Lorenz, G\"{O} Del and Penrose: New Perspectives on Determinism And

Total Page:16

File Type:pdf, Size:1020Kb

Lorenz, G\ October 8, 2018 9:29 Contemporary Physics Palmer˙Sciama˙Rev˙2f Contemporary Physics Vol. 00, No. 00, Month 0000, 1–29 Lorenz, G¨odel and Penrose: New Perspectives on Determinism and Causality in Fundamental Physics T.N.Palmer University of Oxford, Clarendon Laboratory, Parks Rd, Oxford (v3.0 released March 2014) Despite being known for his pioneering work on chaotic unpredictability, the key discovery at the core of me- teorologist Ed Lorenz’s work is the link between space-time calculus and state-space fractal geometry. Indeed, properties of Lorenz’s fractal invariant set relate space-time calculus to deep areas of mathematics such as G¨odel’s Incompleteness Theorem. These properties, combined with some recent developments in theoretical and observational cosmology, motivate what is referred to as the ‘cosmological invariant set postulate’: that the universe U can be considered a deterministic dynamical system evolving on a causal measure-zero fractal invariant set IU in its state space. Symbolic representations of IU are constructed explicitly based on permu- tation representations of quaternions. The resulting ‘invariant set theory’ provides some new perspectives on determinism and causality in fundamental physics. For example, whilst the cosmological invariant set appears to have a rich enough structure to allow a description of quantum probability, its measure-zero character en- sures it is sparse enough to prevent invariant set theory being constrained by the Bell inequality (consistent with a partial violation of the so-called measurement independence postulate). The primacy of geometry as embodied in the proposed theory extends the principles underpinning general relativity. As a result, the physi- cal basis for contemporary programmes which apply standard field quantisation to some putative gravitational lagrangian is questioned. Consistent with Penrose’s suggestion of a deterministic but non-computable theory of fundamental physics, a ‘gravitational theory of the quantum’ is proposed based on the geometry of IU , with potential observational consequences for the dark universe. 1. Introduction There were three great revolutions in 20th Century theoretical physics: relativity theory, quan- tum theory and chaos theory (Fig 1). Each has had a profound impact on the development of science, and yet their domains of impact remain quite distinct. Despite over a half century of intense research, there is still no consensus on how to combine quantum theory and general relativity theory into a supposed ‘quantum theory of gravity’, nor even a consensus about what such a notion means physically (left edge of triangle). Moreover, the unpredictability of non- linear chaotic systems is generally considered quite unrelated to the indeterminism of quantum measurement (right edge of triangle). Finally, whilst an essential characteristic of chaos is the arXiv:1309.2396v2 [quant-ph] 25 Mar 2014 existence of positive Lyapunov exponents (measuring exponential divergence of neighbouring state-space trajectories in time) this is not a relativistically invariant characteristic; under a logarithmic transformation of time, a positive exponent can be transformed to a zero exponent (bottom edge of triangle). The purpose of this paper is to develop new ideas which may lead to some unification of these three revolutions. These ideas evolve around Einstein’s great insight that geometry provides the ultimate expression of the laws of physics. Motivated by develop- ments in cosmology on the one hand and nonlinear dynamics on the other, here we attempt to extend this geometric insight from space-time to state-space. The key idea which motivates the discussion in this paper is the fractal state-space geometry associated with certain classes of nonlinear dynamical system exemplified by the Lorenz equations [29] (see Section 2). The key cosmological developments which justify this discussion are those of quasi-cyclic cosmologies, Email: [email protected] ISSN: 0010-7514 print/ISSN 1366-5812 online c 0000 Taylor & Francis DOI: 10.1080/0010751YYxxxxxxxx http://www.informaworld.com October 8, 2018 9:29 Contemporary Physics Palmer˙Sciama˙Rev˙2f 2 T.N.Palmer Quantum Theory Iu Relativity Chaos Theory Theory Figure 1. It is proposed that the three great revolutions of 20th Century physics can be unified if the universe is considered a deterministic dynamical system evolving on a fractal invariant set IU in state space. the discovery of a positive cosmological constant and the black-hole no-hair theorem. In Section 2 it is shown how properties of Lorenzian fractal geometry have links to one of the most famous theorem in 20th Century mathematics - the G¨odel incompleteness theorem - and indeed also to some of the number-theoretic tools used in Wiles’ proof of Fermat’s Last Theorem. If this geometry