A New Morphometric Method for the Sella Turcica and the Hypophyseal Fossa and Its Clinical Relevance
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Normal Dimensions of the Sella Turcica in North Karnataka Region- a Computed Tomographic Study Lohit V Shaha*, Babasaheb G Patil**, Sanjeev I Kolagi***
Original Article Pravara Med Rev 2018;10(3) The normal dimensions of the Sella Turcica in North Karnataka region- A Computed tomographic study Lohit V Shaha*, Babasaheb G Patil**, Sanjeev I Kolagi*** Abstract Aim of the study: Sella turcica is an important structure in middle cranial fossa. It is a saddle shaped concavity in the body of sphenoid bone. It is bounded by dura of cavernous sinuses bilaterally, the lamina dura and dorsum sellae posteriorly and the tuberculum sellae and planum sphenoidale anteriorly. The present study was undertaken to study the normal dimensions of sella turcica morphometry. Material and methods: This observational study was conducted in S Nijalingappa medical college and HSK hospital, Bagalkot. 1650 computed tomographic images of healthy Indians aged 21-70 years were collected. Radiant Dicom viewer software was used to determine the linear dimensions of sella turcica. Data was analysed using t test and ANOVA with Epi Info software. Results: The mean values (in millimeter) of length, width and height of sella turcica in different age groups was 8.80 ± 1.65, 10.83 ± 1.35 and 8.52 ± 1.50. Conclusion: The dimensions of sella turcica vary in different populations and these findings could form an initial database for Indian population which may provide a good anatomical knowledge during objective evaluation and detection of pathological conditions of sella turcica and hypophysis cerebri. Key words: Sphenoid bone, Linear dimensions, Hypophysis cerebri Introduction Sella turcica is an important structure in middle cranial fossa. It is safe treatment of various pituitary disorders such as a saddle shaped concavity in the body of sphenoid bone. -
Endoscopic Anatomical Study of the Arachnoid Architecture on the Base of the Skull
DOI 10.1515/ins-2012-0005 Innovative Neurosurgery 2013; 1(1): 55–66 Original Research Article Peter Kurucz* , Gabor Baksa , Lajos Patonay and Nikolai J. Hopf Endoscopic anatomical study of the arachnoid architecture on the base of the skull. Part I: The anterior and middle cranial fossa Abstract: Minimally invasive neurosurgery requires a Introduction detailed knowledge of microstructures, such as the arach- noid membranes. In spite of many articles addressing The arachnoid was discovered and named by Gerardus arachnoid membranes, its detailed organization is still not Blasius in 1664 [ 22 ]. Key and Retzius were the first who well described. The aim of this study is to investigate the studied its detailed anatomy in 1875 [ 11 ]. This description was topography of the arachnoid in the anterior cranial fossa an anatomical one, without mentioning clinical aspects. The and the middle cranial fossa. Rigid endoscopes were intro- first clinically relevant study was provided by Liliequist in duced through defined keyhole craniotomies, to explore 1959 [ 13 ]. He described the radiological anatomy of the sub- the arachnoid structures in 110 fresh human cadavers. We arachnoid cisterns and mentioned a curtain-like membrane describe the topography and relationship to neurovascu- between the supra- and infratentorial cranial space bearing lar structures and suggest an intuitive terminology of the his name still today. Lang gave a similar description of the arachnoid. We demonstrate an “ arachnoid membrane sys- subarachnoid cisterns in 1973 [ 12 ]. With the introduction of tem ” , which consists of the outer arachnoid and 23 inner microtechniques in neurosurgery, the detailed knowledge arachnoid membranes in the anterior fossa and the middle of the surgical anatomy of the cisterns became more impor- fossa. -
MR of the Diaphragma Sellae
