Use of the Ornithine Decarboxylase Promoter to Achieve N-MYC-Mediated Overexpression of a Rabbit Carboxylesterase to Sensitize Neuroblastoma Cells to CPT-11 Cynthia A

Total Page:16

File Type:pdf, Size:1020Kb

Use of the Ornithine Decarboxylase Promoter to Achieve N-MYC-Mediated Overexpression of a Rabbit Carboxylesterase to Sensitize Neuroblastoma Cells to CPT-11 Cynthia A doi:10.1006/mthe.2000.0064, available online at http://www.idealibrary.com on IDEAL ARTICLE Use of the Ornithine Decarboxylase Promoter to Achieve N-MYC-Mediated Overexpression of a Rabbit Carboxylesterase to Sensitize Neuroblastoma Cells to CPT-11 Cynthia A. Pawlik, Rekha V. Iyengar, Erik J. Krull, Stephen E. Mason, Ruchi Khanna, Linda C. Harris, Philip M. Potter, Mary K. Danks,1 and Sylvie M. Guichard2 Department of Molecular Pharmacology, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105 Received for publication February 7, 2000, and accepted in revised form March 30, 2000 Overexpression of specific transcription factors by tumor cells can be exploited to regulate expression of proteins that induce apoptosis or activate prodrugs, thereby producing tumor- selective toxicity. A majority of advanced-stage neuroblastomas overexpress the transcription fac- tor N-MYC, and this overexpression is associated with poor prognosis. This study describes reg- ulation of expression by N-MYC, via the ornithine decarboxylase (ODC) promoter, of a rabbit liver carboxylesterase (CE) that activates the prodrug CPT-11. Chloramphenicol acetyltransferase reporter assays and CE activity assays in transiently transfected neuroblastoma cell lines (SJNB-1, SJNB-4, NB-1691) and rhabdomyosarcoma cell lines (JR1neo20, JR1Nmyc6, JR1Nmyc9) support this approach as a potential method for sensitizing tumor cells to CPT-11. Clonogenic assays with IMR32 human neuroblastoma cells which express N-MYC and that had been stably transfected with a plasmid containing an ODC promoter/CE cassette corroborated results of enzyme activity assays. Specifically, IMR32.ODC.CE cells expressed approximately eightfold more CE activity than IMR32.CMV.neo cells; and 5 µM CPT-11 reduced the clonogenic potential of IMR32.ODC.CE cells to zero, while 50 µM CPT-11 was required to produce the same effect with IMR32.CMV.neo cells. Current experiments focus on adenoviral delivery of an ODC promoter/CE cDNA cassette for potential virus-directed enzyme prodrug therapy applications. Key Words: irinotecan; gene therapy; prodrug; VDEPT; esterase; ornithine decarboxylase promot- er; N-MYC. INTRODUCTION tive therapy. Since viruses transduce both normal and tumor cells, selective expression of CE might be achieved We recently reported the isolation of a cDNA encoding a by a transcription factor/promoter combination unique rabbit liver carboxylesterase (CE) that efficiently con- to tumor cells. Protooncogene/transcription factor N- verts the prodrug CPT-11 to SN-38 and sensitizes human MYC and the ornithine decarboxylase (ODC) promoter tumor cells to CPT-11 both in vitro and in a preclinical represent such a combination. xenograft model (1–3). The level of expression of rabbit N-MYC is a transcription factor overexpressed in CE produces a parallel increase in sensitivity to CPT-11 ~40% of Grade III/IV neuroblastomas, and this overex- (1, 2). Our long-range goal is to use the rabbit CE in com- pression correlates with rapid tumor progression and bination with CPT-11 in a virus-directed enzyme pro- poor prognosis (4, 5). MYC family proteins (c-, N-, L-) drug therapy (VDEPT) approach to achieve tumor-selec- dimerize with MAX and bind to the consensus CACGTG E-box sequence (6–8), thereby activating several promot- ers including those that control expression of ODC, α- prothymosin, and p53 (9–12). Use of the ODC promoter 1To whom correspondence should be addressed at Department of Molecular Pharmacology, St. Jude Children’s Research Hospital, 332 to achieve tumor-specific expression of CE and activa- North Lauderdale, Memphis, TN 38105. Fax: (901) 