Investigating Exoplanet Habitability and the Stellar Magnetism of Cool Stars Across Half the Southern Sky Via Superflares, Starspots, and Stellar Rotation

Total Page:16

File Type:pdf, Size:1020Kb

Investigating Exoplanet Habitability and the Stellar Magnetism of Cool Stars Across Half the Southern Sky Via Superflares, Starspots, and Stellar Rotation INVESTIGATING EXOPLANET HABITABILITY AND THE STELLAR MAGNETISM OF COOL STARS ACROSS HALF THE SOUTHERN SKY VIA SUPERFLARES, STARSPOTS, AND STELLAR ROTATION Ward S. Howard A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Physics and Astronomy. Chapel Hill 2021 Approved by: Nicholas M. Law Andrew W. Mann Fabian Heitsch Reyco Henning Daniel M. Scolnic ©2021 Ward S. Howard ALL RIGHTS RESERVED ii ABSTRACT Ward S. Howard: Investigating exoplanet habitability and the stellar magnetism of cool stars across half the Southern sky via superflares, starspots, and stellar rotation (Under the direction of Nicholas M. Law) Stellar flares are stochastic events that occur when a star's magnetic field re-connects, releasing intense radiation across the electromagnetic spectrum. Rocky planets in the habitable zones of M-dwarfs are often subjected to superflares, events of at least 1033 erg and 10-1000× the energy of the largest solar flares. Frequent superflares can erode the ozone layer of an Earth-like atmosphere and allow lethal amounts of UV flux to reach the surface. Conversely, too few flares may result in insufficient UV radiation to power pre-biotic chemistry due to the inherent faintness of M-dwarfs in the UV. Cool stars are often found to exhibit superflares. Cool stars are the most common type of star, and are known to frequently host rocky planets. As a result, they may host most of the universe's Earth-size planets orbiting in the habitable zones of main sequence stars. My EvryFlare Survey uses observations from the Evryscope array of small telescopes and the Transiting Exoplanet Survey Satellite (TESS) to answer two questions about superflares and their impacts on the habitability of terrestrial planets orbiting cool stars: (1) How frequently are superflares emitted from the nearby cool stars, both in the present and in the first 200 Myr after formation? (2) What impact does superflare UV emission have on planetary atmospheres and surface habitability of planets orbiting cool stars? The EvryFlare Survey has resulted in the detection of 575 superflares from 284 stars. Results include a superflare from Proxima Cen, the nearest host star to a rocky planet in the habitable zone. I used these events to measure a decrease in superflare rates with increasing age, rotation, and starspot coverage. I will discuss the effects of superflares on ozone loss to planetary atmospheres, including one superflare with sufficient energy to photo-dissociate iii all ozone in an Earth-like atmosphere in a single event. I present the largest-ever survey of simultaneous observations of dozens of M-dwarf superflares with Evryscope and TESS to measure the flare blackbody and estimate UV-C continuum emission. I find superflare temperatures increase with flare energy. The largest and hottest flare briefly reached an estimated 42,000 K. During superflares, I estimate rocky HZ planets orbiting <200 Myr stars typically receive a top-of-atmosphere UV-C flux of ∼120 W m−2 and up to 103 W m−2, 100-1000× the time-averaged XUV flux from Proxima Cen. Finally, I will describe a data analysis project with Robo-AO, exploring the performance of laser guide star adaptive optics systems in the absence of tip-tilt correction. iv To my wife, Katelyn Tassan Howard. v ACKNOWLEDGMENTS The research contained in this dissertation would not have been possible without the support of a number of people. I am incredibly grateful for the formative roles that each of them has played during my time here at UNC. Pursuing a PhD is a long and grueling journey that brings to mind stories such as The Lord of the Rings. As Frodo wouldn't have got far without Sam, I wouldn't have made it to this point without each of the following people. First, special thanks are due to my dissertation advisor, Nicholas Law. Nick showed me how \good science" is done, and how to be a good collaborator. Nick's years of insightful comments such as \Starting a sentence with `whereas' is something only the Declaration of Independence can do," have helped me write more clearly and concisely. Nick, thank you for introducing me to the field of stellar flares and habitability. I enjoyed learning about the topic alongside you. Thank you for showing me so many times how to handle success and failure with a level head. On a related note, thank you for teaching me how to write grants. Since I popped my head into the CTIO dome and asked you \Is that