The Sky's the Limit

Total Page:16

File Type:pdf, Size:1020Kb

The Sky's the Limit INVENTION OF THE YEAR Shepard’s trailblazing journey. In June it became the first privately funded spacecraft. In October it The Sky’s clinched the $10 million Ansari X Prize as the first such craft to travel to space twice in two weeks. Thanks to the backing of two starry-eyed billion- The Limit aires, SpaceShipOne is set to become the first in a Why the amazing SpaceShipOne is new line of space-tourism craft coming in 2007. “It’s Time’s Invention of the Year a spaceship that fits in your two-car garage, and you can take it to space By CHRIS TAYLOR every other day,” says X Prize founder Peter Diamandis. “That’s pretty cool.” hen the first american We agree. For solving the problems flew into space in 1961, Burt of suborbital flight and re-entry with WRutan was a 17-year-old col- ingenious design, for boldly going lege freshman. Listening to news of where nasa now fears to tread and Alan Shepard’s groundbreaking sub- returning without a scratch, but most orbital flight on the radio, Rutan was of all for reigniting the moon-shot- euphoric. He too hoped to go into era dream of zero-gravity for every- space one day—and was disappointed one, SpaceShipOne is Time’s Coolest that a cautious nasa had allowed the Soviets to Invention of 2004. beat the U.S. to the prize. “We could have had the Concerned that SpaceShipOne was destined first man in space,” Rutan recalls, “and we sent a for nothing more than the National Air and Space monkey instead.” Museum, Rutan enlisted another aeronautics The possibilities back then seemed limitless, enthusiast and billionaire, Virgin’s Richard Branson. and it was easy for Rutan’s generation to imagine Over dinner in Mojave, they sketched out a vision they would all get to taste zero-gravity one day. It of suborbital and orbital space tourism over the didn’t work out that way. After nasa reached the next 75 years. Branson was instantly won over. He moon in 1969, its focus shifted to unmanned ordered five larger versions of SpaceShipOne with probes, orbital experiments and a costly low-orbit seats for five passengers and a pilot. shuttle system. The imagined future of Everyman Rutan knows that to sell tickets, he must make as astronaut evaporated. This year, more than four flights “at least a hundred times” safer than space decades after Shepard’s flight, only two Americans travel has been so far. After all, of the 430 humans have made the jump into space from U.S. soil—both who have flown into space, 18 died there. “You launched not by nasa but by Rutan’s tiny company, can’t have an airline that kills 4% of its passengers,” known for build-your-own-airplane kits. says Rutan. Rutan designed their craft, SpaceShipOne, a But prospective passengers don’t seem worried. vehicle as improbable as it is revolutionary. The size Branson already has a waiting list of more than of a small biplane, SpaceShipOne is a shell of 7,000 people who are willing to pay the $190,000 woven graphite glued onto a rocket motor that price for a suborbital flight. “This isn’t just a pipe runs on laughing gas and rubber. The nose is punc- dream,” says Branson. “We will get this to the point tuated by portholes, like an ocean liner. Inside, where thousands of people can go into space.” ■ the critical instrument is a Ping-Pong ball decorated with a smiley face and attached to the cabin with a Questions piece of string, which goes slack when the pilot 1. Why was SpaceShipOne selected as Time’s reaches the zero-gravity of suborbital space. Invention of the Year for 2004? Despite its Flash Gordon looks and unorthodox 2. What issue does Burt Rutan plan to address in design, SpaceShipOne was more than able to match order to sell tickets for future trips into space? time, november 29, 2004 29.