relates to deep concepts from 20th Century mathematics, could it also relate to deep but still troublesome concepts from 20th Century physics; concepts such as state superposition, incompatible observables and quantum non-locality? Above all, could a focus on state-space geometry provide some new perspectives on the problem of ‘quantum gravity’? In Section 3, the strong formal similarities between the Schr¨odinger equation and the classical Liouville equation for conservation of state-space probability are discussed. Not least, both equations are linear. Just as the linearity of the Liouville equation is no constraint to how nonlinear and chaotic may be the underpinning deterministic evolution equations, is it possible that the linearity of the Schr¨odinger equation hides some underpinning deterministic dynamic that is also profoundly nonlinear? The standard view is that it is not possible if we require these dynamics to be locally causal; this is the Bell Theorem, a focus for discussion in this paper. By introducing a causal concept called ‘the cosmological invariant set postulate’ [36], an im- portant conclusion of this paper is that this standard acausal interpretation of the Bell Theorem is incorrect. The cosmological invariant set postulate, that the universe U is evolving causally and deterministically on some measure-zero fractal invariant set IU in its state space, is intro- duced in Section 4. As discussed in Section 5, this postulate is a potential game changer as far as the Bell Theorem is concerned, raising the possibility that the experimentally verified existence of nonclassical correlations can be explained deterministically without resorting to any violation of local causality in space-time (the technical role of the invariant set postulate in the Bell Theorem is that it provides a non-conspiratorial cosmological basis for a partial violation of the so-called measurement independence postulate [23] [24]). In Section 6 these ideas are de- veloped more explicitly. In particular, a symbolic representation of IU is constructed; from this it is shown how key properties of qubit quantum physics are emergent. ‘Invariant set theory’ provides the means to explain the three key differences between the Schr¨odinger equation and the classical Liouville equation: the existence of the square root of minus one and of Planck’s constant (Section 6.1), and of the complex Hilbert Space (Section 6.2). In particular the sym- bolic construction of IU makes use of a novel permutation/negation representation of complex numbers and it is outlined how the complex Hilbert Space of quantum theory can be viewed as the singular limit [6] of symbolic bit strings associated with the construction. In Section 7, two October 8, 2018 9:29 Contemporary Physics Palmer˙Sciama˙Rev˙2f Contemporary Physics 3 features which emerge from this causal deterministic construction are discussed: the notion of incompatible observables and violation of the Bell inequalities. In both cases, the emergence of these features hinges on an application of simple (but profound) number-theoretic properties of the cosine function. As discussed, in Section 7, these features also allows a new perspective on the iconic two-slit experiment. This paper is based on the author’s 9th Dennis Sciama Memorial Lecture given in 2013 1. The author was a student of Dennis Sciama in the 1970s, working on the gravitational energy- momentum problem in general relativity theory [33] [34]. During this period, he was strongly influenced by the work of Roger Penrose, one of the protagonists in the title of this paper. As Penrose wrote in the 1970s [39]: Despite impressive progress . towards the intended goal of a satisfactory quantum theory of gravity, there remain fundamental problems whose solutions do not appear to be yet in sight. [I]t has been argued that Einsteins equations should perhaps be replaced by something more compatible with conventional quantum theory. There is also the alternative possibility, which has occasionally been aired, that some of the basic principles of quantum mechanics may need to be called into question. Consistent with this ‘alternative possibility’, it is suggested that quantum theory is not fun- damental, but rather should be considered the (singular) limit of a causal deterministic theory of gravity which is geometric not only in space-time but also in state space. That is to say, it is proposed that invariant set theory be considered the basis for a causal ‘gravitational the- ory of the quantum’. As a result, in Section 8 it is claimed that contemporary programmes, which seek a ‘quantum theory of gravity’ by applying standard field quantisation to some puta- tive gravitational lagrangian, are
Recommended publications
  • Writing the History of Dynamical Systems and Chaos
