The R3-Carbon Allotrope
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Graphene – Diamond Nanomaterials: a Status Quo Review
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 July 2021 doi:10.20944/preprints202107.0647.v1 Article Graphene – diamond nanomaterials: a status quo review 1 Jana Vejpravová ,* 1 Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague 2, Czech Republic. * Correspondence: JV, [email protected] Abstract: Carbon nanomaterials with a different character of the chemical bond – graphene (sp2) and nanodiamond (sp3) are the building bricks for a new class of all-carbon hybrid nanomaterials, where the two different carbon networks with the sp3 and sp2 hybridization coexist, interact and even transform into one another. The unique electronic, mechanical, and chemical properties of the two border nanoallotropes of carbon ensure the immense application potential and versatility of these all-carbon graphene – diamond nanomaterials. The review gives an overview of the current state of the art of graphene – diamond nanomaterials, including their composites, heterojunctions, and other hybrids for sensing, electronic, energy storage, and other applications. Also, the graphene- to-diamond and diamond-to-graphene transformations at the nanoscale, essential for innovative fabrication, and stability and chemical reactivity assessment are discussed based on extensive theo- retical, computational, and experimental studies. Keywords: graphene; diamond; nanodiamond; diamane; graphene-diamond nanomaterials; all car- bon materials; electrochemistry; mechanochemistry; sensor; supercapacitor; -
The Raman Spectrum of Amorphous Diamond
" r / J 1 U/Y/ — f> _ - ^ /lj / AU9715866 THE RAMAN SPECTRUM OF AMORPHOUS DIAMOND S.Prawer, K.W. Nugent, D.N. Jamieson School of Physics and Microanalytical Research Centre University of Melbourne, Parkville, Victoria, Australia, 3052. ABSTRACT: We present the Raman spectrum of an amorphous, fully sp^-bonded carbon network. The reduced Raman spectrum agrees closely with the calculated density of states of diamond. The results have been obtained from nanoclusters produced deep inside a single crystal diamond irradiated with MeV He ions. The deep implantation creates amorphous sp3 bonded C clusters along the ion tracks, within a largely intact diamond matrix. The matrix maintains the clusters under high pressure, preventing the relaxation to sp% bonded structures. Sharp peaks associated with defect structures unique to MeV ion implantation are observed at 1422, 1447, 1467, 1496, 1540, 1563, 1631, 1649, 1683 and 1726 cm'1. We also observe a shoulder in the reduced Raman spectrum at about 1120 cm'1 which we tentatively attribute to quantum confinement effects in the carbon nanoclusters. The results provide the Raman signature that might be expected from tetrahedrally bonded amorphous carbon films with no graphite-like amorphous components. 2 Tetrahedrally bonded amorphous (‘diamond-like ’) carbon has attracted a great deal of both experimental and theoretical interest of the past few years [1]. There have been numerous efforts to model the vibrational spectrum of sp3 bonded amorphous carbon networks, but until now there has been no experimental confirmation, in the form of a Raman spectrum, to test the accuracy of these model calculations. This is primarily because most sp3 rich amorphous carbon films contain a minimum of 5-15% of sp2 bonded carbon. -
Closed Network Growth of Fullerenes
ARTICLE Received 9 Jan 2012 | Accepted 18 Apr 2012 | Published 22 May 2012 DOI: 10.1038/ncomms1853 Closed network growth of fullerenes Paul W. Dunk1, Nathan K. Kaiser2, Christopher L. Hendrickson1,2, John P. Quinn2, Christopher P. Ewels3, Yusuke Nakanishi4, Yuki Sasaki4, Hisanori Shinohara4, Alan G. Marshall1,2 & Harold W. Kroto1 Tremendous advances in nanoscience have been made since the discovery of the fullerenes; however, the formation of these carbon-caged nanomaterials still remains a mystery. Here we reveal that fullerenes self-assemble through a closed network growth mechanism by incorporation of atomic carbon and C2. The growth processes have been elucidated through experiments that probe direct growth of fullerenes upon exposure to carbon vapour, analysed by state-of-the-art Fourier transform ion cyclotron resonance mass spectrometry. Our results shed new light on the fundamental processes that govern self-assembly of carbon networks, and the processes that we reveal in this study of fullerene growth are likely be involved in the formation of other carbon nanostructures from carbon vapour, such as nanotubes and graphene. Further, the results should be of importance for illuminating astrophysical processes near carbon stars or supernovae that result in C60 formation throughout the Universe. 