Lorenz, G\"{O} Del and Penrose: New Perspectives on Determinism And
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Writing the History of Dynamical Systems and Chaos
Historia Mathematica 29 (2002), 273–339 doi:10.1006/hmat.2002.2351 Writing the History of Dynamical Systems and Chaos: View metadata, citation and similar papersLongue at core.ac.uk Dur´ee and Revolution, Disciplines and Cultures1 brought to you by CORE provided by Elsevier - Publisher Connector David Aubin Max-Planck Institut fur¨ Wissenschaftsgeschichte, Berlin, Germany E-mail: [email protected] and Amy Dahan Dalmedico Centre national de la recherche scientifique and Centre Alexandre-Koyre,´ Paris, France E-mail: [email protected] Between the late 1960s and the beginning of the 1980s, the wide recognition that simple dynamical laws could give rise to complex behaviors was sometimes hailed as a true scientific revolution impacting several disciplines, for which a striking label was coined—“chaos.” Mathematicians quickly pointed out that the purported revolution was relying on the abstract theory of dynamical systems founded in the late 19th century by Henri Poincar´e who had already reached a similar conclusion. In this paper, we flesh out the historiographical tensions arising from these confrontations: longue-duree´ history and revolution; abstract mathematics and the use of mathematical techniques in various other domains. After reviewing the historiography of dynamical systems theory from Poincar´e to the 1960s, we highlight the pioneering work of a few individuals (Steve Smale, Edward Lorenz, David Ruelle). We then go on to discuss the nature of the chaos phenomenon, which, we argue, was a conceptual reconfiguration as -
Chaos Based RFID Authentication Protocol
Chaos Based RFID Authentication Protocol Hau Leung Harold Chung A thesis submitted to the Faculty of Graduate and Postdoctoral Studies in partial fulfillment of the requirements for the degree of MASTER OF APPLIED SCIENCE in Electrical and Computer Engineering School of Electrical Engineering and Computer Science Faculty of Engineering University of Ottawa c Hau Leung Harold Chung, Ottawa, Canada, 2013 Abstract Chaotic systems have been studied for the past few decades because of its complex be- haviour given simple governing ordinary differential equations. In the field of cryptology, several methods have been proposed for the use of chaos in cryptosystems. In this work, a method for harnessing the beneficial behaviour of chaos was proposed for use in RFID authentication and encryption. In order to make an accurate estimation of necessary hardware resources required, a complete hardware implementation was designed using a Xilinx Virtex 6 FPGA. The results showed that only 470 Xilinx Virtex slices were required, which is significantly less than other RFID authentication methods based on AES block cipher. The total number of clock cycles required per encryption of a 288-bit plaintext was 57 clock cycles. This efficiency level is many times higher than other AES methods for RFID application. Based on a carrier frequency of 13:56Mhz, which is the standard frequency of common encryption enabled passive RFID tags such as ISO-15693, a data throughput of 5:538Kb=s was achieved. As the strength of the proposed RFID authentication and encryption scheme is based on the problem of predicting chaotic systems, it was important to ensure that chaotic behaviour is maintained in this discretized version of Lorenz dynamical system. -
Lewis Fry Richardson: Scientist, Visionary and Pacifist
Lett Mat Int DOI 10.1007/s40329-014-0063-z Lewis Fry Richardson: scientist, visionary and pacifist Angelo Vulpiani Ó Centro P.RI.ST.EM, Universita` Commerciale Luigi Bocconi 2014 Abstract The aim of this paper is to present the main The last of seven children in a thriving English Quaker aspects of the life of Lewis Fry Richardson and his most family, in 1898 Richardson enrolled in Durham College of important scientific contributions. Of particular importance Science, and two years later was awarded a grant to study are the seminal concepts of turbulent diffusion, turbulent at King’s College in Cambridge, where he received a cascade and self-similar processes, which led to a profound diverse education: he read physics, mathematics, chemis- transformation of the way weather forecasts, turbulent try, meteorology, botany, and psychology. At the beginning