Recommended publications
  • Virgin Galactic Th E First Ten Years Other Springer-Praxis Books of Related Interest by Erik Seedhouse
    Virgin Galactic Th e First Ten Years Other Springer-Praxis books of related interest by Erik Seedhouse Tourists in Space: A Practical Guide 2008 ISBN: 978-0-387-74643-2 Lunar Outpost: The Challenges of Establishing a Human Settlement on the Moon 2008 ISBN: 978-0-387-09746-6 Martian Outpost: The Challenges of Establishing a Human Settlement on Mars 2009 ISBN: 978-0-387-98190-1 The New Space Race: China vs. the United States 2009 ISBN: 978-1-4419-0879-7 Prepare for Launch: The Astronaut Training Process 2010 ISBN: 978-1-4419-1349-4 Ocean Outpost: The Future of Humans Living Underwater 2010 ISBN: 978-1-4419-6356-7 Trailblazing Medicine: Sustaining Explorers During Interplanetary Missions 2011 ISBN: 978-1-4419-7828-8 Interplanetary Outpost: The Human and Technological Challenges of Exploring the Outer Planets 2012 ISBN: 978-1-4419-9747-0 Astronauts for Hire: The Emergence of a Commercial Astronaut Corps 2012 ISBN: 978-1-4614-0519-1 Pulling G: Human Responses to High and Low Gravity 2013 ISBN: 978-1-4614-3029-2 SpaceX: Making Commercial Spacefl ight a Reality 2013 ISBN: 978-1-4614-5513-4 Suborbital: Industry at the Edge of Space 2014 ISBN: 978-3-319-03484-3 Tourists in Space: A Practical Guide, Second Edition 2014 ISBN: 978-3-319-05037-9 Erik Seedhouse Virgin Galactic The First Ten Years Erik Seedhouse Astronaut Instructor Sandefjord , Vestfold , Norway SPRINGER-PRAXIS BOOKS IN SPACE EXPLORATION ISBN 978-3-319-09261-4 ISBN 978-3-319-09262-1 (eBook) DOI 10.1007/978-3-319-09262-1 Springer Cham Heidelberg New York Dordrecht London Library of Congress Control Number: 2014957708 © Springer International Publishing Switzerland 2015 This work is subject to copyright.
    [Show full text]
  • Evidence Review – Environmental Innovation Prizes for Development
    Evidence Review – Environmental Innovation Prizes for Development DEW Point Enquiry No. A0405 A Report by Bryony Everett With support from Chris Barnett and Radha Verma Peer Review by William Masters July 2011 Acknowledgements We would like to thank all the interviewees detailed in Annex 1 for their time and support in providing us with their insights and information, without which we would not have been able to produce this report. Particular thanks go to Erika, Jaison and Will. Disclaimer This report is commissioned under DEW Point, the DFID Resource Centre for Environment, Water and Sanitation, which is managed by a consortium of companies led by Harewelle International Limited1. Although the report is commissioned by DFID, the views expressed in the report are entirely those of the authors and do not necessarily represent DFID’s own views or policies, or those of DEW Point. Comments and discussion on items related to content and opinion should be addressed to the author, via the “Contact and correspondence” address e-mail or website, as indicated in the control document above. 1 Consortium comprises Harewelle International Limited, DD International, Practical Action Consulting, Cranfield University and AEA Energy and Environment Table of Contents Evidence Review – Environmental Innovation Prizes for Development Summary .................................................................................................................................... 1 Introduction .............................................................................................................................
    [Show full text]
  • Dominant Suborbital Space Tourism Architectures
    Dominant Suborbital Space Tourism Architectures The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Guerster, Markus and Edward F. Crawley. "Dominant Suborbital Space Tourism Architectures." Journal of Spacecraft and Rockets 56, 5 (September 2019): dx.doi.org/10.2514/1.a34385 As Published http://dx.doi.org/10.2514/1.a34385 Publisher American Institute of Aeronautics and Astronautics (AIAA) Version Author's final manuscript Citable link https://hdl.handle.net/1721.1/126666 Terms of Use Creative Commons Attribution-Noncommercial-Share Alike Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/ JOURNAL OF SPACECRAFT AND ROCKETS Dominant Suborbital Space Tourism Architectures Markus Guerster∗ and Edward F. Crawley† Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 DOI: 10.2514/1.A34385 In the early stages of maturity of a system built for a specific function, it is common for the solutions to lie in a broad architectural space, in which numerous concepts are being developed, built, and tested. As the product matures, certain concepts become more dominant. This pattern can currently be observed in the suborbital tourism industry, in which the obvious question is what system architecture will provide the best combination of cost and safety and in the long run become the dominant architecture. This paper addresses this question by defining a broad architectural space of thousands of possibilities and exploring it comprehensively. We identified 33 feasible architectures, 26 of which had not been proposed earlier. A genetic algorithm optimizes each architecture with respect to the launch mass (a proxy for cost) and operational safety.
