Curious and Sublime: the Connection Between Uncertainty and Probability in Physics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Rethinking Superdeterminism
ORIGINAL RESEARCH published: 06 May 2020 doi: 10.3389/fphy.2020.00139 Rethinking Superdeterminism Sabine Hossenfelder 1 and Tim Palmer 2* 1 Department of Physics, Frankfurt Institute for Advanced Studies, Frankfurt, Germany, 2 Department of Physics, University of Oxford, Oxford, United Kingdom Quantum mechanics has irked physicists ever since its conception more than 100 years ago. While some of the misgivings, such as it being unintuitive, are merely aesthetic, quantum mechanics has one serious shortcoming: it lacks a physical description of the measurement process. This “measurement problem” indicates that quantum mechanics is at least an incomplete theory—good as far as it goes, but missing a piece—or, more radically, is in need of complete overhaul. Here we describe an approach which may provide this sought-for completion or replacement: Superdeterminism. A superdeterministic theory is one which violates the assumption of Statistical Independence (that distributions of hidden variables are independent of measurement settings). Intuition suggests that Statistical Independence is an essential ingredient of any theory of science (never mind physics), and for this reason Superdeterminism is typically discarded swiftly in any discussion of quantum foundations. The purpose of this paper is to explain why the existing objections to Superdeterminism are based on experience with classical physics and linear systems, but that this experience misleads us. Superdeterminism is a promising approach not only to solve the measurement Edited by: problem, but also to understand the apparent non-locality of quantum physics. Most Karl Hess, importantly, we will discuss how it may be possible to test this hypothesis in an (almost) University of Illinois at Urbana-Champaign, United States model independent way. -
Lorenz, G\"{O} Del and Penrose: New Perspectives on Determinism And
October 8, 2018 9:29 Contemporary Physics Palmer˙Sciama˙Rev˙2f Contemporary Physics Vol. 00, No. 00, Month 0000, 1–29 Lorenz, G¨odel and Penrose: New Perspectives on Determinism and Causality in Fundamental Physics T.N.Palmer University of Oxford, Clarendon Laboratory, Parks Rd, Oxford (v3.0 released March 2014) Despite being known for his pioneering work on chaotic unpredictability, the key discovery at the core of me- teorologist Ed Lorenz’s work is the link between space-time calculus and state-space fractal geometry. Indeed, properties of Lorenz’s fractal invariant set relate space-time calculus to deep areas of mathematics such as G¨odel’s Incompleteness Theorem. These properties, combined with some recent developments in theoretical and observational cosmology, motivate what is referred to as the ‘cosmological invariant set postulate’: that the universe U can be considered a deterministic dynamical system evolving on a causal measure-zero fractal invariant set IU in its state space. Symbolic representations of IU are constructed explicitly based on permu- tation representations of quaternions. The resulting ‘invariant set theory’ provides some new perspectives on determinism and causality in fundamental physics. For example, whilst the cosmological invariant set appears to have a rich enough structure to allow a description of quantum probability, its measure-zero character en- sures it is sparse enough to prevent invariant set theory being constrained by the Bell inequality (consistent with a partial violation of the so-called measurement independence postulate). The primacy of geometry as embodied in the proposed theory extends the principles underpinning general relativity. As a result, the physi- cal basis for contemporary programmes which apply standard field quantisation to some putative gravitational lagrangian is questioned. -
Quantum Physics and the Invariant Set Postulate