Alestorm?" I have found countless hours of research motivation from your little-known Scottish power metal bands. Finally, your confidence in my ability to succeed has often given me the nudge I needed to do the next hard thing. Next, I would like to recognize each of my other committee members for their thoughtful questions, directions, and time. To Profs. Andrew Mann, Fabian Heitsch, Daniel Scolnic, and Reyco Henning: thank you for partnering with me in this dissertation journey. Andrew, thank you for letting me stop by your office to discuss active M-dwarfs on so many occasions when you had a million spreadsheets to finish. I would also like to acknowledge my academic mentors who helped me reach graduate school in the first place: Profs. Brad Barlow, Steven Gibson, Geoffrey Poore, Bill Nettles, Fonsie Guilaran, David Ward, Michael Salazar, and vi Lorin Matthews. Brad, thank you for mentoring me and helping me to pursue my dream of doing astronomy all the way from high school to PhD applications, the quals, and into post doc applications. Throughout the PhD, I have learned so much from the other members of my lab and from my cohort. Hank, thank you for always sparing a listening ear or imparting wisdom from your coding wizardry. I also owe you a debt of gratitude for your help with Evryscope light curves. Amy, thank you for good discussions of flare stars and planets while humoring my bad puns. Carl, thank you for taking me under your wing and teaching me the ropes when I was a new grad student. Octavi, Jeff, Phil, Ramses, Nathan, Alan, and Lawrence, I am grateful to have worked alongside each of you. To my friends from my graduate cohort (broadly defined), thank you for keeping me sane while working Jackson problems and studying for quals. Particular thanks are due to Joseph Karlik, Anna Reine, Chris Haufe, Paul Smith, Andrew Loheac, and Emilia Zywot for good conversations and outrageously funny tabletop game nights. In my broader Chapel Hill community, I want to thank my pastors and mentors Eric Gravelle, Blair Waggett, AJ Farthing, Ricky Harris, Don Tyndall, and Hank Tarlton for their guidance. I would also like to thank Drs. Glynis Cowell and Tacia Kohl for their wisdom. I am eternally grateful to Fred and Nancy Brooks for hosting the Intervarsity retreat at Caswell where I met my wife. To my friends Mark Stouffer, David Little, Jeffrey Robbins, Mark Reeves, and Serge Severenchuk: I am grateful for each of you. Beyond Chapel Hill, thank you to my friends Connor Ferrell, Grant Riley, Seth Brake, Kenan Keller, Hans and Meredith Noyes, Kelly and Liam Goldsmith, and Tai and Micah Donor. I would like to thank my family for their continual encouragement. Mom and Dad, your example encouraged me to do my best in my studies without finding my identity in them. You've supported me since day one. Lauren, I am grateful for your years of sisterly encouragement and support. Beth Tassan, Mimi, Papaw, and Grandpa, thank you for your calls, kind cards, and good food. You lifted my spirits on so many days. Gina, your help vii moving and lunch visits are greatly appreciated. Phil and Christie, thank you for reminding me that my studies aren't everything. To my wife, ever since we went on our long walk at Caswell, I've known I wanted to marry you. You've been my constant encouragement on all the good and hard days of the PhD and have inspired me to achieve my best work. Working on our doctorates together has been the best of adventures! I am beyond grateful for your consistent and selfless support. Lastly, I want to thank my Savior for drawing me to faith and into the family of God. Jesus, you are my best hope, greatest treasure, and best inspiration to do good science. viii TABLE OF CONTENTS LIST OF TABLES . xv LIST OF FIGURES . xvi LIST OF ABBREVIATIONS . xix 1 INTRODUCTION . 1 1.1 The occurrence of superflares from the Sun and nearby cool stars . 1 1.2 Blackbody temperature of solar and stellar flares . 4 1.3 The complex relationships between flares, starspots, and spin-down . 6 1.3.1 Starspots and the magnetic environments that trigger flares . 6 1.3.2 Stellar flares, starspots, and rotation as a probe of spin-down . 7 1.4 The curious case of flares that do not occur randomly . 8 1.5 The effect of superflares on potentially-habitable exoplanets. 10 1.5.1 The habitability impacts of the increased UV radiation of hot superflares 12 1.5.2 Proxima b: a case study for the habitability of temperate rocky planets orbiting flare stars . 13 1.6 Superflare discovery . 14 1.7 Photometric surveys of rotating cool stars . 18 1.8 Long-term Evryscope observations of all bright flare stars in the South . 18 1.9 Overview of Contents . 21 1.9.1 Breakdown of Work by Chapter . 21 1.9.2 Significant Contributions to Other Research .
