AMD Technology & Software
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Titan X Amd 1.2 V4 Ig 20210319
English TITAN X_AMD 1.2 Installation Guide V4 Parts List A CPU Water Block A A-1 BPTA-CPUMS-V2-SKA ..........1 pc A-1 A-2 A-2 Backplane assembly ..............1 set B Fittings B-1 BPTA-DOTFH1622 ...............4 pcs B-2 TA-F61 ...................................2 pcs B-3 BPTA-F95 ..............................2 pcs B-4 BP-RIGOS5 ...........................2 pcs B-5 TA-F60 ..................................2 pcs B-6 TA-F40 ..................................2 pcs C Accessory C-1 Hard tube ..............................2 pcs C-2 Fitting + soft tube ....................1 pc C-3 CPU set SCM3FL20 SPRING B SCM3F6 1mm Spacer Back Pad Paste Pad Metal Backplane M3x32mm Screw B-1 B-2 B-3 B-4 B-5 B-6 C C-1 Hard Tube ※ The allowable variance in tube length is ± 2mm C-2 Fitting + soft tube Bitspower reserves the right to change the product design and interpretations. These are subject to change without notice. Product colors and accessories are based on the actual product. — 1 — I. AMD Motherboard system 54 AMD SOCKET 939 / 754 / 940 IN 48 AMD SOCKET AM4 AMD SOCKET AM3 / AM3+ AMD SOCKET AM2 / AM2+ AMD SOCKET FM1 / FM2+ Bitspower Fan and DRGB RF Remote Controller Hub (Not included) are now available at microcenter.com DRGB PIN on Motherboard or other equipment. 96 90 BPTA-RFCHUB The CPU water block has a DRGB cable, which AMD SOCKET AM4 AMD SOCKET AM3 AM3+ / AMD SOCKET AM2 AM2+ / AMD SOCKET FM1 / FM2+ can be connected to the DRGB extension cable of the radiator fans. Fan and DRGB RF Remote Motherboard Controller Hub (Not included) OUT DRGB LED Do not over-tighten the thumb screws Installation (SCM3FL20). -
An Introduction to Analysis and Optimization with AMD Codeanalyst™ Performance Analyzer
An introduction to analysis and optimization with AMD CodeAnalyst™ Performance Analyzer Paul J. Drongowski AMD CodeAnalyst Team Advanced Micro Devices, Inc. Boston Design Center 8 September 2008 Introduction This technical note demonstrates how to use the AMD CodeAnalyst™ Performance Analyzer to analyze and improve the performance of a compute-bound program. The program that we chose for this demonstration is an old classic: matrix multiplication. We'll start with a "textbook" implementation of matrix multiply that has well-known memory access issues. We will measure and analyze its performance using AMD CodeAnalyst. Then, we will improve the performance of the program by changing its memory access pattern. 1. AMD CodeAnalyst AMD CodeAnalyst is a suite of performance analysis tools for AMD processors. Versions of AMD CodeAnalyst are available for both Microsoft® Windows® and Linux®. AMD CodeAnalyst may be downloaded (free of charge) from AMD Developer Central. (Go to http://developer.amd.com and click on CPU Tools.) Although we will use AMD CodeAnalyst for Windows in this tech note, engineers and developers can use the same techniques to analyze programs on Linux. AMD CodeAnalyst performs system-wide profiling and supports the analysis of both user applications and kernel- mode software. It provides five main types of data collection and analysis: • Time-based profiling (TBP), • Event-based profiling (EBP), • Instruction-based sampling (IBS), • Pipeline simulation (Windows-only feature), and • Thread profiling (Windows-only feature). We will look at the first three kinds of analysis in this note. Performance analysis usually begins with time-based profiling to identify the program hot spots that are candidates for optimization. -
Software Optimization Guide for Amd Family 15H Processors (.Pdf)