765 MR of the Diaphragma Sellae David L. Daniels 1 The appearance of the diaphragma sellae is described in cryomicrotomic sections Kathleen W. Pojunas1 and on MR in patients with and without intra- and suprasellar masses. On MR, it appears David P. Kilgore 1 as a thin band of negligible signal that is best shown when adjacent CSF or a mass has Peter Pech 2 greater signal intensity. Its position or absence can be used to differentiate intrasellar Glenn A. Meyer masses with suprasellar components from suprasellar masses. Alan L. Williams 1 1 Victor M. Haughton Differentiating intrasellar masses with suprasellar components from suprasellar masses may be difficult with CT because the pituitary gland, diaphragma sellae, and suprasellar masses may enhance equally after intravenous contrast adminis tration. Theoretically, MR should be able to show the diaphragma sellae because other dural reflections, such as the falx cerebri and walls of the cavernous sinuses, can be differentiated from the adjacent CSF when it has greater signal intensity [1 ]. Materials and Methods Sagittal or coronal anatomic images of the sella were obtained by sectioning four fresh frozen cadaver heads with a horizontally cutting heavy-duty sledge cryomicrotome (LKB 2250) and then serially photographing the surfaces of the specimens [2]. In the anatomic images, the diaphragma sellae and associated blood vessels, the pituitary gland, and the infundibulum were identified using anatomic literature [3-5]. Ten normal volunteers and 22 patients were studied with MR . The patients included 12 with pituitary microadenomas that were verified by surgical findings (four cases) and by CT, clinical , and chemical findings [6]; seven with pituitary macroadenomas and two with tuber culum sellae meningiomas that were verified by CT and surgery; and one with a large suprasellar aneurysm that was verified by CT and angiography. -
Perinate and Eggs of a Giant Caenagnathid Dinosaur from the Late Cretaceous of Central China
ARTICLE Received 29 Jul 2016 | Accepted 15 Feb 2017 | Published 9 May 2017 DOI: 10.1038/ncomms14952 OPEN Perinate and eggs of a giant caenagnathid dinosaur from the Late Cretaceous of central China Hanyong Pu1, Darla K. Zelenitsky2, Junchang Lu¨3, Philip J. Currie4, Kenneth Carpenter5,LiXu1, Eva B. Koppelhus4, Songhai Jia1, Le Xiao1, Huali Chuang1, Tianran Li1, Martin Kundra´t6 & Caizhi Shen3 The abundance of dinosaur eggs in Upper Cretaceous strata of Henan Province, China led to the collection and export of countless such fossils. One of these specimens, recently repatriated to China, is a partial clutch of large dinosaur eggs (Macroelongatoolithus) with a closely associated small theropod skeleton. Here we identify the specimen as an embryo and eggs of a new, large caenagnathid oviraptorosaur, Beibeilong sinensis. This specimen is the first known association between skeletal remains and eggs of caenagnathids. Caenagnathids and oviraptorids share similarities in their eggs and clutches, although the eggs of Beibeilong are significantly larger than those of oviraptorids and indicate an adult body size comparable to a gigantic caenagnathid. An abundance of Macroelongatoolithus eggs reported from Asia and North America contrasts with the dearth of giant caenagnathid skeletal remains. Regardless, the large caenagnathid-Macroelongatoolithus association revealed here suggests these dinosaurs were relatively common during the early Late Cretaceous. 1 Henan Geological Museum, Zhengzhou 450016, China. 2 Department of Geoscience, University of Calgary, Calgary, Alberta, Canada T2N 1N4. 3 Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China. 4 Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9. 5 Prehistoric Museum, Utah State University, 155 East Main Street, Price, Utah 84501, USA. -
GLOSSARY of MEDICAL and ANATOMICAL TERMS
GLOSSARY of MEDICAL and ANATOMICAL TERMS Abbreviations: • A. Arabic • abb. = abbreviation • c. circa = about • F. French • adj. adjective • G. Greek • Ge. German • cf. compare • L. Latin • dim. = diminutive • OF. Old French • ( ) plural form in brackets A-band abb. of anisotropic band G. anisos = unequal + tropos = turning; meaning having not equal properties in every direction; transverse bands in living skeletal muscle which rotate the plane of polarised light, cf. I-band. Abbé, Ernst. 1840-1905. German physicist; mathematical analysis of optics as a basis for constructing better microscopes; devised oil immersion lens; Abbé condenser. absorption L. absorbere = to suck up. acervulus L. = sand, gritty; brain sand (cf. psammoma body). acetylcholine an ester of choline found in many tissue, synapses & neuromuscular junctions, where it is a neural transmitter. acetylcholinesterase enzyme at motor end-plate responsible for rapid destruction of acetylcholine, a neurotransmitter. acidophilic adj. L. acidus = sour + G. philein = to love; affinity for an acidic dye, such as eosin staining cytoplasmic proteins. acinus (-i) L. = a juicy berry, a grape; applied to small, rounded terminal secretory units of compound exocrine glands that have a small lumen (adj. acinar). acrosome G. akron = extremity + soma = body; head of spermatozoon. actin polymer protein filament found in the intracellular cytoskeleton, particularly in the thin (I-) bands of striated muscle. adenohypophysis G. ade = an acorn + hypophyses = an undergrowth; anterior lobe of hypophysis (cf. pituitary). adenoid G. " + -oeides = in form of; in the form of a gland, glandular; the pharyngeal tonsil. adipocyte L. adeps = fat (of an animal) + G. kytos = a container; cells responsible for storage and metabolism of lipids, found in white fat and brown fat. -