    Historia Mathematica 29 (2002), 273–339 doi:10.1006/hmat.2002.2351 Writing the History of Dynamical Systems and Chaos: View metadata, citation and similar papersLongue at core.ac.uk Dur´ee and Revolution, Disciplines and Cultures1 brought to you by CORE provided by Elsevier - Publisher Connector David Aubin Max-Planck Institut fur¨ Wissenschaftsgeschichte, Berlin, Germany E-mail: [email protected] and Amy Dahan Dalmedico Centre national de la recherche scientifique and Centre Alexandre-Koyre,´ Paris, France E-mail: [email protected] Between the late 1960s and the beginning of the 1980s, the wide recognition that simple dynamical laws could give rise to complex behaviors was sometimes hailed as a true scientific revolution impacting several disciplines, for which a striking label was coined—“chaos.” Mathematicians quickly pointed out that the purported revolution was relying on the abstract theory of dynamical systems founded in the late 19th century by Henri Poincar´e who had already reached a similar conclusion. In this paper, we flesh out the historiographical tensions arising from these confrontations: longue-duree´ history and revolution; abstract mathematics and the use of mathematical techniques in various other domains. After reviewing the historiography of dynamical systems theory from Poincar´e to the 1960s, we highlight the pioneering work of a few individuals (Steve Smale, Edward Lorenz, David Ruelle). We then go on to discuss the nature of the chaos phenomenon, which, we argue, was a conceptual reconfiguration as
    [Show full text]
  • Chaos Based RFID Authentication Protocol
    Chaos Based RFID Authentication Protocol Hau Leung Harold Chung A thesis submitted to the Faculty of Graduate and Postdoctoral Studies in partial fulfillment of the requirements for the degree of MASTER OF APPLIED SCIENCE in Electrical and Computer Engineering School of Electrical Engineering and Computer Science Faculty of Engineering University of Ottawa c Hau Leung Harold Chung, Ottawa, Canada, 2013 Abstract Chaotic systems have been studied for the past few decades because of its complex be- haviour given simple governing ordinary differential equations. In the field of cryptology, several methods have been proposed for the use of chaos in cryptosystems. In this work, a method for harnessing the beneficial behaviour of chaos was proposed for use in RFID authentication and encryption. In order to make an accurate estimation of necessary hardware resources required, a complete hardware implementation was designed using a Xilinx Virtex 6 FPGA. The results showed that only 470 Xilinx Virtex slices were required, which is significantly less than other RFID authentication methods based on AES block cipher. The total number of clock cycles required per encryption of a 288-bit plaintext was 57 clock cycles. This efficiency level is many times higher than other AES methods for RFID application. Based on a carrier frequency of 13:56Mhz, which is the standard frequency of common encryption enabled passive RFID tags such as ISO-15693, a data throughput of 5:538Kb=s was achieved. As the strength of the proposed RFID authentication and encryption scheme is based on the problem of predicting chaotic systems, it was important to ensure that chaotic behaviour is maintained in this discretized version of Lorenz dynamical system.
    [Show full text]
  • Lewis Fry Richardson: Scientist, Visionary and Pacifist
    Lett Mat Int DOI 10.1007/s40329-014-0063-z Lewis Fry Richardson: scientist, visionary and pacifist Angelo Vulpiani Ó Centro P.RI.ST.EM, Universita` Commerciale Luigi Bocconi 2014 Abstract The aim of this paper is to present the main The last of seven children in a thriving English Quaker aspects of the life of Lewis Fry Richardson and his most family, in 1898 Richardson enrolled in Durham College of important scientific contributions. Of particular importance Science, and two years later was awarded a grant to study are the seminal concepts of turbulent diffusion, turbulent at King’s College in Cambridge, where he received a cascade and self-similar processes, which led to a profound diverse education: he read physics, mathematics, chemis- transformation of the way weather forecasts, turbulent try, meteorology, botany, and psychology. At the beginning flows and, more generally, complex systems are viewed. of his career he was quite uncertain about which road to follow, but he later resolved to work in several areas, just Keywords Lewis Fry Richardson Á Weather forecasting Á like the great German scientist Helmholtz, who was a Turbulent diffusion Á Turbulent cascade Á Numerical physician and then a physicist, but following a different methods Á Fractals Á Self-similarity order. In his words, he decided ‘‘to spend the first half of my life under the strict discipline of physics, and after- Lewis Fry Richardson (1881–1953), while undeservedly wards to apply that training to researches on living things’’. little known, had a fundamental (often posthumous) role in In addition to contributing important results to meteo- twentieth-century science.