Recommended publications
  • The Copernican Principle Rules out BLC1 As a Technological Radio Signal from the Alpha Centauri System
    Draft version January 13, 2021 Typeset using LATEX twocolumn style in AASTeX62 The Copernican Principle Rules Out BLC1 as a Technological Radio Signal from the Alpha Centauri System Amir Siraj1 and Abraham Loeb1 1Department of Astronomy, Harvard University, 60 Garden Street, Cambridge, MA 02138, USA ABSTRACT Without evidence for occupying a special time or location, we should not assume that we inhabit privileged circumstances in the Universe. As a result, within the context of all Earth-like planets orbiting Sun-like stars, the origin of a technological civilization on Earth should be considered a single outcome of a random process. We show that in such a Copernican framework, which is inherently optimistic about the prevalence of life in the Universe, the likelihood of the nearest star system, Alpha Centauri, hosting a radio-transmitting civilization is ∼ 10−8. This rules out, a priori, Breakthrough Listen Candidate 1 (BLC1) as a technological radio signal from the Alpha Centauri system, as such a scenario would violate the Copernican principle by about eight orders of magnitude. We also show that the Copernican principle is consistent with the vast majority of Fast Radio Bursts being natural in origin. Keywords: technosignatures; astrobiology; search for extraterrestrial intelligence; biosignatures 1. INTRODUCTION lihood of searches for primitive and intelligent life, us- The Copernican principle asserts that we are not priv- ing a Drake-type approach. Westby & Conselice(2020) ileged observers of the Universe. Successes of its appli- applied the Copernican principle to the search for intel- cation include the rejection of Ptolemaic geocentrism ligent life, but in forms that featured strict boundaries and the adoption of the modern cosmological princi- in time, thereby not reflecting a truly random process.
    [Show full text]
  • 100 Closest Stars Designation R.A
    100 closest stars Designation R.A. Dec. Mag. Common Name 1 Gliese+Jahreis 551 14h30m –62°40’ 11.09 Proxima Centauri Gliese+Jahreis 559 14h40m –60°50’ 0.01, 1.34 Alpha Centauri A,B 2 Gliese+Jahreis 699 17h58m 4°42’ 9.53 Barnard’s Star 3 Gliese+Jahreis 406 10h56m 7°01’ 13.44 Wolf 359 4 Gliese+Jahreis 411 11h03m 35°58’ 7.47 Lalande 21185 5 Gliese+Jahreis 244 6h45m –16°49’ -1.43, 8.44 Sirius A,B 6 Gliese+Jahreis 65 1h39m –17°57’ 12.54, 12.99 BL Ceti, UV Ceti 7 Gliese+Jahreis 729 18h50m –23°50’ 10.43 Ross 154 8 Gliese+Jahreis 905 23h45m 44°11’ 12.29 Ross 248 9 Gliese+Jahreis 144 3h33m –9°28’ 3.73 Epsilon Eridani 10 Gliese+Jahreis 887 23h06m –35°51’ 7.34 Lacaille 9352 11 Gliese+Jahreis 447 11h48m 0°48’ 11.13 Ross 128 12 Gliese+Jahreis 866 22h39m –15°18’ 13.33, 13.27, 14.03 EZ Aquarii A,B,C 13 Gliese+Jahreis 280 7h39m 5°14’ 10.7 Procyon A,B 14 Gliese+Jahreis 820 21h07m 38°45’ 5.21, 6.03 61 Cygni A,B 15 Gliese+Jahreis 725 18h43m 59°38’ 8.90, 9.69 16 Gliese+Jahreis 15 0h18m 44°01’ 8.08, 11.06 GX Andromedae, GQ Andromedae 17 Gliese+Jahreis 845 22h03m –56°47’ 4.69 Epsilon Indi A,B,C 18 Gliese+Jahreis 1111 8h30m 26°47’ 14.78 DX Cancri 19 Gliese+Jahreis 71 1h44m –15°56’ 3.49 Tau Ceti 20 Gliese+Jahreis 1061 3h36m –44°31’ 13.09 21 Gliese+Jahreis 54.1 1h13m –17°00’ 12.02 YZ Ceti 22 Gliese+Jahreis 273 7h27m 5°14’ 9.86 Luyten’s Star 23 SO 0253+1652 2h53m 16°53’ 15.14 24 SCR 1845-6357 18h45m –63°58’ 17.40J 25 Gliese+Jahreis 191 5h12m –45°01’ 8.84 Kapteyn’s Star 26 Gliese+Jahreis 825 21h17m –38°52’ 6.67 AX Microscopii 27 Gliese+Jahreis 860 22h28m 57°42’ 9.79,
    [Show full text]