    [Show full text]
  • Space Planes and Space Tourism: the Industry and the Regulation of Its Safety
    Space Planes and Space Tourism: The Industry and the Regulation of its Safety A Research Study Prepared by Dr. Joseph N. Pelton Director, Space & Advanced Communications Research Institute George Washington University George Washington University SACRI Research Study 1 Table of Contents Executive Summary…………………………………………………… p 4-14 1.0 Introduction…………………………………………………………………….. p 16-26 2.0 Methodology…………………………………………………………………….. p 26-28 3.0 Background and History……………………………………………………….. p 28-34 4.0 US Regulations and Government Programs………………………………….. p 34-35 4.1 NASA’s Legislative Mandate and the New Space Vision………….……. p 35-36 4.2 NASA Safety Practices in Comparison to the FAA……….…………….. p 36-37 4.3 New US Legislation to Regulate and Control Private Space Ventures… p 37 4.3.1 Status of Legislation and Pending FAA Draft Regulations……….. p 37-38 4.3.2 The New Role of Prizes in Space Development…………………….. p 38-40 4.3.3 Implications of Private Space Ventures…………………………….. p 41-42 4.4 International Efforts to Regulate Private Space Systems………………… p 42 4.4.1 International Association for the Advancement of Space Safety… p 42-43 4.4.2 The International Telecommunications Union (ITU)…………….. p 43-44 4.4.3 The Committee on the Peaceful Uses of Outer Space (COPUOS).. p 44 4.4.4 The European Aviation Safety Agency…………………………….. p 44-45 4.4.5 Review of International Treaties Involving Space………………… p 45 4.4.6 The ICAO -The Best Way Forward for International Regulation.. p 45-47 5.0 Key Efforts to Estimate the Size of a Private Space Tourism Business……… p 47 5.1.
    [Show full text]
  • The Annual Compendium of Commercial Space Transportation: 2017
    Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2017 January 2017 Annual Compendium of Commercial Space Transportation: 2017 i Contents About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover art: Phil Smith, The Tauri Group (2017) Publication produced for FAA AST by The Tauri Group under contract. NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. ii Annual Compendium of Commercial Space Transportation: 2017 GENERAL CONTENTS Executive Summary 1 Introduction 5 Launch Vehicles 9 Launch and Reentry Sites 21 Payloads 35 2016 Launch Events 39 2017 Annual Commercial Space Transportation Forecast 45 Space Transportation Law and Policy 83 Appendices 89 Orbital Launch Vehicle Fact Sheets 100 iii Contents DETAILED CONTENTS EXECUTIVE SUMMARY .
    [Show full text]
  • Virgin Galactic Holdings, Inc. (SPCE) Putting the Zero in Zero-G
    June 2021 Virgin Galactic Holdings, Inc. (SPCE) Putting the Zero in Zero-G We are short shares of Virgin Galactic Holdings, Inc., often described as the only publicly traded space-tourism company. After going public in October 2019 by way of a merger with a “blank check” company, Virgin Galactic has seen its share price and trading volume soar. It’s become a retail darling, with day traders captivated by images of billionaires donning space suits, blasting off from launchpads, and looking down on the blue marble of Earth. But Virgin Galactic’s $250,000+ commercial “spaceflights” – if they ever actually happen, after some 17 years of delays and disasters – will offer only the palest imitations of these experiences. In lieu of pressurized space suits with helmets – unnecessary since so little time will be spent in the upper atmosphere – the company commissioned Under Armour to provide “high-tech pajamas.” In lieu of vertical takeoff, Virgin’s “spaceship” must cling to the underside of a specialized airplane for the first 45,000 feet up, because its rocket motor is too weak to push through the lower atmosphere on its own. In lieu of the blue-marble vista and life in zero-g, Virgin’s so-called astronauts will at best be able to catch a glimpse of the curvature of Earth and a few minutes of weightlessness before plunging back to ground. This isn’t “tourism,” let alone Virgin’s more grandiose term, “exploration”; it’s closer to a souped- up roller coaster, like the “Drop of Doom” ride at Six Flags.
