Preparation, Characterization and Applications of Functionalized Carbon Nano-Onions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Carbon Additives for Polymer Compounds
Polymers Carbon Additives for Polymer Compounds Conductive Carbon Black Graphite & Coke www.timcal.com 1 Who are we? TIMCAL Graphite & Carbon has a strong tra- agement and continuous process improve- dition and history in carbon manufacturing. Its ment, all TIMCAL manufacturing plants comply first manufacturing operation was founded in with ISO 9001-2008. 1908. TIMCAL Graphite & Carbon is committed to Today, TIMCAL facilities produce and market a produce highly specialized graphite and car- large variety of synthetic and natural graphite bon materials for today’s and tomorrow’s cus- powders, conductive carbon blacks and water- tomers needs. based dispersions of consistent high quality. TIMCAL Graphite & Carbon is a member of IMERYS, Adhering to a philosophy of Total Quality Man- a world leader in adding value to minerals. Where are we located? With headquarters located in Switzerland, TIMCAL The Group’s industrial and commercial activities Graphite & Carbon has an international pres- are managed by an experienced multinational ence with production facilities and commercial team of more than 430 employees from many offices located in key markets around the globe. countries on three continents. HQ Bodio, Switzerland Willebroek, Belgium Lac-des-Îles, Canada Terrebonne, Canada Graphitization & pro- Manufacturing & pro- Mining, purification and Exfoliation of natural cessing of synthetic cessing of conductive sieving of natural graphite, processing of graphite, manufacturing carbon black graphite flakes natural and synthetic of water-based -
Carbon Nanomaterials: Building Blocks in Energy Conversion Devices
Mimicking Photosynthesis Carbon nanostructure-based donor- acceptor molecular assemblies can be engineered to mimic natural photo- synthesis. Fullerene C60 is an excellent electron acceptor for the design of donor-bridge-acceptor molecular systems. Photoinduced charge transfer processes in fullerene-based dyads and triads have been extensively investigated by several research groups during the last decade. In these cases the excited C60 accepts an electron from the linked donor group Carbon Nanomaterials: to give the charge-separated state under visible light excitation. Photoinduced charge separation in these dyads has Building Blocks in Energy been achieved using porphyrins, phtha- locyanine, ruthenium complexes, ferro- cene, and anilines as electron donors. Conversion Devices The rate of electron transfer and by Prashant Kamat charge separation efficiency is dependent on the molecular configuration, redox Carbon nanotubes, fullerenes, and mesoporous carbon potential of the donor, and the medium. Clustering the fullerene-donor systems structures constitute a new class of carbon nanomaterials with provides a unique way to stabilize properties that differ signifi cantly from other forms of carbon electron transfer products. The stability of C anions in cluster forms opens such as graphite and diamond. The ability to custom synthesize 60 up new ways to store and transport nanotubes with attached functional groups or to assemble photochemically harnessed charge. fullerene (C60 and analogues) clusters into three-dimensional Novel organic solar cells have (3D) arrays has opened up new avenues to design high surface been constructed by quaternary area catalyst supports and materials with high photochemical self-organization of porphyrin and fullerenes with gold nanoparticles. and electrochemical activity. -
Graphene – Diamond Nanomaterials: a Status Quo Review