Lateral Supraorbital Approach - Simple, Clean, and Preserving Normal Anatomy
From the Department of Neurosurgery Helsinki University Central Hospital University of Helsinki Helsinki, Finland Lateral Supraorbital Approach - Simple, Clean, and Preserving Normal Anatomy Rossana Romani Academic Dissertation To be presented with the permission of the Faculty of Medicine of the University of Helsinki For Public Discussion in the Lecture Hall 1 of Töölö Hospital, Helsinki On November 11th, 2011 at 12.00 o’clock noon Helsinki 2011 1 Supervised by: Juha Hernesniemi, M.D., Ph.D., Professor and Chairman Department of Neurosurgery, Helsinki University Central Hospital, Helsinki, Finland Aki Laakso, M.D., Ph.D., Associate Professor Department of Neurosurgery, Helsinki University Central Hospital, Helsinki, Finland Marko Kangasniemi, M.D., Ph.D., Associate Professor Helsinki Medical Imaging Center, Helsinki University Central Hospital, Helsinki, Finland Reviewed by: Esa Heikkinen, M.D., Ph.D., Associate Professor Department of Neurosurgery, Oulu University Hospital, Oulu, Finland Esa Kotilainen, M.D., Ph.D., Associate Professor Department of Neurosurgery, Turku University Central Hospital, Turku, Finland To be discussed with: Roberto Delfini, M.D., Ph.D., Professor and Chairman of Neurosurgery Department of Neurology and Psychiatry, University of Rome, “Sapienza”, Rome, Italy 1st Edition 2011 © Rossana Romani 2011 Cover Drawings: Front © Rossana Romani 2011, Back © Roberto Crosa 2011 ISBN 978-952-10-7253-6 (paperback) ISBN 978-952-10-7254-3 (PDF) http://ethesis.helsinki.fi/ Unigrafia Helsinki Helsinki 2011 2 To my mother 3 Author’s contact information: Rossana Romani Department of Neurosurgery Helsinki University Central Hospital Topeliuksenkatu 5 00260 Helsinki Finland Mobile: +358 50 427 0718 Fax: +358 9 471 87560 e-mail: [email protected] 4 Table of Contents ABSTRACT............................................................................................................................... -
Median Occipital Fossa: Is It Really a Sign of Crime Or Simply an Anatomical Variant?
IJAE Vol. 124, n. 1: 104-106, 2019 ITALIAN JOURNAL OF ANATOMY AND EMBRYOLOGY Letter - Basic and Applied Anatomy Median occipital fossa: is it really a sign of crime or simply an anatomical variant? Domenico Chirchiglia1,*, Pasquale Chirchiglia1, Rosa Marotta2 Departments of 1Neurosurgery and 2Health Sciences, University Of Catanzaro, Italy Abstract Anatomical variants are alterations of the form, thickness, length, width, position of organs and anatomic structures that can cause problems of a functional nature. They can be vascular, bony, muscular and more. They represent anomalies that may cause disturbances or do not cause changes in functions. The criminologist Cesare Lombroso had correlated the anatomical varia- tions to the criminal tendency. The most emblematic case was that related to the alleged brig- and Villella, on which Lombroso, performing the autopsy, found in the skull the so-called medi- al occipital fossa or a third dimple. He stated that the median occipital dimple was considered a sign of atavism, the expression of the criminal. In fact all the anatomical variants described by Lombroso are variations of normality. No one ever said that anatomical variants were a sign of crime. In conclusion, anatomical variants cannot be related to crime tendency, therefore the debated median occipital fossa is only and simply an anatomical variant. Key words Anatomy, anatomical variants, median occipital fossa, Cesare Lombroso. Dear Editor, The occipital bone is the main bone of the occiput, lower part of the skull. It is trapezoidal in shape and overlies the occipital lobes of the cerebrum. The base of the skull in the occipital bone contains the foramen magnum, which allows the passage of the spinal cord. -