  • YETI – Search for Young Transiting Planets
    YETI – search for young transiting planets Ronny Errmann, Astrophysikalisches Institut und Universitäts-Sternwarte Jena, in collaboration with: Ralph Neuhäuser, AIU Jena Gracjan Maciejewski, Centre for Astronomy of the Nicolaus Copernicus University Ronald Redmer, University of Rostock Martin Seeliger, AIU Jena YETI Observers, all over the world Mercury transit Hot Planets and Cool Stars 8. Nov. 06 (SOHO) Garching 12. November 2012 Venus transit 6. June 12 Motivation youngest transiting planets: ●Corot 2: 130 – 500 Myr (from star spots) 30 – 40 Myr (from planet radius) ●Corot 20: 100 – 800 Myr (from Li-abundance) M = 1 MJup ●Wasp 10: 200 – 350 Myr (from gyro-chronology) → younger transiting planets (Radius+true Mass) needed, to test models, and planet formation scenarios Observation strategies increase probability for transiting planet: monitoring of many young stars -> Young open clusters orbital periods: ~1 to ~10 days transit duration: ~1 to few hours → 1 to 5% of orbit in transit phase observation with single telescope: data gaps because of daytime, weather, ... increase probability for observing transit signal: long continuous observation -> YETI YETI-network (Young Exoplanet Transit Initiative) Tenagra II Llano del Gettysburg Sierra Nevada Jena Stara Lesna Byurakan Xinglong Gunma Hato Astrophysical 0.8-m telescope Observatory Collage Astronomical 1.0 and 2.6 Observatory Astronomical 1.5-m telescope Institute Observatory Institute telescopes 90/60 cm Observatory 0.9/0.6-m 0.6-m telescope 1.5-m telescope 1-m Schmidt 0.4-m telescope
    [Show full text]
  • Abstract a Search for Extrasolar Planets Using Echoes Produced in Flare Events
    ABSTRACT A SEARCH FOR EXTRASOLAR PLANETS USING ECHOES PRODUCED IN FLARE EVENTS A detection technique for searching for extrasolar planets using stellar flare events is explored, including a discussion of potential benefits, potential problems, and limitations of the method. The detection technique analyzes the observed time versus intensity profile of a star’s energetic flare to determine possible existence of a nearby planet. When measuring the pulse of light produced by a flare, the detection of an echo may indicate the presence of a nearby reflective surface. The flare, acting much like the pulse in a radar system, would give information about the location and relative size of the planet. This method of detection has the potential to give science a new tool with which to further humankind’s understanding of planetary systems. Randal Eugene Clark May 2009 A SEARCH FOR EXTRASOLAR PLANETS USING ECHOES PRODUCED IN FLARE EVENTS by Randal Eugene Clark A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Physics in the College of Science and Mathematics California State University, Fresno May 2009 © 2009 Randal Eugene Clark APPROVED For the Department of Physics: We, the undersigned, certify that the thesis of the following student meets the required standards of scholarship, format, and style of the university and the student's graduate degree program for the awarding of the master's degree. Randal Eugene Clark Thesis Author Fred Ringwald (Chair) Physics Karl Runde Physics Ray Hall Physics For the University Graduate Committee: Dean, Division of Graduate Studies AUTHORIZATION FOR REPRODUCTION OF MASTER’S THESIS X I grant permission for the reproduction of this thesis in part or in its entirety without further authorization from me, on the condition that the person or agency requesting reproduction absorbs the cost and provides proper acknowledgment of authorship.