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 July 2021 doi:10.20944/preprints202107.0647.v1 Article Graphene – diamond nanomaterials: a status quo review 1 Jana Vejpravová ,* 1 Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague 2, Czech Republic. * Correspondence: JV, [email protected] Abstract: Carbon nanomaterials with a different character of the chemical bond – graphene (sp2) and nanodiamond (sp3) are the building bricks for a new class of all-carbon hybrid nanomaterials, where the two different carbon networks with the sp3 and sp2 hybridization coexist, interact and even transform into one another. The unique electronic, mechanical, and chemical properties of the two border nanoallotropes of carbon ensure the immense application potential and versatility of these all-carbon graphene – diamond nanomaterials. The review gives an overview of the current state of the art of graphene – diamond nanomaterials, including their composites, heterojunctions, and other hybrids for sensing, electronic, energy storage, and other applications. Also, the graphene- to-diamond and diamond-to-graphene transformations at the nanoscale, essential for innovative fabrication, and stability and chemical reactivity assessment are discussed based on extensive theo- retical, computational, and experimental studies. Keywords: graphene; diamond; nanodiamond; diamane; graphene-diamond nanomaterials; all car- bon materials; electrochemistry; mechanochemistry; sensor; supercapacitor; -
The Raman Spectrum of Amorphous Diamond
" r / J 1 U/Y/ — f> _ - ^ /lj / AU9715866 THE RAMAN SPECTRUM OF AMORPHOUS DIAMOND S.Prawer, K.W. Nugent, D.N. Jamieson School of Physics and Microanalytical Research Centre University of Melbourne, Parkville, Victoria, Australia, 3052. ABSTRACT: We present the Raman spectrum of an amorphous, fully sp^-bonded carbon network. The reduced Raman spectrum agrees closely with the calculated density of states of diamond. The results have been obtained from nanoclusters produced deep inside a single crystal diamond irradiated with MeV He ions. The deep implantation creates amorphous sp3 bonded C clusters along the ion tracks, within a largely intact diamond matrix. The matrix maintains the clusters under high pressure, preventing the relaxation to sp% bonded structures. Sharp peaks associated with defect structures unique to MeV ion implantation are observed at 1422, 1447, 1467, 1496, 1540, 1563, 1631, 1649, 1683 and 1726 cm'1. We also observe a shoulder in the reduced Raman spectrum at about 1120 cm'1 which we tentatively attribute to quantum confinement effects in the carbon nanoclusters. The results provide the Raman signature that might be expected from tetrahedrally bonded amorphous carbon films with no graphite-like amorphous components. 2 Tetrahedrally bonded amorphous (‘diamond-like ’) carbon has attracted a great deal of both experimental and theoretical interest of the past few years [1]. There have been numerous efforts to model the vibrational spectrum of sp3 bonded amorphous carbon networks, but until now there has been no experimental confirmation, in the form of a Raman spectrum, to test the accuracy of these model calculations. This is primarily because most sp3 rich amorphous carbon films contain a minimum of 5-15% of sp2 bonded carbon. -
Closed Network Growth of Fullerenes
ARTICLE Received 9 Jan 2012 | Accepted 18 Apr 2012 | Published 22 May 2012 DOI: 10.1038/ncomms1853 Closed network growth of fullerenes Paul W. Dunk1, Nathan K. Kaiser2, Christopher L. Hendrickson1,2, John P. Quinn2, Christopher P. Ewels3, Yusuke Nakanishi4, Yuki Sasaki4, Hisanori Shinohara4, Alan G. Marshall1,2 & Harold W. Kroto1 Tremendous advances in nanoscience have been made since the discovery of the fullerenes; however, the formation of these carbon-caged nanomaterials still remains a mystery. Here we reveal that fullerenes self-assemble through a closed network growth mechanism by incorporation of atomic carbon and C2. The growth processes have been elucidated through experiments that probe direct growth of fullerenes upon exposure to carbon vapour, analysed by state-of-the-art Fourier transform ion cyclotron resonance mass spectrometry. Our results shed new light on the fundamental processes that govern self-assembly of carbon networks, and the processes that we reveal in this study of fullerene growth are likely be involved in the formation of other carbon nanostructures from carbon vapour, such as nanotubes and graphene. Further, the results should be of importance for illuminating astrophysical processes near carbon stars or supernovae that result in C60 formation throughout the Universe. 1 Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, USA. 2 Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, USA. 3 Institut des Matériaux Jean Rouxel, CNRS UMR 6502, Université de Nantes, BP32229 Nantes, France. 4 Department of Chemistry and Institute for Advanced Research, Nagoya University, Nagoya 464-8602, Japan. -