    [Show full text]
  • EGU 2018 EGU – Abstracts
    CEN @ EGU 2018 EGU – abstracts Summary of Presentations, Sessions, Orals, PICOs and Posters by CEN/ CliSAP Scientists www.clisap.de www.cen.uni-hamburg.de https://twitter.com/CENunihh Presentations @ EGU 2018 CliSAP/CEN/UHH Member/Presenter; CliSAP/CEN/UHH Member Monday, 9th of April Sessions TS10.2 Hypervelocity impact cratering: Mechanics and environmental consequences Convener: Ulrich Riller | Co-Convener: Michael Poelchau Orals / Mon, 09 Apr, 10:30–12:00 / Room 1.61 Posters / Attendance Mon, 09 Apr, 17:30–19:00 / Hall X2 Orals BG1.1, Application of stable isotopes in Biogeosciences (co-organized by the European Association of Geochemistry (EAG) , Orals, 08:30–10:00, Room 2.20 09:00– EGU2018-19620 Nitrate sources in the catchment basin of the Rhône River by 09:15 Alexander Bratek, Kirstin Daehnke, Tina Sanders, and Jürgen Möbius OS2.4, Oceanography at coastal scales. Modelling, coupling, observations and benefits from coastal Research Infrastructures , Orals, 10:30–12:00, Room 1.85 EGU2018-7112 Synergy between satellite observations and model simulations 11:15– during extreme events by Anne Wiese, Joanna Staneva, Arno Behrens, Johannes 11:30 Schulz-Stellenfleth, and Luciana Fenoglio-Marc Sessions / Orals / Posters TS10.2, Hypervelocity impact cratering: Mechanics and environmental consequences , Orals, 10:30–12:00, Room 1.61 11:30– EGU2018-4309 Dynamics of the thermal aureole of the Sudbury impact melt 11:45 sheet, Canada by Paul Göllner and Ulrich Riller GD8.3/GMPV9.4/TS9.10, The geology of the Azores: a comprehensive approach to understanding a unique geological, geochemical and geodynamic setting (co-organized) , PICO, 15:30–17:00, PICO spot 3 15:30– EGU2018-8375 The submarine geology of the Azores Plateau – insights from 15:32 marine reflection seismic and multi-beam imaging by Christian Huebscher PICO3.1 15:56– EGU2018-9441 Extensional forces in intraplate magmatism: constraints from 15:58 Faial Island, Azores by René H.W.
    [Show full text]
  • Rethinking Superdeterminism
    ORIGINAL RESEARCH published: 06 May 2020 doi: 10.3389/fphy.2020.00139 Rethinking Superdeterminism Sabine Hossenfelder 1 and Tim Palmer 2* 1 Department of Physics, Frankfurt Institute for Advanced Studies, Frankfurt, Germany, 2 Department of Physics, University of Oxford, Oxford, United Kingdom Quantum mechanics has irked physicists ever since its conception more than 100 years ago. While some of the misgivings, such as it being unintuitive, are merely aesthetic, quantum mechanics has one serious shortcoming: it lacks a physical description of the measurement process. This “measurement problem” indicates that quantum mechanics is at least an incomplete theory—good as far as it goes, but missing a piece—or, more radically, is in need of complete overhaul. Here we describe an approach which may provide this sought-for completion or replacement: Superdeterminism. A superdeterministic theory is one which violates the assumption of Statistical Independence (that distributions of hidden variables are independent of measurement settings). Intuition suggests that Statistical Independence is an essential ingredient of any theory of science (never mind physics), and for this reason Superdeterminism is typically discarded swiftly in any discussion of quantum foundations. The purpose of this paper is to explain why the existing objections to Superdeterminism are based on experience with classical physics and linear systems, but that this experience misleads us. Superdeterminism is a promising approach not only to solve the measurement Edited by: problem, but also to understand the apparent non-locality of quantum physics. Most Karl Hess, importantly, we will discuss how it may be possible to test this hypothesis in an (almost) University of Illinois at Urbana-Champaign, United States model independent way.