Morphological (Length, Depth, and Diameter) Study of Sella Turcica In
Original Article Morphological (Length, Depth, and Diameter) Study of Sella Turcica in Different Mandibular Growth Patterns in Indians Siddhartha Kaustav Konwar1, Anshul Singhla1, Rimlee Bayan2 Department of Orthodontics, I.T.S. Dental College Hospital and Research Centre, Greater Noida, Uttar Pradesh, India ABSTRACT Aim: This study aims to analyze the morphological dimensions of sella turcica to determine if differences exist due to gender, age or in subjects with different skeletal patterns. Methods: A total of 100 (43 males and 57 females) sella turcica cephalometric radiograph was traced. Linear dimensions of sella turcica (length, depth, and diameter [in mm]) were measured and skeletal shape/type (normal, bridging, double contour, oblique, irregular, and pyramidal) was assessed. A Student’s t-test was used to calculate the mean differences in linear dimensions of sella turcica between males and females and between different age groups, skeletal types. A Chi-square test was used to test the interrelationship of gender, age and skeletal types with the shape of sella turcica. Results: In low angle group subjects, 80% of the subjects had normal sella and 20% of the subjects had variations in morphology and in high angle group subjects, 76% of the subjects had a normal sella, and 24% of the subjects had variations in the morphology. Conclusions: The shape of the sella turcica was normal in 78% of the subjects, and there was a significant difference in length between high and low angle subjects, where the length of sella was larger in the low angle subjects and the distribution of shape of sella turcica was found to be significantly different among both high and low angle types. -
Digital Neuroanatomy
DIGITAL NEUROANATOMY SKULL, MENINGES, AND SPINAL CORD George R. Leichnetz, Ph.D. Professor, Department of Anatomy & Neurobiology Virginia Commonwealth University 2004 Press the Å and Æ keys on your keyboard to navigate through this lecture Skull The interior of the skull has three depressions: Anterior the anterior, middle, cranial fossa holds frontal and posterior cranial lobe fossae. Middle cranial fossa holds temporal lobe Posterior cranial fossa holds cerebellum & brainstem Anterior Cranial Fossa Crista galli Anterior Cribriform plate of ethmoid transmits Cranial Fossa olfactory nerves (CN I) Lesser wing of sphenoid Sphenoid Bone Anterior clinoid process Sella turcica holds pituitary gland Optic foramen transmits optic nerve (CN II) Middle Cranial Fossa Superior orbital Optic foramen fissure transmits transmits optic oculomotor (III), nerve (II) trochlear (IV), and abducens (VI) nerves, plus Middle ophthalmic division of the Cranial Fossa trigeminal (V) nerve Foramen rotundum transmits maxillary division of V Foramen ovale transmits mandibular division of V Internal carotid foramen transmits internal carotid artery Foramen spinosum transmits middle menigeal artery Posterior Cranial Fossa Sella turcica Foramen rotundum Foramen ovale Foramen Internal auditory spinosum meatus transmits CN VII and VIII Internal carotid foramen and carotid canal Petrous ridge of temporal bone Sigmoid sinus Foramen magnum Jugular foramen Hypoglossal transmits CN canal transmits IX, X, and XI CN XII Meninges and Dural Sinuses The meninges include: dura mater, arachnoid membrane, and pia mater. The dura consists of two layers: an outer periosteal layer that forms the periosteum on the inside of the cranial bone (no epidural space), and an inner layer, the meningeal layer, that gives rise to dural reflections (form partitions). -
Tumors of the Meninges and Related Tissues: Meningiomas and Sarcomas
CHAPTER 30 Tumors of the Meninges and Related Tissues: Meningiomas and Sarcomas Kimberly P. Cockerham, John S. Kennerdell, Joseph C. Maroon, and Ghassan K. Bejjani ANATOMY OFTHE MENINGES Associations Dura Mater Diagnosis Arachnoid Treatment Pia Mater Adjuvant Therapy MENINGIOMAS Clinical Characteristics by Location Histogenesis SARCOMAS OFTHE MENINGES AND BRAIN Incidence Chondrosarcoma Pathology Osteogenic Sarcoma Cytogenetics Primary Sarcoma of the Meninges and Brain Endocrinology Rhabdomyosarcoma ANATOMY OF THE MENINGES The meninges of the brain and spinal cord consist of three into several freely communicating compartments. They in- different layers: the dura mater, arachnoid (tela arach- clude the falx cerebri, the tentorium cerebelli, the