521-1668. E-mail: tion of CPT-11 in neuroblastoma cells that overexpress [email protected]. N-MYC is the focus of this study. No studies of this type 2Present address: Institut Claudius Regaud, Laboratoire de Pharmacologie, 20-24, rue du pont St Pierre 31052, Toulouse cedex, have been done with the ODC promoter, but several France. studies have been published that investigate the effect of MOLECULAR THERAPY Vol. 1, No. 5, May 2000, Part 1 of 2 Parts 457 Copyright The American Society of Gene Therapy ARTICLE MYC-responsive E-box enhancer sequences (CACGTG) in combination with Simian virus-40 (SV40) or Herpes simplex virus thymidine kinase (HSVtk) promoters to upregulate expression of various prodrug-activating enzymes (13, 14). In those studies some degree of speci- ficity was achieved, but promoter/enhancer activity was dependent on the interaction of different transcription factors with the promoter and the enhancer sequences. The purpose of this study was to demonstrate specific ODC promoter-regulated expression of the CAT reporter gene and rabbit CE in several human tumor cell lines that overexpress N-MYC and to show that increased sen- sitivity to CPT-11 results from ODC promoter-regulated CE expression. MATERIALS AND METHODS Drugs and chemicals. CPT-11 was a generous gift from Dr. J. P. McGovren p∆ODC.CAT were repeated with pCAT3-Basic and pC3B.ODC.CAT. Both (Pharmacia–Upjohn Co., Kalmazoo, MI). A 10 mM drug stock was pre- sets of plasmids gave the same ratio after normalizing to the appropriate − pared in methanol and stored at 20°C. Drug was further diluted in water negative control. Importantly, CAT activities (raw data) for all cell lines immediately before use. transfected with pCAT3-Basic and for MYC-negative SJ-G3 cells transfect- Cell lines. The neuroblastoma cell lines SJNB-1 and SJNB-4 were ed with pC3B.ODC.CAT were in the 500 dpm range, equivalent to mock derived from patients at St. Jude Children’s Research Hospital (SJCRH) transfectants. (Memphis, TN). Tumor samples were obtained after informed consent Plasmids for CE activity. The ODC promoter and rabbit liver CE were was given, in accordance with the guidelines of the St. Jude Children’s ligated into the pCIneo plasmid (Promega) as follows: pCIneo was digest- Research Hospital Institutional Review Board (IRB). The embryonal rhab- ed with BglII and I-PpoI to remove the CMV promoter, leaving the domyosarcoma cell line JR1 was provided by Dr. P. Dias (Imgenex, San chimeric intron intact. Blunt ends were created at the BglII and I-PpoI Diego, CA). NB-1691 cells were obtained from the Pediatric Oncology sites. The ODC promoter was released from pODC.CAT by digestion with Group. These cell lines were grown in RPMI 1640 (BioWhittaker, SmaI and inserted into pCIneo at this site by blunt-end ligation. CE was Walkersville, MD) supplemented with 10% fetal calf serum (Hyclone, released from pIRESrabbit (1) by digestion with EcoRI and ligated into this Logan, UT) and 2 mM glutamine. The neuroblastoma cell line IMR32 was site of the plasmid to generate pCI.ODC.CE (Table 1). acquired from American Type Tissue Culture Collection (Rockville, MD) and grown in DMEM (BioWhittaker), 10% fetal calf serum, and 2 mM Establishment of stably transfected cell lines. JR1 cells were transfected glutamine. Multiple cell lines were used in this study to ensure that N- with pIRES.CMV.N-myc plasmid DNA by the calcium phosphate method MYC/ODC promoter-regulated protein expression was not unique to a (Stratagene, La Jolla, CA). Stable clones expressing different levels of N- single cell line. Pediatric glioblastoma cell lines SJ-G2 and SJ-G3 were MYC were selected in 200 µg/ml of geneticin (Gibco BRL, Gaithersburg, derived from tumors of patients at SJCRH. Tumor samples were obtained MD). Two clones expressing different levels of N-myc RNA were expand- in accordance with the guidelines of the SJCRH IRB. The cell lines were ed and used in this study: JR1Nmyc6 and JR1Nmyc9. The control maintained in DMEM, 15% fetal calf serum, and 