    [Show full text]
  • Rewarding Energy Innovation to Achieve Climate Stabilization
    Case Western Reserve University School of Law Scholarly Commons Faculty Publications 2011 Eyes on a Climate Prize: Rewarding Energy Innovation to Achieve Climate Stabilization Jonathan H. Adler Case Western University School of Law, [email protected] Follow this and additional works at: https://scholarlycommons.law.case.edu/faculty_publications Part of the Environmental Law Commons, and the Science and Technology Law Commons Repository Citation Adler, Jonathan H., "Eyes on a Climate Prize: Rewarding Energy Innovation to Achieve Climate Stabilization" (2011). Faculty Publications. 656. https://scholarlycommons.law.case.edu/faculty_publications/656 This Article is brought to you for free and open access by Case Western Reserve University School of Law Scholarly Commons. It has been accepted for inclusion in Faculty Publications by an authorized administrator of Case Western Reserve University School of Law Scholarly Commons. \\jciprod01\productn\H\HLE\35-1\HLE101.txt unknown Seq: 1 14-MAR-11 12:33 EYES ON A CLIMATE PRIZE:REWARDING ENERGY INNOVATION TO ACHIEVE CLIMATE STABILIZATION Jonathan H. Adler* Stabilizing atmospheric concentrations of greenhouse gases at double their pre-in- dustrial levels (or lower) will require emission reductions far in excess of what can be achieved at a politically acceptable cost with current or projected levels of tech- nology. Substantial technological innovation is required if the nations of the world are to come anywhere close to proposed emission reduction targets. Neither tradi- tional federal support for research and development of new technologies nor tradi- tional command-and-control regulations are likely to spur sufficient innovation. Technology inducement prizes, on the other hand, have the potential to significantly accelerate the rate of technological innovation in the energy sector.
    [Show full text]
  • Technological Change 2013-2016 Change Technological Publication of the Committee for the Future 2/2016
    technological change 2013-2016 publication of the committee for the future 2/2016 technological change 2013-2016 Preliminary investigation of the development of radical technologies after the 2013 review 2/2016 isbn 978-951-53-3616-3 (paperback) • isbn 978-951-53-3617-0 (pdf) issn 2342-6594 (printed) • issn 2342-6608 (web) TECHNOLOGICAL CHANGE 2013–2016 Preliminary investigation: Development of radical technologies after the review in 2013 (100 Opportunities For Finland And The World, Publication Of The Committee For The Future 11/2014) Risto Linturi publication of the committee for the future 2/2016 Cover: freeimageslive.com Back cover: Part of the Artwork Tulevaisuus, Väinö Aaltonen (1932), photo Vesa Lindqvist. Committee for the Future FI-00102 Parliament of Finland www.parliament.fi Helsinki 2016 ISBN 978-951-53-3616-3 (paperback) ISBN 978-951-53-3617-0 (PDF) ISSN 2342-6594 (printed) ISSN 2342-6608 (web) Contents Foreword ......................................................................................................................... 5 1 Introduction, summary of observations and recommendations ................................ 8 1.1 A Hundred New Opportunities for Finland: Radical Technological Solutions ...... 8 1.2 Crowdsourcing after the publication of TuVRad9/2013 and acknowledgements ..................................................................................................... 9 1.3 Objectives of the preliminary investigation ...................................................... 11 1.4 The fastest-progressing baskets in the TuvRad9/2013 Top 25 category .......... 12 1.5 The fastest-progressing baskets in the TuVRad9/2016 Top 26–100 category . 13 1.6 New baskets and fields of technology that are proposed for monitoring ........ 14 1.7 Structural improvements to the report ............................................................ 15 1.8 Regional and international application of the four-level model ....................... 16 1.9 Interactive updating of the report with the help of database .........................