falx cere- noidea), and pia mater. Considerable anatomic differences belli, and the diaphragma sellae. exist among these structures, and these differences influence The falx cerebri, so named because of its sickle-like form, the nature, location, and spread of tumors that arise from is a fixed, arched process that descends vertically in the them. longitudinal fissure between the cerebral hemispheres (Fig. 30.2). The tentorium cerebelli is an arched lamina that is DURA MATER elevated in its midportion and inclines downward toward its peripheral attachments on both sides. It covers the superior The dura mater, typically referred to as the dura, is a thick surface of the cerebellum and supports the occipital lobes membrane that is adjacent to the inner table of the skull and (Fig. 30.2). The falx cerebelli is a small triangular process acts both as the functional periosteum of the skull and the of dura mater that lies beneath the tentorium cerebelli in outermost membrane of the brain (Fig. -
Characterization of the Anatomic Location of the Pituitary Stalk and Its Relationship to the Dorsum Sellae, Tuberculum Sellae and Chiasmatic Cistern
online © ML Comm www.jkns.or.kr 10.3340/jkns.2010.47.3.169 Print ISSN 2005-3711 On-line ISSN 1598-7876 J Korean Neurosurg Soc 47 : 169-173, 2010 Copyright © 2010 The Korean Neurosurgical Society Clinical Article Characterization of the Anatomic Location of the Pituitary Stalk and Its Relationship to the Dorsum Sellae, Tuberculum Sellae and Chiasmatic Cistern Salih Gulsen, M.D.,1 Ahmet Hakan Dinc, M.D.,2 Melih Unal, M.D.,2 Nergis Cantürk, M.D.,2 Nur Altinors, M.D.1 Department of Neurosurgery,1 Faculty of Medicine, Baskent University, Ankara, Turkey State Institute of Forensic Medicine,2 Ministry of Justice, Morque Department, Ankara, Turkey Objective : The normal anatomic relationships characteristic of the pituitary stalk area were previously thought to involve only one location. The purpose of this study was to re-evaluate the anatomic location of the pituitary stalk and possible varying locations in relation to the tuberculum sellae and dorsum sellae using morphometric evaluation and anatomic dissection of human cadaveric specimens. The surgical implications of the variations are discussed. Methods : The calvaria were removed via routine autopsy dissections, and the brains were removed from the skull while preserving the pituitary stalk. The diaphragma sellae, tuberculum sellae, and the location of the pituitary stalk were examined in 60 human cadaveric heads obtained from fresh adult cadavers. Empty sellae were excluded. Results : The openings of the diaphragma sellae averaged 6.62 ± 1.606 mm (range, 3-9 mm). The distance between the tuberculum sellae and the posterior part of the pituitary stalk was 1 to 8 mm. -
Endoscopic Extended Transsphenoidal Resection of Tuberculum Sellae Meningiomas: Nuances of Neurosurgical Technique
Neurosurg Focus 35 (6):E6, 2013 ©AANS, 2013 Endoscopic extended transsphenoidal resection of tuberculum sellae meningiomas: nuances of neurosurgical technique CHARLES KULWIN, M.D.,1 THEODORE H. SCHWARTZ, M.D.,2 AND AARON A. COHEN-GADOL, M.D., M.SC.1 1Department of Neurological Surgery, Indiana University, and Goodman Campbell Brain and Spine, Indianapolis, Indiana; and 2Departments of Neurological Surgery, Otolaryngology, and Neurology, Brain and Spine Center, Brain and Mind Research Institute, Weill Cornell Medical College, NewYork-Presbyterian Hospital, New York, New York Over the past decade, advances in endoscopic microsurgical techniques have resulted in an increasingly aggres- sive endonasal approach to tumors of the midline skull base. Meningiomas of the tuberculum sellae are often closely associated with cerebrovascular structures, and their removal has traditionally required a transcranial approach. An endonasal approach offers many advantages, including early tumor devascularization and tumor debulking (without manipulation of the optic apparatus), direct access to the medial optic canal, and a minimal-access corridor. Although recent articles have focused on techniques for reaching and approaching the area of the pathology (how to get there), the authors of this report discuss the technical nuances of endoscopic microsurgery when the operator is already “there.” They describe their 6-step technique for endoscopic skull base bone removal, tumor dis- section/resection, and closure. They also augment their description with elaborate