2 mM glutamine. SJ-G2 JR1neo20 cell line was generated by transfecting JR1 cells with the parent cells express c-MYC but not N-MYC; SJ-G3 cells express neither c-MYC pIRESneo plasmid. In addition, IMR32 neuroblastoma cells were trans- nor N-MYC and were used as controls for specific experiments, as indi- fected by electroporation with either pIRESneo or pIRES.ODC.CE using cated in the text. conditions previously published (2), and stable transfectants were select- ed in 500 µg of geneticin/ml. IMR32.CMV.neo and IMR32.ODC.CE cell Plasmids for CAT reporter activity. The N-myc cDNA was ligated into lines were not cloned following transfection and geneticin selection, but the bicistronic pIRESneo plasmid (Clontech, Palo Alto, CA) in the fol- include all cells that express sufficient neomycin resistance protein to sur- lowing manner: The N-myc cDNA was excised from pCN64RX and insert- vive the selecting concentration of geneticin. Results with these IMR32 ed into the EcoRV and EcoRI sites of pIRESneo. This plasmid is referred to cell lines, therefore, represent the entire transfected population and are as pIRES.CMV.N-myc. For clarity, names of plasmids in this paper contain not the properties of a single clone. the name of the promoter (ODC, CMV) and the gene or cDNA (CAT, CE, N-myc, neo) in each construct (Table 1). Western analysis. For each sample, one flask of cells in log-phase The pODC∆CAT and pODC∆CAT∆S plasmids were provided by Drs. growth was washed twice with ice-cold PBS, and the cells were harvested J. L. Cleveland (St. Jude Children’s Research Hospital) and P. Coffino by scraping into 0.6 ml of ice-cold PBS–ST (1% SDS, 1% Triton X-100) (University of California, San Francisco, CA) and have been described in containing 100 µg/ml of each of the following protease inhibitors: apro- detail previously (9). These constructs are referred to in the text as tinin, leupeptin, and antipain (Sigma, St. Louis, MO). Loading buffer (0.2 pODC.CAT and p∆ODC.CAT, respectively. pODC.CAT contains the ml of 4ϫ) was added to 600 µl of the cell solution, and the cell lysate was murine ODC promoter which regulates transcription of the reporter gene passed through a 23-gauge needle 10 times to shear the DNA.
Recommended publications
  • The Role of Polyamine Uptake Transporters on Growth and Development of Arabidopsis Thaliana
    THE ROLE OF POLYAMINE UPTAKE TRANSPORTERS ON GROWTH AND DEVELOPMENT OF ARABIDOPSIS THALIANA Jigarkumar Patel A Dissertation Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 2015 Committee: Paul Morris, Advisor Wendy D Manning Graduate Faculty Representative Vipaporn Phuntumart Scott Rogers Ray Larsen © 2015 Jigarkumar Patel All Rights Reserved iii ABSTRACT Paul Morris, Advisor Transgenic manipulation of polyamine levels has provided compelling evidence that polyamines enable plants to respond to environmental cues by activation of stress and developmental pathways. Here we show that the chloroplasts of A. thaliana and soybeans contain both an arginine decarboxylase, and an arginase/agmatinase. These two enzymes combine to synthesize putrescine from arginine. Since the sequences of plant arginases show conservation of key residues and the predicted 3D structures of plant agmatinases overlap the crystal structure of the enzyme from Deinococcus radiodurans, we suggest that these enzymes can synthesize putrescine, whenever they have access to the substrate agmatine. Finally, we show that synthesis of putrescine by ornithine decarboxylase takes place in the ER. Thus A. thaliana has two, and soybeans have three separate pathways for the synthesis of putrescine. This study also describes key changes in plant phenotypes in response to altered transport of polyamines. iv Dedicated to my father, Jayantilal Haribhai Patel v ACKNOWLEDGMENTS I would like to thank my advisor, Dr. Paul F. Morris, for helping me learn and grow during my Ph.D. Dr. Morris has an open door policy, and he was always available to answer my questions and provide helpful suggestions.