flows and, more generally, complex systems are viewed. of his career he was quite uncertain about which road to follow, but he later resolved to work in several areas, just Keywords Lewis Fry Richardson Á Weather forecasting Á like the great German scientist Helmholtz, who was a Turbulent diffusion Á Turbulent cascade Á Numerical physician and then a physicist, but following a different methods Á Fractals Á Self-similarity order. In his words, he decided ‘‘to spend the first half of my life under the strict discipline of physics, and after- Lewis Fry Richardson (1881–1953), while undeservedly wards to apply that training to researches on living things’’. little known, had a fundamental (often posthumous) role in In addition to contributing important results to meteo- twentieth-century science. -
EGU 2018 EGU – Abstracts
CEN @ EGU 2018 EGU – abstracts Summary of Presentations, Sessions, Orals, PICOs and Posters by CEN/ CliSAP Scientists www.clisap.de www.cen.uni-hamburg.de https://twitter.com/CENunihh Presentations @ EGU 2018 CliSAP/CEN/UHH Member/Presenter; CliSAP/CEN/UHH Member Monday, 9th of April Sessions TS10.2 Hypervelocity impact cratering: Mechanics and environmental consequences Convener: Ulrich Riller | Co-Convener: Michael Poelchau Orals / Mon, 09 Apr, 10:30–12:00 / Room 1.61 Posters / Attendance Mon, 09 Apr, 17:30–19:00 / Hall X2 Orals BG1.1, Application of stable isotopes in Biogeosciences (co-organized by the European Association of Geochemistry (EAG) , Orals, 08:30–10:00, Room 2.20 09:00– EGU2018-19620 Nitrate sources in the catchment basin of the Rhône River by 09:15 Alexander Bratek, Kirstin Daehnke, Tina Sanders, and Jürgen Möbius OS2.4, Oceanography at coastal scales. Modelling, coupling, observations and benefits from coastal Research Infrastructures , Orals, 10:30–12:00, Room 1.85 EGU2018-7112 Synergy between satellite observations and model simulations 11:15– during extreme events by Anne Wiese, Joanna Staneva, Arno Behrens, Johannes 11:30 Schulz-Stellenfleth, and Luciana Fenoglio-Marc Sessions / Orals / Posters TS10.2, Hypervelocity impact cratering: Mechanics and environmental consequences , Orals, 10:30–12:00, Room 1.61 11:30– EGU2018-4309 Dynamics of the thermal aureole of the Sudbury impact melt 11:45 sheet, Canada by Paul Göllner and Ulrich Riller GD8.3/GMPV9.4/TS9.10, The geology of the Azores: a comprehensive approach to understanding a unique geological, geochemical and geodynamic setting (co-organized) , PICO, 15:30–17:00, PICO spot 3 15:30– EGU2018-8375 The submarine geology of the Azores Plateau – insights from 15:32 marine reflection seismic and multi-beam imaging by Christian Huebscher PICO3.1 15:56– EGU2018-9441 Extensional forces in intraplate magmatism: constraints from 15:58 Faial Island, Azores by René H.W. -
Rethinking Superdeterminism
ORIGINAL RESEARCH published: 06 May 2020 doi: 10.3389/fphy.2020.00139 Rethinking Superdeterminism Sabine Hossenfelder 1 and Tim Palmer 2* 1 Department of Physics, Frankfurt Institute for Advanced Studies, Frankfurt, Germany, 2 Department of Physics, University of Oxford, Oxford, United Kingdom Quantum mechanics has irked physicists ever since its conception more than 100 years ago. While some of the misgivings, such as it being unintuitive, are merely aesthetic, quantum mechanics has one serious shortcoming: it lacks a physical description of the measurement process. This “measurement problem” indicates that quantum mechanics is at least an incomplete theory—good as far as it goes, but missing a piece—or, more radically, is in need of complete overhaul. Here we describe an approach which may provide this sought-for completion or replacement: Superdeterminism. A superdeterministic theory is one which violates the assumption of Statistical Independence (that distributions of hidden variables are independent of measurement settings). Intuition suggests that Statistical Independence is an essential ingredient of any theory of science (never mind physics), and for this reason Superdeterminism is typically discarded swiftly in any discussion of quantum foundations. The purpose of this paper is to explain why the existing objections to Superdeterminism are based on experience with classical physics and linear systems, but that this experience misleads us. Superdeterminism is a promising approach not only to solve the measurement Edited by: problem, but also to understand the apparent non-locality of quantum physics. Most Karl Hess, importantly, we will discuss how it may be possible to test this hypothesis in an (almost) University of Illinois at Urbana-Champaign, United States model independent way. -