    [Show full text]
  • Truce Agreement Victory for Yemeni Nation: Abdulsalam
    WWW.TEHRANTIMES.COM I N T E R N A T I O N A L D A I L Y 16 Pages Price 20,000 Rials 1.00 EURO 4.00 AED 39th year No.13278 Saturday DECEMBER 15, 2018 Azar 23, 1397 Rabi’ Al thani 6, 1440 We should make Iranian scientist Persepolis beat Pars “Dark Room” sanctions ineffective: Baharvand among winners Jonoubi, Tractor Sazi named best at general 2 of 2019 TWAS Prize 9 beaten by Foolad: IPL 15 Kerala film festival 16 Iran to deal with CNPC according Truce agreement victory for to contract rights: Zanganeh ECONOMY TEHRAN — Irani- contract, when Total left they were to take deskan Oil Minister Bijan over based on the terms of the contract Namdar Zanganeh said CNPC’s leaving otherwise it would be a breach of contract South Pars deal would be a violation of and we will deal with it according to our Yemeni nation: Abdulsalam the contract and Iran will act accordingly, contractual rights. IRNA reported. Earlier in November, Zanganeh had Iran welcomes preliminary deals between Yemeni warring sides 2 In an interview with the national said that China’s state-owned CNPC television on Wednesday, the official had officially replaced France’s Total noted that since the Chinese company in Iran’s multibillion-dollar South Pars is the second biggest shareholder in the gas project. 4 See page 13 Zarif says Iran gets its security from people POLITICS TEHRAN – Foreign he said in speech at annual gathering deskMinister Mohammad of pro-reform Neda-ye Iranian Party Javad Zarif said on Friday that it is (Voice of Iranians).
    [Show full text]
  • Searching For, Finding, and Imaging Young Extrasolar Planets with HST
    Searching for, Finding, and Imaging Young Extrasolar Planets with HST/NICMOS 2MASSWJ 1207-334-393254b (2M1207b): A Common Proper Motion Companion of Planetary Mass to a Young Brown Dwarf G. Schneider (Steward Obs., UofA), I. Song, J. Farihi, (Gemini Obs.), B. Zuckerman, E. Becklin (UCLA), P. Lowrance (Caltech), B. Macintosh (LLNL), M. Bessell (ANU) ABSTRACT: Imaging discovery and subsequent characterization of extrasolar planet NICMOS CORONAGRAPHY DETECTION LIMITS & UNCERTAINTIES (EP) mass companions to stars has been observationally challenging due to the severe planet-to-star contrast ratios. Since the detection of the extrasolar giant planet (EGP) The ability to detect faint point sources near bright objects (e.g., planetary mass SINGLE ORBIT observations which roll the telescope about the target axis companion to 51 Peg [1], continuing discoveries of 1 – 10 Jupiter mass companions by companions to stars) is instrumentally enhanced by reducing the brightness of the (unfortunately, technically unfeasible with HST's soon to be implemented two-gyro indirect methods have revealed an unanticipated diversity in mass ranges, dynamical central star. To enable such observations, HST has provided unique resources for high guiding mode) are highly efficient and permit optimal self-subtraction of the properties, and primary-star characteristics. The past decade has seen an explosion of contrast imaging with its panchromatic complement of coronagraphically augmented underlying coronagraphic point-spread function. Such observations yield total indirect detections of EGP companions to solar-like stars through radial velocity imagers: NICMOS (near-IR), ACS (UV/Optical) and, until recently, STIS (broadband integration times of, typically, ~ 1300s. Highly repeatable point source detection limits surveys [2] and more recently, in much smaller numbers, via photometric transits [e.g., Optical).