    [Show full text]
  • Top 10 Tech Trends Transforming Humanity
    DIAMANDISdiamandis.com/tech-blog | January 2017 TOP 10 TECH TRENDS TRANSFORMING HUMANITY 52 weeks of Science + Technology breakthroughs comprised by Peter Diamandis into the Top 10 Tech Trends from 2016 that are changing our world today. © 2017 PETER H. DIAMANDIS TOP 10 TECH TRENDS | 1 INTRO I’m blown away by how palpable the fee- ling of exponential change has become. I’m also certain that 99.999% of humanity P.03 INTRO P.16 TREND NO.6 doesn’t understand or appreciate the ra- Top 10 Tech Trends The Year of Autonomous mifications of what is coming. of 2016 Vehicles Enjoy the top 10 tech trends of 2016 and P.04 TREND NO.1 P.18 TREND NO.7 why they are important to you. We Are Hyper-Connecting Here Come Drones the World & Flying Cars NOTE: at the end of this blog, I provide a detailed reference for all of the new items P.06 TREND NO.2 P.20 TREND NO.8 below. Solar/Renewables Cheaper The March of Artificial Than Coal Intelligence Let’s dive in… P.09 TREND NO.3 P.22 TREND NO.9 Glimpsing the End of Physics & Exploration Cancer & Disease P.12 TREND NO.4 P.24 TREND NO.10 Progress on Extending Conquest of Commercial Human Life Space P.14 TREND NO.5 P.26 REFERENCES Amazing Successes Detailed Reference With Stem Cells of Sources 2 | PETER DIAMANDIS TOP 10 TECH TRENDS | 3 FACEBOOK’S SOLAR DRONE 1. WE ARE HYPER- INTERNET SERVICE Even before Google, Facebook has been ex- perimenting with a solar-powered drone, also CONNECTING THE for the express purpose of providing Internet to billions.
    [Show full text]
  • National Geographic Interactive
    SELF-STYLED FASTEST SHARKS ARCHAEOLOGY MESSIAHS IN THE SEA BY SATELLITE THE SPACE ISSUE THE NEXT MOON SHOT | IN ORBIT WITH SCOTT KELLY | VOYAGER, 4 YEARS LATER | BEST ECLIPSE IN A CENTURY AUGUST 2017 Scientists, visionaries, evangelists, GUHDPHUV Team Hakuto, Japan Sorato, the rover built by the Japanese team competing for the Google Lunar XPrize, sits in a Tokyo clean room. A $20 million prize will go WRWKHƃUVWSULYDWHO\IXQGHGJURXSWRODQGDFUDIWWKDWWUDYHOVPHWHUVRQWKH PRRQDQGEHDPVLPDJHVDQGYLGHREDFNWR(DUWKŞDVPDOOVWHSWRZDUGSRWHQWLDOO\ JLDQWHFRQRPLFUHZDUGVEHFNRQLQJIURPWKHPRRQDQGEH\RQG LEFT: FROM FULL MOON%<0,&+$(//,*+7ǩDZDZDZ25,*,1$/%<1$6$3+272%<0$5.7+,(66(11*067$)) 31 Synergy Moon 7HFKQLFLDQ(ULN5HHG\SRQGHUVURFNHWGHVLJQDW,QWHURUELWDO6\VWHPV ,26 EDFNHURI WKLVLQWHUQDWLRQDOWHDP,26ŠVJRDOWREHWKHORZHVWFRVWODXQFKSURYLGHULQWKHSULYDWHVSDFHLQGXVWU\ Shoot for the moon. By Sam Howe Verhovek Photographs by Vincent Fournier Again. The youthful Indian engineers took their seats, a bit nervously, in a makeshift conference room inside a cavernous former car-battery warehouse in Bangalore. Arrayed in front of them were several much older men and women, many of them gray-haired luminaries of India’s robust space program. The first Asian space agency to send an orbiter to Mars, it also nearly tripled a previous world record by launching 104 satellites into orbit in a single mission this past February. The object of everyone’s attention was a small rolling device barely the size of a microwave oven. TeamIndus, India :HLJKLQJLQDWMXVWXQGHUSRXQGVŞEXWFDUU\LQJWKHSULGHDQGKRSHVRIDQDWLRQ RQLWVVSLQGO\IUDPHŞWKH,QGLDQWHDPŠVURYHUFRGHQDPHG(&$XQGHUJRHVWHVWLQJLQ%DQJDORUH $ODUJHKHOLXPEDOORRQDWWDFKHGWRLWVLPXODWHVWKHPRRQŠVJUDYLW\ZKLFKLVRQHVL[WKWKDWRI(DUWK 34 NATIONAL GEOGRAPHIC • AUGUST 2017 The members of the young crew explained traveling vehicle on the moon that can transmit their plans to blast the device into space aboard high-quality imagery back to Earth.