Geometric and Electronic Properties of Graphene-Related Systems: Chemical Bondings Arxiv:1702.02031V2 [Physics.Chem-Ph] 13
Geometric and electronic properties of graphene-related systems: Chemical bondings Ngoc Thanh Thuy Trana, Shih-Yang Lina;∗, Chiun-Yan Lina, Ming-Fa Lina;∗ aDepartment of Physics, National Cheng Kung University, Tainan 701, Taiwan February 14, 2017 Abstract This work presents a systematic review of the feature-rich essential properties in graphene-related systems using the first-principles method. The geometric and electronic properties are greatly diversified by the number of layers, the stacking con- figurations, the sliding-created configuration transformation, the rippled structures, and the distinct adatom adsorptions. The top-site adsorptions can induce the signif- icantly buckled structures, especially for hydrogen and fluorine adatoms. The elec- tronic structures consist of the carbon-, adatom- and (carbon, adatom)-dominated energy bands. There exist the linear, parabolic, partially flat, sombrero-shaped and oscillatory band, accompanied with various kinds of critical points. The semi-metallic or semiconducting behaviors of graphene systems are dramatically changed by the multi- or single-orbital chemical bondings between carbons and adatoms. Graphene oxides and hydrogenated graphenes possess the tunable energy gaps. Fluorinated graphenes might be semiconductors or hole-doped metals, while other halogenated systems belong to the latter. Alkali- and Al-doped graphenes exhibit the high-density free electrons in the preserved Dirac cones. The ferromagnetic spin configuration is revealed in hydrogenated and halogenated graphenes under certain distributions. Specifically, Bi nano-structures are formed by the interactions between monolayer arXiv:1702.02031v2 [physics.chem-ph] 13 Feb 2017 graphene and buffer layer. Structure- and adatom-enriched essential properties are compared with the measured results, and potential applications are also discussed. -
Evidence for Glass Behavior in Amorphous Carbon
Journal of C Carbon Research Article Evidence for Glass Behavior in Amorphous Carbon Steven Best , Jake B. Wasley, Carla de Tomas, Alireza Aghajamali , Irene Suarez-Martinez * and Nigel A. Marks * Department of Physics and Astronomy, Curtin University, Perth, WA 6102, Australia; [email protected] (S.B.); [email protected] (J.B.W.); [email protected] (C.d.T.); [email protected] (A.A.) * Correspondence: [email protected] (I.S.-M.); [email protected] (N.A.M.) Received: 15 July 2020; Accepted: 24 July 2020; Published: 30 July 2020 Abstract: Amorphous carbons are disordered carbons with densities of circa 1.9–3.1 g/cc and a mixture of sp2 and sp3 hybridization. Using molecular dynamics simulations, we simulate diffusion in amorphous carbons at different densities and temperatures to investigate the transition between amorphous carbon and the liquid state. Arrhenius plots of the self-diffusion coefficient clearly demonstrate that there is a glass transition rather than a melting point. We consider five common carbon potentials (Tersoff, REBO-II, AIREBO, ReaxFF and EDIP) and all exhibit a glass transition. Although the glass-transition temperature (Tg) is not significantly affected by density, the choice of potential can vary Tg by up to 40%. Our results suggest that amorphous carbon should be interpreted as a glass rather than a solid. Keywords: amorphous carbon; liquid carbon; glass-transition temperature; molecular dynamics 1. Introduction Amorphous carbons are often described as one of the allotropes of carbon, along with graphite, diamond and fullerenes. -
Hazardous Substance Fact Sheet