Τα Cellular Automata Στο Σχεδιασμό
τα cellular automata στο σχεδιασμό μια προσέγγιση στις αναδρομικές σχεδιαστικές διαδικασίες Ηρώ Δημητρίου επιβλέπων Σωκράτης Γιαννούδης 2 Πολυτεχνείο Κρήτης Τμήμα Αρχιτεκτόνων Μηχανικών ερευνητική εργασία Ηρώ Δημητρίου επιβλέπων καθηγητής Σωκράτης Γιαννούδης Τα Cellular Automata στο σχεδιασμό μια προσέγγιση στις αναδρομικές σχεδιαστικές διαδικασίες Χανιά, Μάιος 2013 Chaos and Order - Carlo Allarde περιεχόμενα 0001. εισαγωγή 7 0010. χάος και πολυπλοκότητα 13 a. μια ιστορική αναδρομή στο χάος: Henri Poincare - Edward Lorenz 17 b. το χάος 22 c. η πολυπλοκότητα 23 d. αυτοοργάνωση και emergence 29 0011. cellular automata 31 0100. τα cellular automata στο σχεδιασμό 39 a. τα CA στην στην αρχιτεκτονική: Paul Coates 45 b. η φιλοσοφική προσέγγιση της διεπιστημονικότητας του σχεδιασμού 57 c. προσομοίωση της αστικής ανάπτυξης μέσω CA 61 d. η περίπτωση της Changsha 63 0101. συμπεράσματα 71 βιβλιογραφία 77 1. Metamorphosis II - M.C.Escher 6 0001. εισαγωγή Η επιστήμη εξακολουθεί να είναι η εξ αποκαλύψεως προφητική περιγραφή του κόσμου, όπως αυτός φαίνεται από ένα θεϊκό ή δαιμονικό σημείο αναφοράς. Ilya Prigogine 7 0001. 8 0001. Στοιχεία της τρέχουσας αρχιτεκτονικής θεωρίας και μεθοδολογίας προτείνουν μια εναλλακτική λύση στις πάγιες αρχιτεκτονικές μεθοδολογίες και σε ορισμένες περιπτώσεις υιοθετούν πτυχές του νέου τρόπου της κατανόησής μας για την επιστήμη. Αυτά τα στοιχεία εμπίπτουν σε τρεις κατηγορίες. Πρώτον, μεθοδολογίες που προτείνουν μια εναλλακτική λύση για τη γραμμικότητα και την αιτιοκρατία της παραδοσιακής αρχιτεκτονικής σχεδιαστικής διαδικασίας και θίγουν τον κεντρικό έλεγχο του αρχιτέκτονα, δεύτερον, η πρόταση μιας μεθοδολογίας με βάση την προσομοίωση της αυτο-οργάνωσης στην ανάπτυξη και εξέλιξη των φυσικών συστημάτων και τρίτον, σε ορισμένες περιπτώσεις, συναρτήσει των δύο προηγούμενων, είναι μεθοδολογίες οι οποίες πειραματίζονται με την αναδυόμενη μορφή σε εικονικά περιβάλλοντα. -
Montana Throne Molly Gupta Laura Brannan Fractals: a Visual Display of Mathematics Linear Algebra
Montana Throne Molly Gupta Laura Brannan Fractals: A Visual Display of Mathematics Linear Algebra - Math 2270 Introduction: Fractals are infinite patterns that look similar at all levels of magnification and exist between the normal dimensions. With the advent of the computer, we can generate these complex structures to model natural structures around us such as blood vessels, heartbeat rhythms, trees, forests, and mountains, to name a few. I will begin by explaining how different linear transformations have been used to create fractals. Then I will explain how I have created fractals using linear transformations and include the computer-generated results. A Brief History: Fractals seem to be a relatively new concept in mathematics, but that may be because the term was coined only 43 years ago. It is in the century before Benoit Mandelbrot coined the term that the study of concepts now considered fractals really started to gain traction. The invention of the computer provided the computing power needed to generate fractals visually and further their study and interest. Expand on the ideas by century: 17th century ideas • Leibniz 19th century ideas • Karl Weierstrass • George Cantor • Felix Klein • Henri Poincare 20th century ideas • Helge von Koch • Waclaw Sierpinski • Gaston Julia • Pierre Fatou • Felix Hausdorff • Paul Levy • Benoit Mandelbrot • Lewis Fry Richardson • Loren Carpenter How They Work: Infinitely complex objects, revealed upon enlarging. Basics: translations, uniform scaling and non-uniform scaling then translations. Utilize translation vectors. Concepts used in fractals-- Affine Transformation (operate on individual points in the set), Rotation Matrix, Similitude Transformation Affine-- translations, scalings, reflections, rotations Insert Equations here. -
Neural Network Based Modeling, Characterization and Identification of Chaotic Systems in Nature