    [Show full text]
  • A Moving Cluster Distance to the Exoplanet 2M1207 B in the TW Hya
    accepted to Astrophysical Journal, 18 July 2005 A Moving Cluster Distance to the Exoplanet 2M1207 B in the TW Hya Association Eric E. Mamajek1 Harvard-Smithsonian Center for Astrophysics, 60 Garden St., MS-42, Cambridge, MA 02138 [email protected] ABSTRACT A candidate extrasolar planet companion to the young brown dwarf 2MASSW J1207334-393254 (2M1207) was recently discovered by Chauvin et al. They find that 2M1207 B’s temperature and luminosity are consistent with being a young, ∼5 MJup planet. The 2M1207 system is purported to be a member of the TW Hya association (TWA), and situated ∼70 pc away. Using a revised space mo- tion vector for TWA, and improved proper motion for 2M1207, I use the moving cluster method to estimate the distance to the 2M1207 system and other TWA members. The derived distance for 2M1207 (53 ± 6 pc) forces the brown dwarf and planet to be half as luminous as previously thought. The inferred masses for 2M 1207 A and B decrease to ∼21 MJup and ∼3-4MJup, respectively, with the mass of B being well below the observed tip of the planetary mass function and the theoretical deuterium-burning limit. After removing probable Lower arXiv:astro-ph/0507416v1 18 Jul 2005 Centaurus-Crux (LCC) members from the TWA sample, as well as the prob- able non-member TWA 22, the remaining TWA members are found to have distances of 49 ± 3 (s.e.m.) ± 12(1σ) pc, and an internal 1D velocity dispersion of +0.3 −1 0.8−0.2 km s . There is weak evidence that the TWA is expanding, and the data are consistent with a lower limit on the expansion age of 10 Myr (95% confidence).
    [Show full text]
  • Map Showing the Clusters That Can Be Reached Using One
    Castor cluster HYG 542 6.3 7.2 Map of nearby space 2320AD HD 145 3.8 Beta Tucanae cluster HYG 664 HD 2749 6.6 13 Cas Based on information in 2320AD by Colin Dunn, Near Star 6.3 5.8 5.7 List II by Andy Brick and the HYG database by David Nash. Bet1TucBet2Tuc HD 164181 7.3 6.76.7 5.8 HD 2785 7.1 HD 2712 Boxes represent connected clusters of more than10 stars that HD 2779 3.8 4.8 HD 2665155 HD 417 7.2 HD 183 HD 2784 7.2 7.2 HD 336 can be reached by stutterwarp tug from normally reachable HD 375 HYG 716 2.8 7.27.1 5.2 HD 442 7.1 HD 446 7.5 stars. Striped lines denote tug-links. 7.2 6.0 HD 135 5.6 5.9 7.3 HD 2589 6.6 HD 2762 6.9 HD 2766 6.7 HD 383 2.0 3.3 7.3 HD 457 HD 277 6.9 7.2 HD 434 6.6 HD 429 5.5 HD 319 6.3 HD 208 7.0 HD 2829 HD 162 4.3 HD 2804 5.5 5.5 6.9 4.8 5.5 HD 2815 HD 236 HD 458 5.6 5.8 HD 216 HDHD 2711 290 2.6 3.2 4.0 HD 279 7.5 6.8 HYG 587 14Lam CasHD 2882 5.7 HD 441 7.1 1.5 3.6 4.6 7.1 7.0 6.7 HYG 2433 HD 233 4.8 3.3 5.7 5.1 7.3 7.4 HD 425 6.4 7.2 HD 406 7.6 HYG 2495 7.0 7.4 HDHD 2663 299 7.1 6.6 HD 483 HD 334 6.9 2.2 HD 2893 6.7 7.3 7.6 HD 449 HD 512 3.1 4.2 HD 2839 HD 464 11.3 5.4 HD 313 6.5 HYG 762 5.8 6.3 Gl 6 9.1 0.5 HD 28367.5 9.1 HD 2871 10.4 5.8 7.5 6.6 5.1 3.4 6.7 7.7 7.7 5.1 HYGHD 5212538 HD 422 HD 2775 6.8 4.4 7.6 6.8 10.1 8.7 5.8 HYG 739 6.4 6.2 3.4 9.3 6.6 7.6 HD 2837 HYGHD 4522493 6.4 HD 403 6.1 6.8 9.1 9.5 HD 2833 HYG 751 6.7 4.2 3.1 3.9 6.6 HD 505 5.8 6.6 HD 225 10.2 3.8 8.0 0.5 11.5 HD 2873 HD 2826 HD 28232798 4.9 HD 2806 HD 2702 6.1 HD 404 HD 538 7.6 4.5 HD 2824 61 Virginis cluster HYG 778 3.7 4.6 2.5 HD 2773
    [Show full text]
  • Project Icarus: Astronomical Considerations Relating to the Choice of Target Star