    [Show full text]
  • Τα Cellular Automata Στο Σχεδιασμό
    τα cellular automata στο σχεδιασμό μια προσέγγιση στις αναδρομικές σχεδιαστικές διαδικασίες Ηρώ Δημητρίου επιβλέπων Σωκράτης Γιαννούδης 2 Πολυτεχνείο Κρήτης Τμήμα Αρχιτεκτόνων Μηχανικών ερευνητική εργασία Ηρώ Δημητρίου επιβλέπων καθηγητής Σωκράτης Γιαννούδης Τα Cellular Automata στο σχεδιασμό μια προσέγγιση στις αναδρομικές σχεδιαστικές διαδικασίες Χανιά, Μάιος 2013 Chaos and Order - Carlo Allarde περιεχόμενα 0001. εισαγωγή 7 0010. χάος και πολυπλοκότητα 13 a. μια ιστορική αναδρομή στο χάος: Henri Poincare - Edward Lorenz 17 b. το χάος 22 c. η πολυπλοκότητα 23 d. αυτοοργάνωση και emergence 29 0011. cellular automata 31 0100. τα cellular automata στο σχεδιασμό 39 a. τα CA στην στην αρχιτεκτονική: Paul Coates 45 b. η φιλοσοφική προσέγγιση της διεπιστημονικότητας του σχεδιασμού 57 c. προσομοίωση της αστικής ανάπτυξης μέσω CA 61 d. η περίπτωση της Changsha 63 0101. συμπεράσματα 71 βιβλιογραφία 77 1. Metamorphosis II - M.C.Escher 6 0001. εισαγωγή Η επιστήμη εξακολουθεί να είναι η εξ αποκαλύψεως προφητική περιγραφή του κόσμου, όπως αυτός φαίνεται από ένα θεϊκό ή δαιμονικό σημείο αναφοράς. Ilya Prigogine 7 0001. 8 0001. Στοιχεία της τρέχουσας αρχιτεκτονικής θεωρίας και μεθοδολογίας προτείνουν μια εναλλακτική λύση στις πάγιες αρχιτεκτονικές μεθοδολογίες και σε ορισμένες περιπτώσεις υιοθετούν πτυχές του νέου τρόπου της κατανόησής μας για την επιστήμη. Αυτά τα στοιχεία εμπίπτουν σε τρεις κατηγορίες. Πρώτον, μεθοδολογίες που προτείνουν μια εναλλακτική λύση για τη γραμμικότητα και την αιτιοκρατία της παραδοσιακής αρχιτεκτονικής σχεδιαστικής διαδικασίας και θίγουν τον κεντρικό έλεγχο του αρχιτέκτονα, δεύτερον, η πρόταση μιας μεθοδολογίας με βάση την προσομοίωση της αυτο-οργάνωσης στην ανάπτυξη και εξέλιξη των φυσικών συστημάτων και τρίτον, σε ορισμένες περιπτώσεις, συναρτήσει των δύο προηγούμενων, είναι μεθοδολογίες οι οποίες πειραματίζονται με την αναδυόμενη μορφή σε εικονικά περιβάλλοντα.
    [Show full text]
  • Montana Throne Molly Gupta Laura Brannan Fractals: a Visual Display of Mathematics Linear Algebra
    Montana Throne Molly Gupta Laura Brannan Fractals: A Visual Display of Mathematics Linear Algebra - Math 2270 Introduction: Fractals are infinite patterns that look similar at all levels of magnification and exist between the normal dimensions. With the advent of the computer, we can generate these complex structures to model natural structures around us such as blood vessels, heartbeat rhythms, trees, forests, and mountains, to name a few. I will begin by explaining how different linear transformations have been used to create fractals. Then I will explain how I have created fractals using linear transformations and include the computer-generated results. A Brief History: Fractals seem to be a relatively new concept in mathematics, but that may be because the term was coined only 43 years ago. It is in the century before Benoit Mandelbrot coined the term that the study of concepts now considered fractals really started to gain traction. The invention of the computer provided the computing power needed to generate fractals visually and further their study and interest. Expand on the ideas by century: 17th century ideas • Leibniz 19th century ideas • Karl Weierstrass • George Cantor • Felix Klein • Henri Poincare 20th century ideas • Helge von Koch • Waclaw Sierpinski • Gaston Julia • Pierre Fatou • Felix Hausdorff • Paul Levy • Benoit Mandelbrot • Lewis Fry Richardson • Loren Carpenter How They Work: Infinitely complex objects, revealed upon enlarging. Basics: translations, uniform scaling and non-uniform scaling then translations. Utilize translation vectors. Concepts used in fractals-- Affine Transformation (operate on individual points in the set), Rotation Matrix, Similitude Transformation Affine-- translations, scalings, reflections, rotations Insert Equations here.