The Butterfly and the Photon: New Perspectives on Unpredictability in Classical and Quantum Physics Tim Palmer, Department of Physics, Oxford University [email protected] THE INVARIANT SET POSTULATE A New Geometric Framework for the Foundations of Quantum Theory and the Role Played by Gravity Proc.Roy.Soc. A 465:3165-3185 (2009) Three revolutions in 20th century physics Relativity Theory Quantum Theory Chaos Theory “My own view is that to understand quantum non- locality, we shall require a radical new theory. This new theory will not just be a slight modification of quantum mechanics but something as different from standard quantum mechanics as General Relativity is different from Newtonian Gravity.” (Penrose 1997: The Large, The Small and the Human Roger Mind) Penrose XXY Y XZ rX Y Z XY bZ XXY Y XZ rX Y Z XY bZ “I think there is some reason to believe…that the true quantum theory of gravity might be non- computable.” (Penrose 1997: The Large, The Small and the Human Mind) Roger Penrose ? Alice Bob Can Alice conceive of an alternative weather state for14 Jan, which improves her weather, but a) leaves Bob’s weather unchanged, and b) is consistent with the laws of weather? pI . Alice’s Weather Alice’s pI . pI Bob’s Weather 1) The weather is a causal fluid dynamical system – no fluid dynamical influence travels faster than the speed of sound 2) Observationally, fluctuations in Alice’s weather and Bob’s weather are (more or less) statistically uncorrelated. 3) Nevertheless, Alice’s weather and Bob’s weather are interdependent: -
And Quantum Mechanical Behaviour Is a Subject Which Is Not a Rarefied and Moribund Field
International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.2, Issue.4, July-Aug 2012 pp-1602-1731 ISSN: 2249-6645 Quantum Computer (Information) and Quantum Mechanical Behaviour - A Quid Pro Quo Model 1 2 3 Dr K N Prasanna Kumar, prof B S Kiranagi, Prof C S Bagewadi For (7), 36 ,37, 38,--39 Abstract: Perception may not be what you think it is. Perception is not just a collection of inputs from our sensory system. Instead, it is the brain's interpretation (positive, negative or neutral-no signature case) of stimuli which is based on an individual's genetics and past experiences. Perception is therefore produced by (e) brain‘s interpretation of stimuli .The universe actually a giant quantum computer? According to Seth Lloyd--professor of quantum-mechanical engineering at MIT and originator of the first technologically feasible design for a working quantum computer--the answer is yes. Interactions between particles in the universe, Lloyd explains, convey not only (- to+) energy but also information-- In brief, a quantum is the smallest unit of a physical quantity expressing (anagrammatic expression and representation) a property of matter having both a particle and wave nature. On the scale of atoms and molecules, matter (e&eb) behaves in a quantum manner. The idea that computation might be performed more efficiently by making clever use (e) of the fascinating properties of quantum mechanics is nothing other than the quantum computer. In actuality, everything that happens (either positive or negative e&eb) in our daily lives conforms (one that does not break the rules) (e (e)) to the principles of quantum mechanics if we were to observe them on a microscopic scale, that is, on the scale of atoms and molecules. -
Lorenz, Gödel and Penrose
NINTH DENNIS SCIAMA MEMORIAL LECTURE Lorenz, Gödel and Penrose: New perspec5ves on determinism and unpredictability: from climate predic5on to fundamental physics Tim Palmer University of Oxford X = −σ X +σY Y = − XZ + rX − Y Z = XY − bZ But what about… ? X = −σ X +σY IL Y = −XZ + rX −Y Z = XY − bZ “We conclude that there is an infinite complex of surfaces each extremely close to one or the other of two merging surfaces….” Lorenz 63 Differenal Equaons IL Number Logic Theory R L LRLRL a trefoil knot LRLRLRL a type (3,5) torus knot LRLRRRLRRR a type (-3,-7, 2) pretzel knot Lorenz knots = Modular knots (Ghys 2000) A ∈PSL(2,) =SL(2,) /{I,−I} The Modular Group ⎛ 164 133 ⎞ eg A= = LRRRLLRRRLLLLR ⎝⎜ 127 103 ⎠⎟ where ⎛ 1 1 ⎞ ⎛ 1 0 ⎞ L= ; R= ⎝⎜ 0 1 ⎠⎟ ⎝⎜ 1 1 ⎠⎟ hp://www.josleys.com/ar5cles/ams_ar5cle/Lorenz3.htm A Lace Λ = ω = nω + mω :n,m ∈ { 1 2 } Modular Forms Ellipc Curves G L = ω −2k 2 3 2k ( ) ∑ y = 4x − 60G4 x −140G6 ω∈L\{0} ⋅ p ∈I L ? Is there a (finite) No. “Hal5ng Sets algorithm for must have integral deciding whether p Hausdorff belongs to IL? dimension” Post Correspondence Problem Given a collection of dominos, eg ⎧⎫bacaabc ⎡⎤⎡⎤⎡⎤⎡⎤,,, Emil ⎨⎬⎢⎥⎢⎥⎢⎥⎢⎥ Post ⎩⎭⎣⎦⎣⎦⎣⎦⎣⎦ca ab a c can we make a list of dominos (repetitions allowed) so that the string on the top matches the string on the bottom? In this case yes, ie ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤abcaaabc ⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥ab ca a ab c The PCP is to determine whether any given collection of dominos has a match. -