    [Show full text]
  • RT² Profiler PCR Array (Rotor-Gene® Format) Human Amino Acid Metabolism I
    RT² Profiler PCR Array (Rotor-Gene® Format) Human Amino Acid Metabolism I Cat. no. 330231 PAHS-129ZR For pathway expression analysis Format For use with the following real-time cyclers RT² Profiler PCR Array, Rotor-Gene Q, other Rotor-Gene cyclers Format R Description The Human Amino Acid Metabolism I RT² Profiler PCR Array profiles the expression of 84 key genes important in biosynthesis and degradation of functional amino acids. Of the 20 amino acids required for protein synthesis, six of them (arginine, cysteine, glutamine, leucine, proline, and tryptophan), collectively known as the functional amino acids, regulate key metabolic pathways involved in cellular growth, and development, as well as other important biological processes such as immunity and reproduction. For example, leucine activates mTOR signaling and increases protein synthesis, leading to lymphocyte proliferation. Therefore, a lack of leucine can compromise immune function. Metabolic pathways interrelated with the biosynthesis and degradation of these amino acids include vitamin and cofactor biosynthesis (such as SAM or S-Adenosyl Methionine) as well as neurotransmitter metabolism (such as glutamate). This array includes genes for mammalian functional amino acid metabolism as well as genes involved in methionine metabolism, important also for nutrient sensing and sulfur metabolism. Using realtime PCR, you can easily and reliably analyze the expression of a focused panel of genes involved in functional amino acid metabolism with this array. For further details, consult the RT² Profiler PCR Array Handbook. Shipping and storage RT² Profiler PCR Arrays in the Rotor-Gene format are shipped at ambient temperature, on dry ice, or blue ice packs depending on destination and accompanying products.
    [Show full text]
  • Ornithine Decarboxylase Regulates M1 Macrophage Activation And
    Ornithine decarboxylase regulates M1 macrophage PNAS PLUS activation and mucosal inflammation via histone modifications Dana M. Hardbowera,b, Mohammad Asimb, Paula B. Luisc, Kshipra Singhb, Daniel P. Barryb, Chunying Yangd,e, Meredith A. Steevese, John L. Clevelandd,e, Claus Schneiderc, M. Blanca Piazuelob, Alain P. Gobertb, and Keith T. Wilsona,b,f,g,h,1 aDepartment of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232; bDivision of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232; cDepartment of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232; dDepartment of Tumor Biology, Moffitt Cancer Center and Research Institute, Tampa, FL 33612; eDepartment of Cancer Biology, The Scripps Research Institute, Jupiter, FL 33458; fDepartment of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232; gCenter for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN 37232; and hVeterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37232 Edited by Carl F. Nathan, Weill Medical College of Cornell University, New York, NY, and approved December 20, 2016 (received for review September 6, 2016) Macrophage activation is a critical step in host responses during pathogens is macrophage activation. Macrophages have the ca- bacterial infections. Ornithine decarboxylase (ODC), the rate-limiting pacity to alter cytokine/chemokine production and various other enzyme in polyamine metabolism, has been well studied in epithelial functions along the spectrum of M1 or M2 activation based on the cells and is known to have essential roles in many different cellular stimulus detected (12–14). M1 macrophages represent a highly functions. However, its role in regulating macrophage function during proinflammatory and antimicrobial subset of macrophages (12–14).
    [Show full text]
  • Supplementary Informations SI2. Supplementary Table 1