    [Show full text]
  • Neural Network Based Modeling, Characterization and Identification of Chaotic Systems in Nature
    Neural Network based Modeling, Characterization and Identification of Chaotic Systems in Nature Thesis submitted in partial fulfilment of the requirements for the award of the degree of Doctor of Philosophy by Archana R Reg. No: 3829 Under the guidance of Dr. R Gopikakumari &Dr. A Unnikrishnan Division of Electronics Engineering School of Engineering Cochin University of Science and Technology Kochi- 682022 India March 2015 Neural Network based Modeling, Characterization and Identification of Chaotic Systems in Nature Ph. D thesis under the Faculty of Engineering Author Archana R Research Scholar School of Engineering Cochin University of Science and Technology [email protected] Supervising Guide Dr. R Gopikakumari Professor Division of Electronics Engineering Cochin University of Science and Technology Kochi - 682022 [email protected], [email protected] Co-Guide Dr. A Unnikrishnan Outstanding scientist (Rtd), NPOL, DRDO, Kochi 682021 & Principal Rajagiri School of Engineering & Technology Kochi 682039 [email protected] Division of Electronics Engineering School of Engineering Cochin University of Science and Technology Kochi- 682022 India Certificate This is to certify that the work presented in the thesis entitled “Neural Network based Modeling, Characterization and Identification of Chaotic Systems in Nature” is a bonafide record of the research work carried out by Mrs. Archana R under our supervision and guidance in the Division of Electronics Engineering, School of Engineering, Cochin University of Science and Technology and that no part thereof has been presented for the award of any other degree. Dr. R Gopikakumari Dr. A Unnikrishnan Supervising Guide Co-guide i Declaration I hereby declare that the work presented in the thesis entitled “Neural Network based Modeling, Characterization and Identification of Chaotic Systems in Nature” is based on the original work done by me under the supervision and guidance of Dr.
    [Show full text]
  • The Talking Cure Cody CH 2014
    Complexity, Chaos Theory and How Organizations Learn Michael Cody Excerpted from Chapter 3, (2014). Dialogic regulation: The talking cure for corporations (Ph.D. Thesis, Faculty of Law. University of British Columbia). Available at: https://open.library.ubc.ca/collections/ubctheses/24/items/1.0077782 Most people define learning too narrowly as mere “problem-solving”, so they focus on identifying and correcting errors in the external environment. Solving problems is important. But if learning is to persist, managers and employees must also look inward. They need to reflect critically on their own behaviour, identify the ways they often inadvertently contribute to the organisation’s problems, and then change how they act. Chris Argyris, Organizational Psychologist Changing corporate behaviour is extremely meet expectations120; difficult. Most corporate organizational change • 15% of IT projects are successful121; programs fail: planning sessions never make it into • 50% of firms that downsize experience a action; projects never quite seem to close; new decrease in productivity instead of an rules, processes, or procedures are drafted but increase122; and people do not seem to follow them; or changes are • Less than 10% of corporate training affects initially adopted but over time everything drifts long-term managerial behaviour.123 back to the way that it was. Everyone who has been One organization development OD textbook involved in managing or delivering a corporate acknowledges that, “organization change change process knows these scenarios
    [Show full text]
  • Fractals Dalton Allan and Brian Dalke College of Science, Engineering & Technology Nominated by Amy Hlavacek, Associate Professor of Mathematics
    Fractals Dalton Allan and Brian Dalke College of Science, Engineering & Technology Nominated by Amy Hlavacek, Associate Professor of Mathematics Dalton is a dual-enrolled student at Saginaw Arts and Sciences Academy and Saginaw Valley State University. He has taken mathematics classes at SVSU for the past four years and physics classes for the past year. Dalton has also worked in the Math and Physics Resource Center since September 2010. Dalton plans to continue his study of mathematics at the Massachusetts Institute of Technology. Brian is a part-time mathematics and English student. He has a B.S. degree with majors in physics and chemistry from the University of Wisconsin--Eau Claire and was a scientific researcher for The Dow Chemical Company for more than 20 years. In 2005, he was certified to teach physics, chemistry, mathematics and English and subsequently taught mostly high school mathematics for five years. Currently, he enjoys helping SVSU students as a Professional Tutor in the Math and Physics Resource Center. In his spare time, Brian finds joy playing softball, growing roses, reading, camping, and spending time with his wife, Lorelle. Introduction For much of the past two-and-one-half millennia, humans have viewed our geometrical world through the lens of a Euclidian paradigm. Despite knowing that our planet is spherically shaped, math- ematicians have developed the mathematics of non-Euclidian geometry only within the past 200 years. Similarly, only in the past century have mathematicians developed an understanding of such common phenomena as snowflakes, clouds, coastlines, lightning bolts, rivers, patterns in vegetation, and the tra- jectory of molecules in Brownian motion (Peitgen 75).