    [Show full text]
  • Guiding Visions of the Space Age
    GUIDING VISIONS OF THE SPACE AGE: HOW IMAGINATIVE EXPECTATIONS DIRECTED AN INDUSTRY by Daniel Waymark Goodman A thesis submitted in partial fulfillment of the requirements for the degree of Master of Arts in History MONTANA STATE UNIVERSITY Bozeman, Montana April 2019 ©COPYRIGHT by Daniel Waymark Goodman 2019 All Rights Reserved ii To Annie, For your unending love, support and patience. “With a bad telescope and a powerful imagination, there is no saying what you may not accomplish.” H. G. Wells, 1898 iii ACKNOWLEDGEMENTS I am enormously grateful for the support of a network of brilliant faculty and friends at Montana State University’s Department of History and Philosophy. I am especially privileged to have had the constant guidance of Dr. Michael Reidy over the last two years. Michael, this project could not have happened without your mentorship, critical eye and insights. I am deeply indebted to have had your support and friendship. I am also hugely thankful to have had the guidance of Dr. Brett Walker and Dr. Timothy LeCain. Brett, you taught me new ways of approaching history that have reshaped my worldview. Tim, in enhancing my understanding of my own country’s history, you provided me much of the context I needed for this project. I also owe a debt of gratitude to Dr. Billy Smith and Dr. James Meyer for greatly advancing my skills as a writer and thinker. You both pushed me again and again, and I am glad you did. Additionally, to the friendly staff at the Smithsonian Air and Space Museum archives in Chantilly, Virginia, thanks for all of your help providing me ample sources for this research as well as future projects.
    [Show full text]
  • The PCB Magazine, April 2014
    26 HDI PWB Reliability April 2014 by Paul Reid 36 From Single-Sided to HDI: The “Three Phone Call Method” Works! by Dan Smith New Dimension in 40 Pinless Multilayer Registration Video Interview HDI ISSUE Show Review Page 42 Lead-Free Reflow for High-Layer- Count PCBs by Happy Holden and Michael Carano Page 12 April 2014 • The PCB Magazine 1 Designers: when you choose a fabricator, what guarantee do you have that they won't deliver scrap? We can connect you with manufacturers that we have audited and are qualified to deliver the product that you need, on time and on budget. How we qualify PCB manufacturers CLICK TO VIEW (360) 531-3495 A PCB AUDITING COMPANY www.nextlevelpcb.com HDI APRIL FEATURED CONTENT APRIL FEATURED We take a look at the special attributes of HDI boards this month, including reliability issues, high-layer count multilayer boards, pinless reg- istration, and how to bridge the divide between design and fab. 12 Lead-Free Reflow for 26 HDI PWB Reliability High-Layer-Count PCBs by Paul Reid by Happy Holden and Michael Carano 36 From Single-Sided to HDI: The “Three Phone Call Method” Works! by Dan Smith FEATURED VIDEO INTERVIEW 40 New Dimension in Pinless Multilayer Registration 4 The PCB Magazine • April 2014 “No great thing is created suddenly.” -Epictetus No tricks: Lunaris makes current lithography virtually disappear. Lunaris plays by a whole new set of rules. By digitizing Meet the inner layer manufacturing processs, Lunaris eliminates 11 of 15 steps needed. Besides dramatically reducing cost and complexity, Lunaris goes from CAM to etch in just 5 minutes and 100% yield is guaranteed.
    [Show full text]