    Supplementary Informations SI2. Supplementary Table 1. M9, soil, and rhizosphere media composition. LB in Compound Name Exchange Reaction LB in soil LBin M9 rhizosphere H2O EX_cpd00001_e0 -15 -15 -10 O2 EX_cpd00007_e0 -15 -15 -10 Phosphate EX_cpd00009_e0 -15 -15 -10 CO2 EX_cpd00011_e0 -15 -15 0 Ammonia EX_cpd00013_e0 -7.5 -7.5 -10 L-glutamate EX_cpd00023_e0 0 -0.0283302 0 D-glucose EX_cpd00027_e0 -0.61972444 -0.04098397 0 Mn2 EX_cpd00030_e0 -15 -15 -10 Glycine EX_cpd00033_e0 -0.0068175 -0.00693094 0 Zn2 EX_cpd00034_e0 -15 -15 -10 L-alanine EX_cpd00035_e0 -0.02780553 -0.00823049 0 Succinate EX_cpd00036_e0 -0.0056245 -0.12240603 0 L-lysine EX_cpd00039_e0 0 -10 0 L-aspartate EX_cpd00041_e0 0 -0.03205557 0 Sulfate EX_cpd00048_e0 -15 -15 -10 L-arginine EX_cpd00051_e0 -0.0068175 -0.00948672 0 L-serine EX_cpd00054_e0 0 -0.01004986 0 Cu2+ EX_cpd00058_e0 -15 -15 -10 Ca2+ EX_cpd00063_e0 -15 -100 -10 L-ornithine EX_cpd00064_e0 -0.0068175 -0.00831712 0 H+ EX_cpd00067_e0 -15 -15 -10 L-tyrosine EX_cpd00069_e0 -0.0068175 -0.00233919 0 Sucrose EX_cpd00076_e0 0 -0.02049199 0 L-cysteine EX_cpd00084_e0 -0.0068175 0 0 Cl- EX_cpd00099_e0 -15 -15 -10 Glycerol EX_cpd00100_e0 0 0 -10 Biotin EX_cpd00104_e0 -15 -15 0 D-ribose EX_cpd00105_e0 -0.01862144 0 0 L-leucine EX_cpd00107_e0 -0.03596182 -0.00303228 0 D-galactose EX_cpd00108_e0 -0.25290619 -0.18317325 0 L-histidine EX_cpd00119_e0 -0.0068175 -0.00506825 0 L-proline EX_cpd00129_e0 -0.01102953 0 0 L-malate EX_cpd00130_e0 -0.03649016 -0.79413596 0 D-mannose EX_cpd00138_e0 -0.2540567 -0.05436649 0 Co2 EX_cpd00149_e0
    [Show full text]
  • Part 3 Metabolism of Proteins and Nucleic Acids Частина 3 Обмін Білків І Нуклеїнових Кислот
    МІНІСТЕРСТВО ОХОРОНИ ЗДОРОВ'Я УКРАЇНИ Харківський національний медичний університет PART 3 METABOLISM OF PROTEINS AND NUCLEIC ACIDS Self-Study Guide for Students of General Medicine Faculty in Biochemistry ЧАСТИНА 3 ОБМІН БІЛКІВ І НУКЛЕЇНОВИХ КИСЛОТ Методичні вказівки для підготовки до практичних занять з біологічної хімії (для студентів медичних факультетів) Затверджено вченою радою ХНМУ Протокол № 1 від 26.01.2017 р. Approved by the Scientific Council of KhNMU. Protocol 1 (January 26, 2017) Харків ХНМУ 2017 Metabolism of proteins and nucleic acids : self-study guide for students of general medicine faculty in biochemistry. Part 3: / Comp. : O. Nakonechna, S. Stetsenko, L. Popova, A. Tkachenko. – Kharkiv : KhNMU, 2017. – 56 p. Compilers Nakonechna O. Stetsenko S. Popova L. Tkachenko A. Обмін білків та нуклеїнових кислот : метод. вказ. для підготовки до практ. занять з біологічної хімії (для студ. мед. ф-тів). Ч 3. / упоряд. О.А. Наконечна, С.О. Стеценко, Л.Д. Попова, А.С. Ткаченко. – Харків : ХНМУ, 2017. – 56 с. Упорядники О.А. Наконечна С.О. Стеценко Л.Д. Попова А.С. Ткаченко - 2 - SOURCES For preparing to practical classes in "Biological Chemistry" Basic Sources 1. Біологічна і біоорганічна хімія: у 2 кн.: підруч. Біологічна хімія / Ю.І. Губ- ський, І.В. Ніженковська, М.М. Корда, В.І. Жуков та ін. ; за ред. Ю.І. Губського, І.В. Ніженковської. – Кн. 2. – Київ : ВСВ «Медицина», 2016. – 544 с. 2. Губський Ю.І. Біологічна хімія : підруч. / Ю.І. Губський – Київ– Вінниця: Нова книга, 2007. – 656 с. 3. Губський Ю.І. Біологічна хімія / Губський Ю.І. – Київ–Тернопіль : Укр- медкнига, 2000. – 508 с. 4. Гонський Я.І.
    [Show full text]
  • Supplementary Information Effect of Oncogene Activating Mutations And
    Electronic Supplementary Material (ESI) for Molecular BioSystems. This journal is © The Royal Society of Chemistry 2015 Supplementary Information Effect of Oncogene Activating Mutations and Kinase Inhibitors on Amino Acid Metabolism of Human Isogenic Breast Cancer Cells Eung-Sam Kim 1,3, Animesh Samanta 1, Hui Shan Cheng 1, Zhaobing Ding1, Weiping Han 1, Luisella Toschi 4 and Young-Tae Chang 1,2,* 1 Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, #02-02 Helios Building, 138667, Singapore 2 Department of Chemistry & MedChem Program of Life Sciences Institute, National University of Singapore, 117543, Singapore. 3 Department of Biological Sciences, Chonnam National University, Gwangju, Korea 4 Global Drug Discovery, Therapeutic Research Group Oncology/Gynecological Therapies, Tumor Metabolism, Bayer Pharma AG, Berlin, Germany SI.1. Chemical structure of the kinase inhibitors. REGO PI3K-i MEK-i Chemical formula C22H16ClF4N3O3 C22H26N6O3 C17H17F2IN2O4 Molecular weight 482.82 422.49 478.23 [g/mole] Structure N HO OH O NH O O O O O F N H2N F HN O NH HN N N F F3C NH O N I Cl SI.2. Comparison of cell morphology under a light microscope Scale bar: 100 µm 10x objective lens at Ti microscope (Nikon) SI.3. Scheme of the experimental method for metabolite extraction SI.4. Gradient profile of HPLC run. A : Buffer solution B: Mobile phase H O Time 2 (40 mM NaHPO4, (MeOH/ACN/H2O, Flow rate pH7.8 at RT) 45:45:10, v/v/v) (ml/min) (min) (%) (%) (%) 0 100 0 0 1.0 3 90 10 0 1.0 15 87 13 0 1.0 25 70 30 0 1.0 37 65 35 0 1.0 43 58 42 0 1.0 52 43 57 0 1.0 55 0 100 0 1.0 60 0 0 100 1.0 65 to 80 100 0 0 1.0 SI.5.