    Project Icarus: Astronomical Considerations Relating to the Choice of Target Star I. A. Crawford Department of Earth and Planetary Sciences, Birkbeck College London, Malet Street, London, WC1E 7HX Abstract In this paper we outline the considerations required in order to select a target star system for the Icarus interstellar mission. It is considered that the maximum likely range for the Icarus vehicle will be 15 light‐years, and a list is provided of all known stars within this distance range. As the scientific objectives of Icarus are weighted towards planetary science and astrobiology, a final choice of target star(s) cannot be made until we have a clearer understanding of the prevalence of planetary systems within 15 light‐ years of the Sun, and we summarize what is currently known regarding planetary systems within this volume. We stress that by the time an interstellar mission such as Icarus is actually undertaken, astronomical observations from the solar system will have provided this information. Finally, given the high proportion of multiple star systems within 15 light‐years (including the closest of all stars to the Sun in the α Centauri system), we stress that a flexible mission architecture, able to visit stars and accompanying planets within multiple systems, is desirable. This paper is a submission of the Project Icarus Study Group. Keywords: Interstellar travel; nearby stars; extrasolar planets; astrobiology 1. Introduction The Icarus study is tasked with designing an interstellar space vehicle capable of making in situ scientific investigations of a nearby star and accompanying planetary system [1,2]. This paper outlines the considerations which will feed into the choice of the target star, the choice of which will be constrained by a number of factors.
    [Show full text]
  • 20 13 a N N Ual R Ep O Rt
    2012 Annual Report 2013 Annual 2013 Report HEADQUARTERS LOCATION: Kamuela, Hawaii, USA MANAGEMENT: California Association for Research in Astronomy PARTNER INSTITUTIONS: California Institute of Technology (CIT/Caltech) University of California (UC) National Aeronautics and Space Administration (NASA) OBSERVATORY DIRECTOR: Taft E. Armandroff DEPUTY DIRECTOR: Hilton A. Lewis Observatory Groundbreaking: 1985 First light Keck I telescope: 1992 First light Keck II telescope: 1996 Federal Identification Number: 95-3972799 mission To advance the frontiers of astronomy and share our discoveries, inspiring the imagination of all. vision Cover: A spectacular aerial view A world in which all humankind is inspired of this extraordinary wheelhouse and united by the pursuit of knowledge of the of discovery with the shadow of Mauna Kea in the far distance. infinite variety and richness of the Universe. FY2013 Fiscal Year begins October 1 489 Observing Astronomers 434 Keck Science Investigations 309 table of contents Refereed Articles Director’s Report . P4 Triumph of Science . P7 Cosmic Visionaries . P19 Innovation from Day One . P21 118 Full-time Employees Keck’s Powerful Astronomical Instruments . P26 Funding . P31 Inspiring Imagination . P36 Science Bibliography . p40 Celebrating 20 years of revolutionary science from the W. M. Keck Observatory, Keck Week was a unique astronomy event that included a two-day science meeting. Here representing the Institute for Astronomy, University of Hawaii, Director Guenther Hasinger introduces Taft Armandroff for his closing talk, Census of Discovery. from Keck Observatory are humbling. I am very proud of what the Keck Observatory staff and the broader astronomy community have accomplished. In March 2013, Keck Observatory marked its 20th anniversary with a week of celebratory events.