Right to Know Hazardous Substance Fact Sheet Common Name: CARBON BLACK Synonyms: C.I. Pigment Black 7; Channel Black; Lamp Black CAS Number: 1333-86-4 Chemical Name: Carbon Black RTK Substance Number: 0342 Date: December 2007 Revision: November 2016 DOT Number: UN 1361 Description and Use EMERGENCY RESPONDERS >>>> SEE BACK PAGE Carbon Black is black, odorless, finely divided powder Hazard Summary generated from the incomplete combustion of Hydrocarbons. It Hazard Rating NJDOH NFPA may contain Polycyclic Aromatic Hydrocarbons (PAHs) which HEALTH 3 - are formed during its manufacture and become adsorbed on FLAMMABILITY 1 - the Carbon Black. It is used in making tire treads, in abrasion REACTIVITY 0 - resistant rubber products, and as a pigment for paints and inks. CARCINOGEN SPONTANEOUSLY COMBUSTIBLE PARTICULATE POISONOUS GASES ARE PRODUCED IN FIRE Reasons for Citation Hazard Rating Key: 0=minimal; 1=slight; 2=moderate; 3=serious; Carbon Black is on the Right to Know Hazardous 4=severe Substance List because it is cited by OSHA, ACGIH, NIOSH and IARC. Carbon Black can affect you when inhaled. This chemical is on the Special Health Hazard Substance Carbon Black should be handled as a CARCINOGEN-- List as it is considered a carcinogen. WITH EXTREME CAUTION. Contact can irritate the skin and eyes. Inhaling Carbon Black can irritate the nose, throat and lungs. Finely dispersed Carbon Black particles may form explosive mixtures in air. SEE GLOSSARY ON PAGE 5. FIRST AID Workplace Exposure Limits Eye Contact OSHA: The legal airborne permissible exposure limit (PEL) is Immediately flush with large amounts of water for at least 15 3.5 mg/m3 averaged over an 8-hour workshift. -
Acid-Base Properties of Carbon Black Surfaces Roy Eugene Test Iowa State University
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital Repository @ Iowa State University Ames Laboratory Technical Reports Ames Laboratory 5-1961 Acid-base properties of carbon black surfaces Roy Eugene Test Iowa State University Robert S. Hansen Iowa State University Follow this and additional works at: http://lib.dr.iastate.edu/ameslab_isreports Part of the Chemistry Commons Recommended Citation Test, Roy Eugene and Hansen, Robert S., "Acid-base properties of carbon black surfaces" (1961). Ames Laboratory Technical Reports. 43. http://lib.dr.iastate.edu/ameslab_isreports/43 This Report is brought to you for free and open access by the Ames Laboratory at Iowa State University Digital Repository. It has been accepted for inclusion in Ames Laboratory Technical Reports by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Acid-base properties of carbon black surfaces Abstract The urs face properties of carbon blacks reflect not only Van der Waals forces due to carbon, but also chemical properties of groups formed on carbon black surfaces by reactions with environmental substances (e.g. water, oxygen, etc.). The present work constitutes a study of such groups. Disciplines Chemistry This report is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/ameslab_isreports/43 I IS-341 ACID-BASE PROPERTIES OF CARBON BLACK SURFACES By Roy Eugene Test Robert S. Hansen May 196 1 Ames Laboratory Iowa State University I Ames, Iowa :· : :· .. : :· :. ': •. :· ·:· ·:: .: •. :' . :, ·: :· ': F. H. Spedding, Director, Ames Laboratory. Work performed under Contract No. W-7405-eng-82. -
Defence Applications of New Forms of Carbon
FOI-R--1103--SE December 2003 ISSN 1650-1942 Base data report S.J. Savage Defence applications of new forms of carbon Schematic model of the C60 fullerene molecule (Fagerström, 2003) Sensor Technology SE-581 11 Linköping SWEDISH DEFENCE RESEARCH AGENCY FOI-R--1103--SE Sensor Technology December 2003 P.O. Box 1165 ISSN 1650-1942 SE-581 11 Linköping Base data report S.J. Savage Defence applications of new forms of carbon Issuing organization Report number, ISRN Report type FOI – Swedish Defence Research Agency FOI-R--1103--SE Base data report Sensor Technology Research area code P.O. Box 1165 7. Vehicles SE-581 11 Linköping Month year Project no. December 2003 E3037 Customers code 5. Commissioned Research Sub area code 74 Materials technology Author/s (editor/s) Project manager S.J. Savage S.J. Savage Approved by Sponsoring agency Scientifically and technically responsible Report title Defence applications of new forms of carbon Abstract (not more than 200 words) This report briefly reviews some applications of new forms of carbon (fullerenes, carbon nanotubes and nanofibres) in military technology. Selected reports are summarised and discussed, and a number of military applications suggested. The report contains recommendations for future studies. Keywords nanotechnology, carbon, defence applications, nanotubes, fullerenes Further bibliographic information Language English ISSN 1650-1942 Pages 15 p. Price acc. to pricelist 2 Utgivare Rapportnummer, ISRN Klassificering Totalförsvarets Forskningsinstitut - FOI FOI-R--1103--SE Underlagsrapport Sensorteknik Forskningsområde Box 1165 7. Farkoster 581 11 Linköping Månad, år Projektnummer December 2003 E3037 Verksamhetsgren 5. Uppdragsfinansierad verksamhet Delområde 74 Materialteknik Författare/redaktör Projektledare S.J. -
(Title of the Thesis)*
Rationally Engineering Porous Carbon-Based Metal Nanocomposites for Efficient and Durable Electrocatalysis Applications by Zhen Zhang A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Doctor of Philosophy in Chemical Engineering Waterloo, Ontario, Canada, 2021 © Zhen Zhang 2021 Examining Committee Membership The following served on the Examining Committee for this thesis. The decision of the Examining Committee is by majority vote. External Examiner Dr. Feng Jiao Associate Professor Supervisor Dr. Zhongwei Chen Professor Internal Member Dr. Ali Elkamel Professor Internal Member Dr. Jeff Gostick Associate Professor Internal-external Member Dr. Zhongchao (Chao) Tan Professor ii Author’s Declaration This thesis consists of material all of which I authored or co-authored: see Statement of Contributions included in the thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. iii Statement of Contributions The body of this thesis is based upon a combination of published works. Various chapters are adapted from the following list of publications. Chapter 2 of this thesis consist of a review paper that was co-authored by myself, my supervisor, Dr. Zachary Paul Cano, Dr. Dan Luo, Dr. Haozhen Dou, Dr. Aiping Yu. I am the first author of this paper. I conceptualized study design, and performed data collection and manuscript writing. My coauthors reviewed the manuscript and provided feedback on draft manuscript. “Rational Design of Tailored Porous Carbon-Based Materials for CO2 Capture”, Journal of Materials Chemistry A, 2019, 7 (37), 20985-21003. -
Mechanical Measurements of Ultra-Thin Amorphous Carbon Membranes Using Scanning Atomic Force Microscopy
CARBON 50 (2012) 2220– 2225 Available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/carbon Mechanical measurements of ultra-thin amorphous carbon membranes using scanning atomic force microscopy Ji Won Suk, Shanthi Murali, Jinho An, Rodney S. Ruoff * Department of Mechanical Engineering and the Materials Science and Engineering Program, The University of Texas at Austin, One University Station C2200, Austin, TX 78712-0292, United States ARTICLE INFO ABSTRACT Article history: The elastic modulus of ultra-thin amorphous carbon films was investigated by integrating Received 21 October 2011 atomic force microscopy (AFM) imaging in contact mode with finite element analysis (FEA). Accepted 11 January 2012 Carbon films with thicknesses of 10 nm and less were deposited on mica by electron beam Available online 20 January 2012 evaporation and transferred onto perforated substrates for mechanical characterization. The deformation of these ultra-thin membranes was measured by recording topography images at different normal loads using contact mode AFM. The obtained force-distance relationship at the center of membranes was analyzed to evaluate both the Young’s modulus and pre-stress by FEA. From these measurements, Young’s moduli of 178.9 ± 32.3, 193.4 ± 20.0, and 211.1 ± 44.9 GPa were obtained for 3.7 ± 0.08, 6.8 ± 0.12, and 10.4 ± 0.17 nm thick membranes, respectively. Raman spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy were used for characterizing the chemical and structural properties of the films, including the content of sp2 and sp3 hybrid- ized carbon atoms. Ó 2012 Elsevier Ltd. All rights reserved.