    [Show full text]
  • Your Name Here
    STRUCTURE ACTIVITY RELATIONSHIPS IN PYRIDOXAL-5’-PHOSPHATE DEPENDENT ENZYMES by SANTIAGO LIMA (Under the Direction of Robert S. Phillips) ABSTRACT Pyridoxal-5’-phosphate (PLP) dependent enzymes are a large and catalytically diverse group of proteins primarily involved in the metabolism of amino acids, amino acid derived compounds, and amino sugars. In this work, three PLP-dependent enzymes, Homo sapiens kynureninase, Pseudomonas dacunhae L-aspartate-β-decarboxylase, and Pyrococcus furiosus tryptophan synthase β-subunit homolog are studied using a variety of biophysical methods. The novel crystal structures for these enzymes are presented, along with the structure of a kynureninase-inhibitor complex, and the analysis of a number of mutants generated to study specific structure activity relationships in them. The results of these analyses reveal the interactions that contribute to substrate specificity in kynureninase, a novel oligomerization scheme and catalytically important residues in aspartate-β-decarboxylase, and the elucidation of the kinetic properties of the P. furiosus tryptophan synthase β-subunit homolog. INDEX WORDS: pyridoxal-5’-phosphate, kynureninase, L-kynurenine hydrolase, 3- hydroxykynurenine, 2HZP, L-aspartate-beta-decarboxylase, aspartate-4- decarboxylase, tryptophan synthase beta subunit homolog, trpb2, tryptophan synthase STRUCTURE ACTIVITY RELATIONSHIPS IN PYRIDOXAL-5’-PHOSPHATE DEPENDENT ENZYMES by SANTIAGO LIMA BS, The University of Georgia, 2001 A Dissertation Submitted to the Graduate Faculty of The University
    [Show full text]
  • Generate Metabolic Map Poster
    Authors: Zheng Zhao, Delft University of Technology Marcel A. van den Broek, Delft University of Technology S. Aljoscha Wahl, Delft University of Technology Wilbert H. Heijne, DSM Biotechnology Center Roel A. Bovenberg, DSM Biotechnology Center Joseph J. Heijnen, Delft University of Technology An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Marco A. van den Berg, DSM Biotechnology Center Peter J.T. Verheijen, Delft University of Technology Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. PchrCyc: Penicillium rubens Wisconsin 54-1255 Cellular Overview Connections between pathways are omitted for legibility. Liang Wu, DSM Biotechnology Center Walter M. van Gulik, Delft University of Technology L-quinate phosphate a sugar a sugar a sugar a sugar multidrug multidrug a dicarboxylate phosphate a proteinogenic 2+ 2+ + met met nicotinate Mg Mg a cation a cation K + L-fucose L-fucose L-quinate L-quinate L-quinate ammonium UDP ammonium ammonium H O pro met amino acid a sugar a sugar a sugar a sugar a sugar a sugar a sugar a sugar a sugar a sugar a sugar K oxaloacetate L-carnitine L-carnitine L-carnitine 2 phosphate quinic acid brain-specific hypothetical hypothetical hypothetical hypothetical
    [Show full text]
  • The University of Chicago the Metaproteomic Analysis Of
    THE UNIVERSITY OF CHICAGO THE METAPROTEOMIC ANALYSIS OF ARCTIC SOILS WITH NOVEL BIOINFORMATIC METHODS A DISSERTATION SUBMITTED TO THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES IN CANDIDACY FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF THE GEOPHYSICAL SCIENCES BY SAMUEL MILLER CHICAGO, ILLINOIS DECEMBER 2018 COPYRIGHT © 2018 Samuel Edward Miller All Rights Reserved TABLE OF CONTENTS LIST OF FIGURES ................................................................................................................. vii LIST OF TABLES .....................................................................................................................ix ACKNOWLEDGMENTS ........................................................................................................... x ABSTRACT ..............................................................................................................................xi I. INTRODUCTION ................................................................................................................... 1 I.A. IMPETUS FOR RESEARCH ...........................................................................................1 I.B. PROTEOMICS BACKGROUND ....................................................................................2 I.B.1. TANDEM MASS SPECTROMETRY .......................................................................3 I.B.2. METHODS OF AUTOMATIC SEQUENCE ASSIGNMENT ...................................9 I.B.2.i. DE NOVO SEQUENCING BY PEPNOVO+ ...................................................