The Physics of God and the Quantum Gravity Theory of Everything∗
The Physics of God and the Quantum Gravity Theory of Everything∗ James Redford† September 10, 2012 ABSTRACT: Analysis is given of the Omega Point cosmology, an extensively peer- reviewed proof (i.e., mathematical theorem) published in leading physics journals by professor of physics and mathematics Frank J. Tipler, which demonstrates that in order for the known laws of physics to be mutually consistent, the universe must diverge to infinite computational power as it collapses into a final cosmo- logical singularity, termed the Omega Point. The theorem is an intrinsic compo- nent of the Feynman–DeWitt–Weinberg quantum gravity/Standard Model Theory of Everything (TOE) describing and unifying all the forces in physics, of which itself is also required by the known physical laws. With infinite computational re- sources, the dead can be resurrected—never to die again—via perfect computer emulation of the multiverse from its start at the Big Bang. Miracles are also phys- ically allowed via electroweak quantum tunneling controlled by the Omega Point cosmological singularity. The Omega Point is a different aspect of the Big Bang cosmological singularity—the first cause—and the Omega Point has all the haec- ceities claimed for God in the traditional religions. From this analysis, conclusions are drawn regarding the social, ethical, eco- nomic and political implications of the Omega Point cosmology. ∗Originally published at the Social Science Research Network (SSRN) on December 19, 2011, doi: 10.2139/ssrn.1974708 . Herein revised on September 10, 2012. This article and its contents are re- leased in the public domain. If one desires a copyright for this work, then this article and its contents are also released under Version 3.0 of the “Attribution (By)” Creative Commons license and/or Version 1.3 of the GNU Free Documentation License. -
Centro De Ciencias Sociales Y Humanidades Departamento De Filosofía T E S
CENTRO DE CIENCIAS SOCIALES Y HUMANIDADES DEPARTAMENTO DE FILOSOFÍA T E S I S EL INDETERMINISMO Y EL PRINCIPIO DE INCERTIDUMBRE DE HEISENBERG PRESENTA Cresencio Salvador Medina Rivera PARA OBTENER EL GRADO DE DOCTOR EN CIENCIAS SOCIALES Y HUMANIDADES TUTOR Dr. José de Lira Bautista COMITÉ TUTORAL Dr. Netzahualcóyotl Castañeda Leyva Dr. Enrique Luján Salazar LECTORES Dra. Yolanda Cadenas Gómez Dr. Ángel Eduardo Muñoz Zavala Aguascalientes, Ags. 18 de Mayo de 2011 AGRADECIMIENTOS A mis familiares y amigos: por estar siempre conmigo, baje o suba la rueda. A mi tutor y cotutor: por su incondicional apoyo, sus conocimientos y su impar bonhomía. A la Universidad Autónoma de Aguascalientes, por abrir espacios de crecimiento, y por permitirme estar a su lado en el continuo intento de lograr un mundo mejor. A mi comité tutoral y a mis lectores, pues sin sus observaciones, todo habría sido más difícil. Y sobre todo, y como siempre: “gracias a la vida… que me ha dado tanto” ESTE TRABAJO ESTÁ DEDICADO A: Mi padre (q. e . p. d.), mi madre y mis hermanos, por ser parte de mi vida. Todos aquéllos que me han ayudado, y que siempre llevo en la memoria. Y por supuesto, especialmente a: Mi esposa y mis hijos: Paulina, Irene y Salam: por ser el pan y la sal de mi vida. “Quienes luchan toda la vida. Esos son los imprescindibles.” –B. Brecht– Í N D I C E Resumen ....................................................................................................... i Abstract ......................................................................................................