1 Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, USA. 2 Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, USA. 3 Institut des Matériaux Jean Rouxel, CNRS UMR 6502, Université de Nantes, BP32229 Nantes, France. 4 Department of Chemistry and Institute for Advanced Research, Nagoya University, Nagoya 464-8602, Japan. -
(SAM) Alloy Parts Using X-Ray CT
Research Article ISSN 2639-9466 Nanotechnology & Applications Porosity Determination and Characterization of Binder Jet Printed Structural Amorphous Metal (SAM) Alloy Parts Using X-Ray CT Amamchukwu B. Ilogebe1*, Benedict Uzochukwu2, and Amy M. Elliot3 1North Carolina A&T State University, US. *Correspondence: Amamchukwu B. Ilogebe, North Carolina A&T State University, 2Virginia State University, US. US. 3Oak Ridge National Laboratory, US. Received: 04 November 2019; Accepted: 29 November 2019 Citation: Amamchukwu B. Ilogebe, Benedict Uzochukwu, Amy M. Elliot. Porosity Determination and Characterization of Binder Jet Printed Structural Amorphous Metal (SAM) Alloy Parts Using X-Ray CT. Nano Tech Appl. 2019; 2(1): 1-6. ABSTRACT The advent of Binder jet additive manufacturing continued to a revelation in the manufacture of intricate metal parts. This technology has been utilized in medical, aerospace and automotive industries, not much has been reported in the printing of parts from amorphous metal powders, which have found numerous applications in engineering because of their special properties. In this research, special emphasis was placed on two different manufacturing methods for structural amorphous metal alloy (SAM alloy); Die compaction and Binder jet printing. Samples of SAM alloy was created from these two-manufacturing methods and were subsequently, sintered, analyzed and compared. Previous studies show that as much as up to 50% porosity could be recorded in binder jet printing [1,2]. In this regard, different techniques were used to determine the percentage porosity from both manufacturing methods. The Archimedes method was used to determine the density and percentage porosity of the parts from the two methods. Similarly, percentage porosity was also determined using different tools in computed tomography (CT) analysis. -
Evidence for Glass Behavior in Amorphous Carbon
Journal of C Carbon Research Article Evidence for Glass Behavior in Amorphous Carbon Steven Best , Jake B. Wasley, Carla de Tomas, Alireza Aghajamali , Irene Suarez-Martinez * and Nigel A. Marks * Department of Physics and Astronomy, Curtin University, Perth, WA 6102, Australia; [email protected] (S.B.); [email protected] (J.B.W.); [email protected] (C.d.T.); [email protected] (A.A.) * Correspondence: [email protected] (I.S.-M.); [email protected] (N.A.M.) Received: 15 July 2020; Accepted: 24 July 2020; Published: 30 July 2020 Abstract: Amorphous carbons are disordered carbons with densities of circa 1.9–3.1 g/cc and a mixture of sp2 and sp3 hybridization. Using molecular dynamics simulations, we simulate diffusion in amorphous carbons at different densities and temperatures to investigate the transition between amorphous carbon and the liquid state. Arrhenius plots of the self-diffusion coefficient clearly demonstrate that there is a glass transition rather than a melting point. We consider five common carbon potentials (Tersoff, REBO-II, AIREBO, ReaxFF and EDIP) and all exhibit a glass transition. Although the glass-transition temperature (Tg) is not significantly affected by density, the choice of potential can vary Tg by up to 40%. Our results suggest that amorphous carbon should be interpreted as a glass rather than a solid. Keywords: amorphous carbon; liquid carbon; glass-transition temperature; molecular dynamics 1. Introduction Amorphous carbons are often described as one of the allotropes of carbon, along with graphite, diamond and fullerenes. -
Mechanical Measurements of Ultra-Thin Amorphous Carbon Membranes Using Scanning Atomic Force Microscopy