    [Show full text]
  • Serum Levels of Polyamine Synthesis Enzymes Increase in Diabetic Patients with Breast Cancer
    6 3 V K Celık et al. Polyaminesynthesis enzymes synthesisin diabetics enzymeswith breast cancer 574–5796:3 5746–579:574 Research in diabetics with breast cancer Open Access Serum levels of polyamine synthesis enzymes increase in diabetic patients with breast cancer V Kenan Çelik1, Sercan Kapancık1, Turgut Kaçan2, Selen Baloglu Kaçan3, Serkan Kapancık1 and Hasan Kılıçgün4 Correspondence 1Department of Biochemistry, Cumhuriyet University School of Medicine, Sivas, Turkey should be addressed 2Department of Medical Oncology, High Specialized Education and Research Hospital, Bursa, Turkey to V Kenan 3Department of Internal Medicine, Afyonkarahisar State Hospital, Afyon, Turkey Email 4Department of Nutrition and Dietetics, Health Science Faculty, University of Erzincan, Erzincan, Turkey [email protected] Abstract Background: In this study, it was aimed to investigate the relationship between diabetes Key Words and breast cancer and the detection of enzymes and ornithine levels in polyamine f diabetes synthesis pathway in diabetes, breast cancer and diabetic breast cancer patients. f breast cancer Methods: Ornithine, arginine decarboxylase, ornithine decarboxylase and agmatinase f polyamines levels have been measured in serum of all groups. Ornithine levels were measured f ornithine spectrophotometrically. Arginine decarboxylase, ornithine decarboxylase and agmatinase levels were determined by ELISA kits. Results: Except for the diabetic group, the levels of enzymes in the polyamine synthesis pathway were increased in all and statistically significant P( < 0.05). The increase in the levels of agmatinase was very important among the enzymes (P < 0.001). Endocrine Connections Conclusions: Decreased levels of polyamine synthase enzymes in diabetes mellitus were found to be increased patients with breast cancer. Whether and how diabetes-based breast cancer development relates to increase activity of enzymes responsible for polyamine synthesis requires further mechanistic and prospective monitoring studies in Endocrine Connections larger patient cohorts.