    [Show full text]
  • Curious and Sublime: the Connection Between Uncertainty and Probability in Physics
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PhilSci Archive Curious and sublime: the connection between uncertainty and probability in physics Harvey R. Brown Faculty of Philosophy, University of Oxford 10 Merton Street, Oxford OX1 4JJ, U.K. [email protected] Keywords: uncertainty, probability, statistical mechanics, quantum mechan- ics, Everett interpretation Let any one try to account for this [probabilistic] operation of the mind upon any of the received systems of philosophy, and he will be sensible of the difficulty. For my part, I shall think it sufficient, if the present hints excite the curiosity of philosophers, and make them sensible how defective all common theories are in treating of such curious and such sublime subjects.' David Hume [1]. When you come to a fork in the road, take it. Lawrence Peter (\Yogi") Berra Probabilities make just as much sense if all possible results occur as if just one does. David Papineau [2]. Abstract From its first significant appearance in physics, the notion of proba- bility has been linked in the minds of physicists with the notion of un- certainty. But the link may prove to be tenuous, if quantum mechanics, construed in terms of the Everett interpretation, is anything to go by. 1 \Statistical" mechanics The question as to when the notion of probability, in its modern guise, first made its appearance in physics is open to debate. But many would agree that something important happened in the 1870s when physicists working in the fledgling kinetic theory of gases were looking over their shoulders at what might be called the rival theory of thermodynamics.
    [Show full text]
  • Lewis Fry Richardson's Forecast Factory for Real
    Lewis Fry Richardson’s forecast factory – for real Andrew Charlton-Perez horizontal momentum, pressure, humidity 1. Forecasts are made by solving math- and stratospheric temperature over central ematical equations which represent and Helen Dacre Europe, using initial conditions from an the physical laws governing the University of Reading analysis by Bjerknes for 20 May 1910. This atmosphere. forecast was manually computed by 2. Forecasts are often made on a grid of The idea that supercomputers are an impor- Richardson between 1916 and 1918, when, points which represent different geo- tant part of making forecasts of the weather as a Quaker (and therefore a pacifist), he graphical locations. and climate is well known amongst the gen- served as an ambulance driver in Cham- eral population. However, the details of their pagne, France. Famously, his forecast pro- use are somewhat mysterious. A concept duced very large tendencies in most of its A scaled-down forecast factory Weather – February 2011, Vol. 66, No. 2 66, No. Vol. 2011, – February Weather used to illustrate many undergraduate components – much larger than those In order to make the problem tractable for numerical weather prediction courses is the observed in the real atmosphere (Lynch, secondary-school-age children and to make idea of a giant ‘forecast factory’, conceived 2006, p.133, discusses the reasons for this). it possible to complete the activity in a rea- by Lewis Fry Richardson in 1922. In this Nonetheless, the principles of Richardson’s sonably short time (~30 minutes) it was article, a way of using the same idea to forecast, particularly the application of math- necessary to design a forecast factory which communicate key ideas in numerical ematical techniques to solving the primi - solved a much simpler problem than that weather prediction to the general public is tive equations on a grid representing the used by Richardson.
    [Show full text]