CARBON 50 (2012) 2220– 2225 Available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/carbon Mechanical measurements of ultra-thin amorphous carbon membranes using scanning atomic force microscopy Ji Won Suk, Shanthi Murali, Jinho An, Rodney S. Ruoff * Department of Mechanical Engineering and the Materials Science and Engineering Program, The University of Texas at Austin, One University Station C2200, Austin, TX 78712-0292, United States ARTICLE INFO ABSTRACT Article history: The elastic modulus of ultra-thin amorphous carbon films was investigated by integrating Received 21 October 2011 atomic force microscopy (AFM) imaging in contact mode with finite element analysis (FEA). Accepted 11 January 2012 Carbon films with thicknesses of 10 nm and less were deposited on mica by electron beam Available online 20 January 2012 evaporation and transferred onto perforated substrates for mechanical characterization. The deformation of these ultra-thin membranes was measured by recording topography images at different normal loads using contact mode AFM. The obtained force-distance relationship at the center of membranes was analyzed to evaluate both the Young’s modulus and pre-stress by FEA. From these measurements, Young’s moduli of 178.9 ± 32.3, 193.4 ± 20.0, and 211.1 ± 44.9 GPa were obtained for 3.7 ± 0.08, 6.8 ± 0.12, and 10.4 ± 0.17 nm thick membranes, respectively. Raman spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy were used for characterizing the chemical and structural properties of the films, including the content of sp2 and sp3 hybrid- ized carbon atoms. Ó 2012 Elsevier Ltd. All rights reserved. -
Fabrication of Glassy Carbon Microstructures by Soft Lithography
Sensors and Actuators A72Ž. 1999 125±139 Fabrication of glassy carbon microstructures by soft lithography Olivier J.A. Schueller, Scott T. Brittain, George M. Whitesides ) HarÕard UniÕersity, Department of Chemistry and Chemical Biology, 12 Oxford Street, Cambridge, MA 02138, USA Received 22 April 1998; revised 10 August 1998; accepted 10 August 1998 Abstract This paper describes fabrication techniques for the fabrication of glassy carbon microstructures. Molding of a resin of polyŽ furfuryl alcohol. using elastomeric molds yields polymeric microstructures, which are converted to free-standing glassy carbon microstructures by heating Ž.T ;500±11008C under argon. This approach allows the preparation of macroscopic structures Ž several mm2. with microscopic features Ž.;2 mm . Deformation of the molds during molding of the resin allows preparation of curved microstructures. The paper also presents a method of incorporating these structures on a chip by masking and electroplating. q 1999 Elsevier Science S.A. All rights reserved. Keywords: Glassy carbon; Microfabrication; Soft lithography 1. Introduction dielectrics are deposited and patterned onto the surface; subtractive processes are based on etching. The range of This paper describes the preparation of glassy carbon structures that can be generated by etching is constrained microstructures by a procedure in which the microstruc- by the requirement of some etching procedures for specific tures of polymeric precursors to carbon are first formed by crystalline orientation: curved or rounded structures may wx micromolding, and then converted to glassy carbon by heat be particularly difficult to make 4 . treatmentŽ. 500±11008C under an inert atmosphere. Re- We have recently developed a range of microfabrication markably, the overall structure of the polymeric shape is techniques for the preparation of microstructures in or- wx largely retained during the carbonization stage, and the ganic polymers 7,8 . -
Curved Carbon Nanotubes: from Unique Geometries to Novel Properties and Peculiar Applications