    [Show full text]
  • O O2 Enzymes Available from Sigma Enzymes Available from Sigma
    COO 2.7.1.15 Ribokinase OXIDOREDUCTASES CONH2 COO 2.7.1.16 Ribulokinase 1.1.1.1 Alcohol dehydrogenase BLOOD GROUP + O O + O O 1.1.1.3 Homoserine dehydrogenase HYALURONIC ACID DERMATAN ALGINATES O-ANTIGENS STARCH GLYCOGEN CH COO N COO 2.7.1.17 Xylulokinase P GLYCOPROTEINS SUBSTANCES 2 OH N + COO 1.1.1.8 Glycerol-3-phosphate dehydrogenase Ribose -O - P - O - P - O- Adenosine(P) Ribose - O - P - O - P - O -Adenosine NICOTINATE 2.7.1.19 Phosphoribulokinase GANGLIOSIDES PEPTIDO- CH OH CH OH N 1 + COO 1.1.1.9 D-Xylulose reductase 2 2 NH .2.1 2.7.1.24 Dephospho-CoA kinase O CHITIN CHONDROITIN PECTIN INULIN CELLULOSE O O NH O O O O Ribose- P 2.4 N N RP 1.1.1.10 l-Xylulose reductase MUCINS GLYCAN 6.3.5.1 2.7.7.18 2.7.1.25 Adenylylsulfate kinase CH2OH HO Indoleacetate Indoxyl + 1.1.1.14 l-Iditol dehydrogenase L O O O Desamino-NAD Nicotinate- Quinolinate- A 2.7.1.28 Triokinase O O 1.1.1.132 HO (Auxin) NAD(P) 6.3.1.5 2.4.2.19 1.1.1.19 Glucuronate reductase CHOH - 2.4.1.68 CH3 OH OH OH nucleotide 2.7.1.30 Glycerol kinase Y - COO nucleotide 2.7.1.31 Glycerate kinase 1.1.1.21 Aldehyde reductase AcNH CHOH COO 6.3.2.7-10 2.4.1.69 O 1.2.3.7 2.4.2.19 R OPPT OH OH + 1.1.1.22 UDPglucose dehydrogenase 2.4.99.7 HO O OPPU HO 2.7.1.32 Choline kinase S CH2OH 6.3.2.13 OH OPPU CH HO CH2CH(NH3)COO HO CH CH NH HO CH2CH2NHCOCH3 CH O CH CH NHCOCH COO 1.1.1.23 Histidinol dehydrogenase OPC 2.4.1.17 3 2.4.1.29 CH CHO 2 2 2 3 2 2 3 O 2.7.1.33 Pantothenate kinase CH3CH NHAC OH OH OH LACTOSE 2 COO 1.1.1.25 Shikimate dehydrogenase A HO HO OPPG CH OH 2.7.1.34 Pantetheine kinase UDP- TDP-Rhamnose 2 NH NH NH NH N M 2.7.1.36 Mevalonate kinase 1.1.1.27 Lactate dehydrogenase HO COO- GDP- 2.4.1.21 O NH NH 4.1.1.28 2.3.1.5 2.1.1.4 1.1.1.29 Glycerate dehydrogenase C UDP-N-Ac-Muramate Iduronate OH 2.4.1.1 2.4.1.11 HO 5-Hydroxy- 5-Hydroxytryptamine N-Acetyl-serotonin N-Acetyl-5-O-methyl-serotonin Quinolinate 2.7.1.39 Homoserine kinase Mannuronate CH3 etc.
    [Show full text]
  • Critical Factors in Human Antizymes That Determine the Differential Binding, Inhibition, and Degradation of Human Ornithine Deca
    biomolecules Article Critical Factors in Human Antizymes that Determine the Differential Binding, Inhibition, and Degradation of Human Ornithine Decarboxylase Ju-Yi Hsieh 1, Yen-Chin Liu 1, I-Ting Cheng 1, Chu-Ju Lee 1, Yu-Hsuan Wang 1, Yi-Shiuan Fang 1, Yi-Liang Liu 1,2,3, Guang-Yaw Liu 2,3,* and Hui-Chih Hung 1,4,* 1 Department of Life Sciences and Institute of Genomics & Bioinformatics, National Chung Hsing University, Taichung 40227, Taiwan; [email protected] (J.-Y.H.); [email protected] (Y.-C.L.); [email protected] (I.-T.C.); [email protected] (C.-J.L.); [email protected] (Y.-H.W.); [email protected] (Y.-S.F.); [email protected] (Y.-L.L.) 2 Institute of Biochemistry, Microbiology & Immunology, Chung Shan Medical University, Taichung 40201, Taiwan 3 Division of Allergy, Immunology, and Rheumatology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan 4 iEGG & Animal Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan * Correspondence: [email protected] (G.-Y.L.); [email protected] (H.-C.H.); Tel.: +886-4-2473-0022 (ext. 12006) (G.-Y.L.); +886-4-2284-0416 (ext. 615) (H.-C.H.); Fax: +886-4-2285-1856 (H.-C.H.) Received: 19 November 2019; Accepted: 10 December 2019; Published: 12 December 2019 Abstract: Antizyme (AZ) is a protein that negatively regulates ornithine decarboxylase (ODC). AZ achieves this inhibition by binding to ODC to produce AZ-ODC heterodimers, abolishing enzyme activity and targeting ODC for degradation by the 26S proteasome. In this study, we focused on the biomolecular interactions between the C-terminal domain of AZ (AZ95–228) and ODC to identify the functional elements of AZ that are essential for binding, inhibiting and degrading ODC, and we also identified the crucial factors governing the differential binding and inhibition ability of AZ isoforms toward ODC.
    [Show full text]