Software Optimization Guide for AMD Family 15h Processors Publication No. Revision Date 47414 3.06 January 2012 Advanced Micro Devices © 2012 Advanced Micro Devices, Inc. All rights reserved. The contents of this document are provided in connection with Advanced Micro Devices, Inc. (“AMD”) products. AMD makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice. The infor- mation contained herein may be of a preliminary or advance nature and is subject to change without notice. No license, whether express, implied, arising by estoppel or other- wise, to any intellectual property rights is granted by this publication. Except as set forth in AMD’s Standard Terms and Conditions of Sale, AMD assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right. AMD’s products are not designed, intended, authorized or warranted for use as compo- nents in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or in any other application in which the failure of AMD’s product could create a situation where personal injury, death, or severe property or environmental damage may occur. AMD reserves the right to discontinue or make changes to its products at any time without notice. Trademarks AMD, the AMD Arrow logo, and combinations thereof, AMD Athlon, AMD Opteron, 3DNow!, AMD Virtualization and AMD-V are trademarks of Advanced Micro Devices, Inc. -
SOCKETS (Zocalos)
Instituto ITES Armado, Reparación y Mantención PC. Prof: Vladimir Zúñiga C. SOCKETS (zocalos) LGA 775 Especificaciones Tipo LGA Factores de forma Flip-chip land grid array del chip Contactos 775 Protocolo del FSB Quad-Pumped Frecuencia del 533 MT/s, 800 MT/s, 1066 FSB MT/s, 1333 MT/s, 1600 MT/s Dimesiones del 1.47 × 1.47 inches[1] procesador Procesadores Intel Pentium 4 (2.66 - 3.80 GHz) Intel Celeron D (2.53 - 3.60 GHz ) Intel Pentium 4 Extreme Edition (3.20 - 3.73 GHz) Intel Pentium D (2.66 - 3.60 GHz) Pentium Dual-Core (1.40 - 2.80 GHz) Intel Core 2 Duo (1.60 - 3.33 GHz) Intel Core 2 Extreme (2.66 - 3.20 GHz) Intel Core 2 Quad (2.33 - 3.00 GHz) Intel Xeon (1.86-3.40 GHz) Intel 'Core' Celeron (1.60 - 2.40 GHz) El zócalo LGA 775, también conocido como Socket T o Socket 775, es uno de los zócalos utilizados por Intel para dar soporte a los microprocesadores Pentium 4. Entre otros aspectos, se diferencia de los anteriores 370 (para Pentium III) y del Socket 423 y 478 (para los primeros Pentium 4) en que carece de pines. Las velocidades de bus disponibles para esta arquitectura van desde 533Mhz hasta 1600MHz. Este tipo de zócalo es el "estándar" para casi todos los procesadores de consumo de Intel para equipos sobremesa y algunos portátiles. Desde los "Celeron D" hasta los "Core 2 Duo", pasando por los "Pentium D", su principal atractivo es que los procesadores para LGA 775 carecen de pines; es decir que la placa base es la que contiene los contactos para comunicarse con el procesador. -
MX690E2 Radeon X1250 for Gaming Applications
Industrial Motherboards AMD® RS690E Mini ITX with Integrated MX690E2 Radeon X1250 for Gaming Applications Audio 2 USB KB + Mouse Features 2 USB + LAN DVI + VGA COM1, COM2 • AMD® Socket AM2/AM2+ Supports Athlon 64, Athlon 64 x2, Sempron with 2000 MHz Hyper Transport • AMD® RS690E/SB600 Chipset Amplifi er ATX • Up to 4 GB DDR2 533/667/800 MHz SO-DIMM Sys- LVDS tem Memory PCIe x16 • ATI® Radeon Xpress1250 Graphic Engine RS690E • Dual Display: DVI-D, LVDS, VGA • 1 Gigabit LAN, HD Audio, Amplifi er Socket AM2 • 1 PCI, 1 Mini PCIe, Compact Flash SB600 • 2 SATA, 4 COM, 6 USB, 8-bit GPIO 2 SATA • TPM 1.2 Supported DIO • ATX Power COM3 COM4 • Mini ITX (6.7” x 6.7”) Mini PCIe CF (back) IDE 2 USB Front Panel 2 SO-DIMMs up to 4 GB Specifi cation ATX Power DDR2 SDRAM System Audio CPU Supports AMD® Socket AM2 support Athlon 64, Athlon 64 X AC’97 Codec Realtek® ALC888/ALC886 Audio Codec 2, Sempron with FSB 2000MHz Hyper Transport support with Audio Amplifer TPA3005D2 Stereo 5Watt per channel 200/400/600/800/1000 MHz Chipsets AMD® RS690E + SB600 Ethernet System Memory Two 200-pin SO-DIMM supports up to 4 GB DDR2 SDRAM LAN 1 Realtek® RTL8111B (1000Base-T Fast Ethernet) 400/533/667/800 MHz BIOS SPI Award 8 Mb BIOS Mechanical and Environment Expansion Interface 1 x PCI 1 x CF Power Requirement 42W (Max). ( 3.3V, 3.08A , 5V 0.817A, 5VSB 0.387A, 12V 2.18A) 1 x Mini PCIe Operating Temperature 0~60°C TPM TPM1.2 (Infi neon® TPM chip 9635 TT 1.2 on board) Operating Humidity 5%~90% relative humidity, non-condensing Watchdog Timer Reset: 1 sec.~255 min. -
AMD Codexl 1.7 GA Release Notes