Nano Research 2014, 7(5): 626–657 DOI 10.1007/s12274-014-0431-1 Curved carbon nanotubes: From unique geometries to novel properties and peculiar applications Lizhao Liu1,2, Feng Liu2 (), and Jijun Zhao1 () 1 Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China 2 Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, USA Received: 26 November 2013 ABSTRACT Revised: 15 February 2014 Incorporating pentagons and heptagons into the hexagonal networks of Accepted: 17 February 2014 pristine carbon nanotubes (CNTs) can form various CNT-based nanostructures, as pentagons and heptagons will bend or twist the CNTs by introducing © Tsinghua University Press positive and negative curvature, respectively. Some typical so-made CNT-based and Springer-Verlag Berlin nanostructures are reviewed in this article, including zero-dimensional toroidal Heidelberg 2014 CNTs, and one-dimensional kinked and coiled CNTs. Due to the presence of non-hexagonal rings and curved geometries, such nanostructures possess rather KEYWORDS different structural, physical and chemical properties from their pristine CNT pentagon, counterparts, which are reviewed comprehensively in this article. Additionally, heptagon, their synthesis, modelling studies, and potential applications are discussed. toroidal CNTs, kinked CNTs, coiled CNTs 1 Introduction the pentagons and heptagons can bend and twist the CNTs into a variety of different shapes, extending CNTs The discovery of carbon nanotubes (CNTs) can be into a variety of CNT-based nanostructures, including considered a prominent landmark of nanomaterials finite CNTs (such as carbon nanocaps, carbon nanotips, and nanotechnology. In geometry, CNTs can be formed and carbon nanocones) [1–3], toroidal CNTs [4], kinked by rolling up perfect graphene sheets. -
Process, Structure, Property and Applications of Metallic Glasses
AIMS Materials Science, 3(3): 1022-1053. DOI: 10.3934/matersci.2016.3.1022 Received: 15 March 2016 Accepted: 07 July 2016 Published: 26 July 2016 http://www.aimspress.com/journal/Materials Short review Process, structure, property and applications of metallic glasses Bindusri Nair and B. Geetha Priyadarshini * Nanotech Research Innovation and Incubation Centre, PSG Institute of Advanced Studies, Coimbatore, Tamil Nadu, India-641004 * Correspondence: Email: [email protected]. Abstract: Metallic glasses (MGs) are gaining immense technological significance due to their unique structure-property relationship with renewed interest in diverse field of applications including biomedical implants, commercial products, machinery parts, and micro-electro-mechanical systems (MEMS). Various processing routes have been adopted to fabricate MGs with short-range ordering which is believed to be the genesis of unique structure. Understanding the structure of these unique materials is a long-standing unsolved mystery. Unlike crystalline counterpart, the outstanding properties of metallic glasses owing to the absence of grain boundaries is reported to exhibit high hardness, excellent strength, high elastic strain, and anti-corrosion properties. The combination of these remarkable properties would significantly contribute to improvement of performance and reliability of these materials when incorporated as bio-implants. The nucleation and growth of metallic glasses is driven by thermodynamics and kinetics in non-equilibrium conditions. This comprehensive review article discusses the various attributes of metallic glasses with an aim to understand the fundamentals of relationship process-structure-property existing in such unique class of material. Keywords: metallic glasses; glass transition; amorphous; mechanical properties 1. Introduction Metallic Glasses (MG) are a class of materials which has caught the eye of many researchers since Klement et al’s [1] first work on Au-Si alloys in early 1960’s. -
Mechanical Behavior of Amorphous Alloys
Acta Materialia 55 (2007) 4067–4109 www.elsevier.com/locate/actamat Overview No. 144 Mechanical behavior of amorphous alloys Christopher A. Schuh a,*, Todd C. Hufnagel b, Upadrasta Ramamurty c a Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, M.I.T., Cambridge, MA 02139, USA b Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA c Department of Materials Engineering, Indian Institute of Science, Bangalore-560 012, India Received 14 August 2006; received in revised form 29 January 2007; accepted 31 January 2007 Available online 19 April 2007 Abstract The mechanical properties of amorphous alloys have proven both scientifically unique and of potential practical interest, although the underlying deformation physics of these materials remain less firmly established as compared with crystalline alloys. In this article, we review recent advances in understanding the mechanical behavior of metallic glasses, with particular emphasis on the deformation and fracture mechanisms. Atomistic as well as continuum modeling and experimental work on elasticity, plastic flow and localization, frac- ture and fatigue are all discussed, and theoretical developments are connected, where possible, with macroscopic experimental responses. The role of glass structure on mechanical properties, and conversely, the effect of deformation upon glass structure, are also described. The mechanical properties of metallic glass-derivative materials – including in situ and ex situ composites, foams and nanocrystal- reinforced glasses – are reviewed as well. Finally, we identify a number of important unresolved issues for the field. Ó 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. Keywords: Metallic glass; Amorphous metal; Mechanical properties 1. -