Neural Network based Modeling, Characterization and Identification of Chaotic Systems in Nature Thesis submitted in partial fulfilment of the requirements for the award of the degree of Doctor of Philosophy by Archana R Reg. No: 3829 Under the guidance of Dr. R Gopikakumari &Dr. A Unnikrishnan Division of Electronics Engineering School of Engineering Cochin University of Science and Technology Kochi- 682022 India March 2015 Neural Network based Modeling, Characterization and Identification of Chaotic Systems in Nature Ph. D thesis under the Faculty of Engineering Author Archana R Research Scholar School of Engineering Cochin University of Science and Technology [email protected] Supervising Guide Dr. R Gopikakumari Professor Division of Electronics Engineering Cochin University of Science and Technology Kochi - 682022 [email protected], [email protected] Co-Guide Dr. A Unnikrishnan Outstanding scientist (Rtd), NPOL, DRDO, Kochi 682021 & Principal Rajagiri School of Engineering & Technology Kochi 682039 [email protected] Division of Electronics Engineering School of Engineering Cochin University of Science and Technology Kochi- 682022 India Certificate This is to certify that the work presented in the thesis entitled “Neural Network based Modeling, Characterization and Identification of Chaotic Systems in Nature” is a bonafide record of the research work carried out by Mrs. Archana R under our supervision and guidance in the Division of Electronics Engineering, School of Engineering, Cochin University of Science and Technology and that no part thereof has been presented for the award of any other degree. Dr. R Gopikakumari Dr. A Unnikrishnan Supervising Guide Co-guide i Declaration I hereby declare that the work presented in the thesis entitled “Neural Network based Modeling, Characterization and Identification of Chaotic Systems in Nature” is based on the original work done by me under the supervision and guidance of Dr. -
The Talking Cure Cody CH 2014
Complexity, Chaos Theory and How Organizations Learn Michael Cody Excerpted from Chapter 3, (2014). Dialogic regulation: The talking cure for corporations (Ph.D. Thesis, Faculty of Law. University of British Columbia). Available at: https://open.library.ubc.ca/collections/ubctheses/24/items/1.0077782 Most people define learning too narrowly as mere “problem-solving”, so they focus on identifying and correcting errors in the external environment. Solving problems is important. But if learning is to persist, managers and employees must also look inward. They need to reflect critically on their own behaviour, identify the ways they often inadvertently contribute to the organisation’s problems, and then change how they act. Chris Argyris, Organizational Psychologist Changing corporate behaviour is extremely meet expectations120; difficult. Most corporate organizational change • 15% of IT projects are successful121; programs fail: planning sessions never make it into • 50% of firms that downsize experience a action; projects never quite seem to close; new decrease in productivity instead of an rules, processes, or procedures are drafted but increase122; and people do not seem to follow them; or changes are • Less than 10% of corporate training affects initially adopted but over time everything drifts long-term managerial behaviour.123 back to the way that it was. Everyone who has been One organization development OD textbook involved in managing or delivering a corporate acknowledges that, “organization change change process knows these scenarios -
Fractals Dalton Allan and Brian Dalke College of Science, Engineering & Technology Nominated by Amy Hlavacek, Associate Professor of Mathematics
Fractals Dalton Allan and Brian Dalke College of Science, Engineering & Technology Nominated by Amy Hlavacek, Associate Professor of Mathematics Dalton is a dual-enrolled student at Saginaw Arts and Sciences Academy and Saginaw Valley State University. He has taken mathematics classes at SVSU for the past four years and physics classes for the past year. Dalton has also worked in the Math and Physics Resource Center since September 2010. Dalton plans to continue his study of mathematics at the Massachusetts Institute of Technology. Brian is a part-time mathematics and English student. He has a B.S. degree with majors in physics and chemistry from the University of Wisconsin--Eau Claire and was a scientific researcher for The Dow Chemical Company for more than 20 years. In 2005, he was certified to teach physics, chemistry, mathematics and English and subsequently taught mostly high school mathematics for five years. Currently, he enjoys helping SVSU students as a Professional Tutor