AMD CodeXL 1.7 GA Release Notes Thank you for using CodeXL. We appreciate any feedback you have! Please use the CodeXL Forum to provide your feedback. You can also check out the Getting Started guide on the CodeXL Web Page and the latest CodeXL blog at AMD Developer Central - Blogs This version contains: For 64-bit Windows platforms o CodeXL Standalone application o CodeXL Microsoft® Visual Studio® 2010 extension o CodeXL Microsoft® Visual Studio® 2012 extension o CodeXL Microsoft® Visual Studio® 2013 extension o CodeXL Remote Agent For 64-bit Linux platforms o CodeXL Standalone application o CodeXL Remote Agent Note about installing CodeAnalyst after installing CodeXL for Windows AMD CodeAnalyst has reached End-of-Life status and has been replaced by AMD CodeXL. CodeXL installer will refuse to install on a Windows station where AMD CodeAnalyst is already installed. Nevertheless, if you would like to install CodeAnalyst, do not install it on a Windows station already installed with CodeXL. Uninstall CodeXL first, and then install CodeAnalyst. System Requirements CodeXL contains a host of development features with varying system requirements: GPU Profiling and OpenCL Kernel Debugging o An AMD GPU (Radeon HD 5000 series or newer, desktop or mobile version) or APU is required. o The AMD Catalyst Driver must be installed, release 13.11 or later. Catalyst 14.12 (driver 14.501) is the recommended version. See "Getting the latest Catalyst release" section below. For GPU API-Level Debugging, a working OpenCL/OpenGL configuration is required (AMD or other). CPU Profiling o Time-Based Profiling can be performed on any x86 or AMD64 (x86-64) CPU/APU. -
AMD Socket AM2 with AMD M690T Chipset Reference Schematic D D
5 4 3 2 1 AMD Socket AM2 with AMD M690T Chipset Reference Schematic D D NOTES: Page Index Page Index ------- -------------------------------------------- ------- -------------------------------------------- 1) This schematic supports the AMD Socket AM2 CPU devices. 1 Cover Page 17 SB600 PCIe, PCI, LPC, Straps, & CPU Control 2) These are "Reference Schematics" and as such they have 2 Revision History 18 SB600 ACPI, GPIO, USB, and Audio Interfaces not been verified by an actual board build. 3 Block Diagram 19 SB SATA, IDE, SPI, and HW Management Interfaces 3) This reference schematic supports AMD M960T revision 4 Clock Structure 20 SB600 Power A12 or later. If A12 or later revision is not used, please 5 Power Configuration (1) 21 CRT Connector see your customer support representative for the 6 Power Configuration (2) 22 Broadcom Ethernet Controller necessary application notes for workarounds. 7 Reset & Voltage Sequence 23 Realtek Audio Codec C 4) This reference schematic supports SB600 revision 8 Socket AM2 HT Interface 24 LPC BIOS C A21 or later. If A21 or later revision is not used, please 9 Socket AM2 DDRII Memory Interface 25 USB Power and Connectors see your customer support representative for the 10 Socket AM2 Control & Debug 26 Power Main System, SB600 PCIe, & Other necessary application notes for workarounds. 11 Socket AM2 Power & Ground 27 Standby Power & Powergood 5) Unless otherwise specified, resistors have 5% tolerance. 12 SODIMM DDR2 28 Power for CPU Core 13 M690T HT, PCI, PCIe(R), PCIe Graphics Port 29 Power for DDR2 Memory and Interface 6) Unless otherwise specified, capacitors have 20% tolerance. 14 M690T PLL and Video Interface 30 Power M690T Core, PCIe Interface 15 M690T Power and Side Port Memory Interface 31 Unused Interfaces 16 Clock Generator IMPORTANT NOTICE: B 1. -
AMD Multi-Core Processors Providing Multiple Benefits for the Future
hard hat area | white paper AMD Multi-Core Processors Providing Multiple Benefits For The Future y now you probably have heard of variations this year. In 2007 the chipmakers (page 50). This month, we’ll focus on what dual- and multi-core processors. expect to introduce several multi-core AMD has planned for 2006 and beyond. B Both AMD and Intel released chips, beginning with quad-core offerings. dual-core chips in 2005, and both have We discussed Intel’s multi-core proces- Dual-Core Chips plans to release dozens more dual-core chip sors in the January 2006 issue of CPU In April 2005, AMD released its first dual-core chip aimed at the server and workstation market, the Opteron proces- Direct Connect Architecture vs. sor. There are several Opteron dual-core Legacy Systems 90nm processors ranging in clock speeds from 1.6GHz to 2.4GHz. Direct Connect Architecture lives up to its name by providing a for the past few years in its single-core chips. direct connection between the