    [Show full text]
  • Arxiv:2011.11698V2 [Astro-Ph.EP] 19 May 2021
    Draft version May 20, 2021 Typeset using LATEX default style in AASTeX61 ULTRA SHORT PERIOD PLANETS IN K2 III: NEIGHBORS ARE COMMON WITH 13 NEW MULTI-PLANET SYSTEMS AND 10 NEWLY VALIDATED PLANETS IN CAMPAIGNS 0-8, 10 Elisabeth R. Adams,1 Brian Jackson,2 Samantha Johnson,3 David R. Ciardi,4 William D. Cochran,5 Michael Endl,6 Mark E. Everett,7 Elise Furlan,8 Steve B. Howell,9 Prasanna Jayanthi,2 Phillip J. MacQueen,6 Rachel A. Matson,10 Ciera Partyka-Worley,2 Joshua Schlieder,11 Nicholas J. Scott,9 Sevio M. Stanton,2 and Carl Ziegler12 1Planetary Science Institute, 1700 E. Ft. Lowell, Suite 106, Tucson, AZ 85719, USA 2Department of Physics, Boise State University, 1910 University Drive, Boise ID 83725, USA 3Department of Physics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA Triangle Universities Nuclear Laboratory, Duke University, Durham, North Carolina 27708, USA 4NASA Exoplanet Science Institute, 770 South Wilson Avenue, Pasadena, CA 91125, USA 5Center for Planetary Systems Habitability and McDonald Observatory, The University of Texas at Austin, Austin, TX 78712, USA 6McDonald Observatory, The University of Texas at Austin, Austin, TX 78712, USA 7NSF's Optical Infrared Astronomy Research Laboratory, 950 North Cherry Avenue Tucson, AZ 85719, USA 8NASA Exoplanet Science Institute, Caltech/IPAC, 770 South Wilson Avenue, Pasadena, CA 91125, USA 9NASA Ames Research Center, Moffett Field, CA 94035, USA 10U.S. Naval Observatory, 3450 Massachusetts Avenue NW, Washington, D.C. 20392, USA 11NASA Goddard Space Flight Center, Greenbelt, MD, USA 12Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St.
    [Show full text]
  • Változócsillagok
    Szatmáry Károly Változócsillagok Azokat a csillagokat hívjuk változócsillagoknak, amelyeknek valamilyen jellemzőjük, fizikai paraméterük időben változik. Általában a fényesség változásáról van szó. A megfigyelésekből a színkép és/vagy a fényesség módosulását mérhetjük meg, és ennek okát kell felderítenünk. A változócsillagok vizsgálata azért fontos, azért nagy az asztrofizikai jelentőségük, mert esetükben nagyobb lehetőség nyílik adataik, tulajdonságaik meghatározására. A változásnak ugyanis oka van, ha ezt sikerül felderíteni, akkor ez több információt szolgáltat. Magyarországon a legsikeresebb, nagy hagyományokat felmutató, és nemzetközileg elismert csillagászati kutatási téma a változócsillagok tanulmányozása. Gyakorlatilag minden csillag ide sorolható, hiszen fejlődésük során folyamatosan változik minden jellemzőjük. Szigorúbb értelemben a legfeljebb napok, évek alatti változásokat mutató objektumokról van szó. A fényesség ingadozása a 0,0001 magnitúdós, még éppen detektálható értéktől a szupernóvák 20 magnitúdós felfényesedéséig terjed. A fényességmérés pontossága a Kepler űrtávcsővel már eléri a néhány százezred magnitúdót. Gyakorlatilag ezen a szinten minden csillag változónak bizonyul. Az 1985-ös Változócsillagok Általános Katalógusa (GCVS) a kiegészítésekkel mintegy 38000 csillagot tüntetett fel. Azóta több százezerrel nőtt az ismert változók száma, főleg a nagy földi megfigyelő programok beindulása, a számos űrtávcső mérései és a mérőberendezések (pl. CCD) érzékenységének növekedése miatt. Változócsillagok elnevezése, jelölése 3.1. táblázat: A 88 csillagkép. 3.2.táblázat: Változócsillagok jelölése. A Hattyú csillagképben felfedezett első változó neve: R Cygni (a csillagkép neve ilyenkor birtokos esetben szerepel, a Cygnus-ból így lesz Cygni). J-vel kezdődő jelölés nincs, nehogy az I-vel összekeverjék. A kétbetűs jeleknél a második nem előzheti meg az elsőt ABC szerint (3.2. táblázat). A QZ utáni változó jele V335. Több csillagképben sok ezer változócsillag van. Néhány fényes csillag esetében az eredeti, görög betűs jelét használjuk, pl.
    [Show full text]