in the Math and Physics Resource Center. In his spare time, Brian finds joy playing softball, growing roses, reading, camping, and spending time with his wife, Lorelle. Introduction For much of the past two-and-one-half millennia, humans have viewed our geometrical world through the lens of a Euclidian paradigm. Despite knowing that our planet is spherically shaped, math- ematicians have developed the mathematics of non-Euclidian geometry only within the past 200 years. Similarly, only in the past century have mathematicians developed an understanding of such common phenomena as snowflakes, clouds, coastlines, lightning bolts, rivers, patterns in vegetation, and the tra- jectory of molecules in Brownian motion (Peitgen 75). -
Curious and Sublime: the Connection Between Uncertainty and Probability in Physics
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PhilSci Archive Curious and sublime: the connection between uncertainty and probability in physics Harvey R. Brown Faculty of Philosophy, University of Oxford 10 Merton Street, Oxford OX1 4JJ, U.K. [email protected] Keywords: uncertainty, probability, statistical mechanics, quantum mechan- ics, Everett interpretation Let any one try to account for this [probabilistic] operation of the mind upon any of the received systems of philosophy, and he will be sensible of the difficulty. For my part, I shall think it sufficient, if the present hints excite the curiosity of philosophers, and make them sensible how defective all common theories are in treating of such curious and such sublime subjects.' David Hume [1]. When you come to a fork in the road, take it. Lawrence Peter (\Yogi") Berra Probabilities make just as much sense if all possible results occur as if just one does. David Papineau [2]. Abstract From its first significant appearance in physics, the notion of proba- bility has been linked in the minds of physicists with the notion of un- certainty. But the link may prove to be tenuous, if quantum mechanics, construed in terms of the Everett interpretation, is anything to go by. 1 \Statistical" mechanics The question as to when the notion of probability, in its modern guise, first made its appearance in physics is open to debate. But many would agree that something important happened in the 1870s when physicists working in the fledgling kinetic theory of gases were looking over their shoulders at what might be called the rival theory of thermodynamics. -
Lewis Fry Richardson's Forecast Factory for Real
Lewis Fry Richardson’s forecast factory – for real Andrew Charlton-Perez horizontal momentum, pressure, humidity 1. Forecasts are made by solving math- and stratospheric temperature over central ematical equations which represent and Helen Dacre Europe, using initial conditions from an the physical laws governing the University of Reading analysis by Bjerknes for 20 May 1910. This atmosphere. forecast was manually computed by 2. Forecasts are often made on a grid of The idea that supercomputers are an impor- Richardson between 1916 and 1918, when, points which represent different geo- tant part of making forecasts of the weather as a Quaker (and therefore a pacifist), he graphical locations. and climate is well known amongst the gen- served as an ambulance driver in Cham- eral population. However, the details of their pagne, France. Famously, his forecast pro- use are somewhat mysterious. A concept duced very large tendencies in most of its A scaled-down forecast factory Weather – February 2011, Vol. 66, No. 2 66, No. Vol. 2011, – February Weather used to illustrate many undergraduate components – much larger than those In order to make the problem tractable for numerical weather prediction courses is the observed in the real atmosphere (Lynch, secondary-school-age children and to make idea of a giant ‘forecast factory’, conceived 2006, p.133, discusses the reasons for this). it possible to complete the activity in a rea- by Lewis Fry Richardson in 1922. In this Nonetheless, the principles of Richardson’s sonably short time (~30 minutes) it was article, a way of using the same idea to forecast, particularly the application of math- necessary to design a forecast factory which communicate key ideas in numerical ematical techniques to solving the primi - solved a much simpler problem than that weather prediction to the general public is tive equations on a grid representing the used by Richardson.