Hydrogenated Amorphous Carbon (A-C:H) Vs
A&A 492, 127–133 (2008) Astronomy DOI: 10.1051/0004-6361:200810622 & c ESO 2008 Astrophysics Carbonaceous dust in interstellar shock waves: hydrogenated amorphous carbon (a-C:H) vs. graphite L. Serra Díaz-Cano and A. P. Jones Institut d’Astrophysique Spatiale (IAS), Bâtiment 121, Université Paris-Sud 11 and CNRS, 91405 Orsay, France e-mail: [email protected] Received 16 July 2008 / Accepted 13 October 2008 ABSTRACT Context. Observations of regions of the interstellar medium affected by shock waves indicate gas phase abundances of carbon that are close to solar. In quiescent regions less than half of the carbon is in the gas phase. Aims. We propose that hydrogenated amorphous carbon (a-C:H), in its many guises, is the most probable form of carbonaceous grain material in the interstellar medium and study its erosion in shock waves. Methods. We have used the physical properties typical of a-C:H materials, rather than graphite/amorphous carbon, to study a-C:H ero- sion during ion irradiation and fragmentation in grain-grain collisions. Using SRIM we study material-, surface- and size-dependent sputtering effects and introduce these effects into a shock model. Results. We find significantly greater destruction for a-C:H, than for graphite, a result that brings the models into better agreement with existing observations of shocked regions of the ISM. Carbon grain erosion in shock waves therefore appears to be much more efficient than predicted by existing models. Conclusions. Interstellar hydrogenated amorphous carbon dust is, apparently, rather easily destroyed in shocks and must therefore be more rapidly re-cycled and re-formed during its journey through the interstellar medium than previously-thought. -
Atomistic Modelling of CVD Synthesis of Carbon Nanotubes and Graphene Cite This: Nanoscale, 2013, 5, 6662 James A
Nanoscale View Article Online FEATURE ARTICLE View Journal | View Issue Atomistic modelling of CVD synthesis of carbon nanotubes and graphene Cite this: Nanoscale, 2013, 5, 6662 James A. Elliott,*a Yasushi Shibuta,b Hakim Amara,c Christophe Bicharad and Erik C. Neytse We discuss the synthesis of carbon nanotubes (CNTs) and graphene by catalytic chemical vapour deposition (CCVD) and plasma-enhanced CVD (PECVD), summarising the state-of-the-art understanding of mechanisms controlling their growth rate, chiral angle, number of layers (walls), diameter, length and quality (defects), before presenting a new model for 2D nucleation of a graphene sheet from amorphous carbon on a nickel surface. Although many groups have modelled this process using a variety of techniques, we ask whether there are any complementary ideas emerging from the different proposed growth mechanisms, and whether different modelling techniques can give the same answers for a given mechanism. Subsequently, by comparing the results of tight-binding, semi-empirical fi Creative Commons Attribution 3.0 Unported Licence. molecular orbital theory and reactive bond order force eld calculations, we demonstrate that graphene on crystalline Ni(111) is thermodynamically stable with respect to the corresponding amorphous metal and carbon structures. Finally, we show in principle how a complementary heterogeneous nucleation Received 17th April 2013 step may play a key role in the transformation from amorphous carbon to graphene on the metal Accepted 5th June 2013 surface. We conclude that achieving the conditions under which this complementary crystallisation DOI: 10.1039/c3nr01925j process can occur may be a promising method to gain better control over the growth processes of both www.rsc.org/nanoscale graphene from flat metal surfaces and CNTs from catalyst nanoparticles.