellular bacteria belonging to the spotted fever group of the genus Rickettsia. These infections are among the oldest known diseases transmitted by vectors. In the last three decades there has been a rapid increase in the recognition of this disease complex. This unusual expansion of information was mainly caused by the development of molecular diagnostic techniques that have facilitated the identification of new and previously recognized rickettsiae. A lot of currently known bacteria of the genus Rickettsia have been considered nonpathogenic for years, and moreover, many new species have been identified with unknown pathogenicity. The genus Rickettsia is distributed all over the world. Many Rickettsia species are present on several continents. The geographical distribution of rickettsiae is related to their vectors. New cases of rickettsioses and new locations, where the presence of these bacteria is recognized, are still being identified. The variety and rapid evolution of the distribution and density of ticks and diseases which they transmit shows us the scale of the problem. This review article presents a comparison of the current understanding of the geographic distribution of pathogenic Rickettsia species to that of the beginning of the century. Keywords: Tick-borne rickettsioses; Tick-borne diseases; Rickettsiales 1. Introduction Tick-borne rickettsioses are caused by obligate intracellular Gram-negative bacteria belonging to the spotted fever group (SFG) of the genus Rickettsia.
    [Show full text]
  • Gene Gain and Loss Events in Rickettsia and Orientia Species Kalliopi Georgiades1,2, Vicky Merhej1, Khalid El Karkouri1, Didier Raoult1, Pierre Pontarotti2*
    Georgiades et al. Biology Direct 2011, 6:6 http://www.biology-direct.com/content/6/1/6 RESEARCH Open Access Gene gain and loss events in Rickettsia and Orientia species Kalliopi Georgiades1,2, Vicky Merhej1, Khalid El Karkouri1, Didier Raoult1, Pierre Pontarotti2* Abstract Background: Genome degradation is an ongoing process in all members of the Rickettsiales order, which makes these bacterial species an excellent model for studying reductive evolution through interspecies variation in genome size and gene content. In this study, we evaluated the degree to which gene loss shaped the content of some Rickettsiales genomes. We shed light on the role played by horizontal gene transfers in the genome evolution of Rickettsiales. Results: Our phylogenomic tree, based on whole-genome content, presented a topology distinct from that of the whole core gene concatenated phylogenetic tree, suggesting that the gene repertoires involved have different evolutionary histories. Indeed, we present evidence for 3 possible horizontal gene transfer events from various organisms to Orientia and 6 to Rickettsia spp., while we also identified 3 possible horizontal gene transfer events from Rickettsia and Orientia to other bacteria. We found 17 putative genes in Rickettsia spp. that are probably the result of de novo gene creation; 2 of these genes appear to be functional. On the basis of these results, we were able to reconstruct the gene repertoires of “proto-Rickettsiales” and “proto-Rickettsiaceae”, which correspond to the ancestors of Rickettsiales and Rickettsiaceae, respectively. Finally, we found that 2,135 genes were lost during the evolution of the Rickettsiaceae to an intracellular lifestyle. Conclusions: Our phylogenetic analysis allowed us to track the gene gain and loss events occurring in bacterial genomes during their evolution from a free-living to an intracellular lifestyle.
    [Show full text]
  • Rickettsia Monacensis As a Cause of a Tick Bite
    a nonpruritic, disseminated maculopapular rash, with no Rickettsia inoculation eschar, of the trunk and lower extremities, in- cluding palms and soles. Other than a slightly low plate- monacensis let count (82,000/mm3), examination fi ndings were within normal limits. MSF was diagnosed, and serum and defi - and Human brinated blood samples were taken before a course of oral doxycycline (100 mg/12 h for 10 d) was initiated. Three Disease, Spain days later, fever and rash were gone without sequelae. Ad- Isabel Jado,* José A. Oteo,† Mikel Aldámiz,‡ ditional serial serum samples were taken during weeks 4, Horacio Gil,* Raquel Escudero,* 13, and 26 after onset and reserved for serologic analysis Valvanera Ibarra,† Joseba Portu,‡ (Table). Aranzazu Portillo,† María J. Lezaun,‡ Patient 2 was a 59-year-old woman from Basque Cristina García-Amil,* Isabel Rodríguez-Moreno,* Country, who sought medical attention on September 20, and Pedro Anda* 2003, 4 days after onset of fever (38ºC), headache, and an erythematous rash, with no inoculation eschar, at the site of We identifi ed Rickettsia monacensis as a cause of a tick bite. The patient reported a history of tick bites, most acute tickborne rickettsiosis in 2 humans. Its pathogenic recently 1 week before symptom onset. Blood cell counts role was assessed by culture and detection of the organism and other blood chemistry values were normal. MSF was in patients’ blood samples. This fi nding increases the num- ber of recognized human rickettsial pathogens and expands diagnosed, and oral doxycycline (100 mg/12 h for 10 d) the known geographic distribution of Mediterranean spotted was prescribed.
    [Show full text]
  • Molecular Detection and Identification of Rickettsiales Pathogens in Dog Ticks from Costa Rica
    Accepted Manuscript Title: Molecular detection and identification of Rickettsiales pathogens in dog ticks from Costa Rica Author: Liliana Campos-Calderon´ Leyda Abrego-S´ anchez´ Antony Solorzano-Morales´ Alberto Alberti Gessica Tore Rosanna Zobba Ana E. Jimenez-Rocha´ Gaby Dolz PII: S1877-959X(16)30120-0 DOI: http://dx.doi.org/doi:10.1016/j.ttbdis.2016.07.015 Reference: TTBDIS 700 To appear in: Received date: 29-2-2016 Revised date: 1-7-2016 Accepted date: 24-7-2016 Please cite this article as: Campos-Calderon,´ Liliana, Abrego-S´ anchez,´ Leyda, Solorzano-Morales,´ Antony, Alberti, Alberto, Tore, Gessica, Zobba, Rosanna, Jimenez-Rocha,´ Ana E., Dolz, Gaby, Molecular detection and identification of Rickettsiales pathogens in dog ticks from Costa Rica.Ticks and Tick-borne Diseases http://dx.doi.org/10.1016/j.ttbdis.2016.07.015 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Molecular detection and identification of Rickettsiales pathogens in dog ticks from Costa Rica Liliana Campos-Calderóna, Leyda Ábrego-Sánchezb, Antony Solórzano- Moralesa, Alberto Albertic, Gessica Torec, Rosanna Zobbac, Ana E. Jiménez- Rochaa, Gaby Dolza,b,* aEscuela de Medicina Veterinaria, Universidad Nacional, Campus Benjamín Núñez, Barreal de Heredia, Costa Rica ([email protected], [email protected], [email protected]).
    [Show full text]