processor, the memory But now AMD has extended the use of Direct Connect Architecture to controller, and the I/O area to improve overall system connect the cores on a dual- or multi-core chip die and to connect each performance. AMD has used Direct Connect Architecture core to its memory controller. ▲ With multi-core architecture, each core on the chip has its own memory con- When using a dual-processor x86 legacy architecture, troller, which significantly improves memory performance. Using Direct Connect however, two processors then have to share the same Architecture to make a connection with the memory controller eliminates most memory control hub, which creates bottlenecks in data bottlenecks and makes multitasking easier. -
AMD Codexl 1.8 GA Release Notes
AMD CodeXL 1.8 GA Release Notes Contents AMD CodeXL 1.8 GA Release Notes ......................................................................................................... 1 New in this version .............................................................................................................................. 2 System Requirements .......................................................................................................................... 2 Getting the latest Catalyst release ....................................................................................................... 4 Note about installing CodeAnalyst after installing CodeXL for Windows ............................................... 4 Fixed Issues ......................................................................................................................................... 4 Known Issues ....................................................................................................................................... 5 Support ............................................................................................................................................... 6 Thank you for using CodeXL. We appreciate any feedback you have! Please use the CodeXL Forum to provide your feedback. You can also check out the Getting Started guide on the CodeXL Web Page and the latest CodeXL blog at AMD Developer Central - Blogs This version contains: For 64-bit Windows platforms o CodeXL Standalone application o CodeXL Microsoft® Visual Studio® -
User's Manual
User’s Manual (English version) CNPS9500 Intel Pentium 4 Socket 478 CPU Intel Dual Core Pentium/Pentium 4 Socket 775 CPU AMD Sempron/AMD64 (Athlon 64 X2/Opteron/Athlon 64) Socket 754/939/940 CPU * Applies to all versions of CNPS9500. * Please read before installation. http://www.zalman.co.kr http://www.zalmanusa.com 1. Features 1) 100% copper heatsink with aerodynamically optimized “tunnel” design for maximum cooling efficiency. 2) Innovative and patented, curved heatpipe design for a heat transfer capacity of up to 6 heatpipes with just 3. 3) Optimized heatsink layout for maximum cooling efficiency with minimal materials. 4) 0.2mm ultra-slim fins for minimized weight and reduced airflow resistance. 5) Ultra quiet CNPS 92mm opaque fan with blue LEDs. 6) Aerodynamically optimized heatsink for smoother airflow and minimal noise. 7) Compatible CPUs (Refer to “7. Compatible CPUs” on page 3. for more information.) - Intel : All Dual Core Pentium CPUs (Socket 775) All Pentium 4 CPUs (Socket 775/478) - AMD : All Dual Core AMD Athlon 64 X2 CPUs (Socket 939) All AMD Sempron/AMD64 CPUs (Socket 754/939/940) 8) Adjustable fan speed controller (FAN MATE 2) enables control of noise and fan speed. 2. Specifications 1) Flower Heatsink (FHS) Spec. Model CNPS9500 Materials Pure Copper Weight(g) 530(1) Thermal Resistance Silent Mode 0.16 (°C/W ) Normal Mode 0.12 Dimensions (mm) 85(L) X 112(W) X 125(H) Dissipation Area (㎠) 3,698 2) Fan - Bearing Type : 2-Ball - Rotation Speed : 1,350RPM ± 10 % (Silent Mode) 2,600RPM ± 10 % (Low-noise Mode) - Noise (dB) : 18.0dB ± 10% (Silent Mode) - measured at 1m from noise source 27.5dB ± 10% (Low-noise mode) - measured at 1m from noise source 3) FAN MATE 2 - Output Voltage : 5V ~ 11V ± 2 % - Allowable Power : 6W or lower (Note 1) The maximum weight for a cooler is specified as 450g for Intel Socket 775 and AMD Socket 754/939/940. -
Motherboard Basics
MOTHERBOARD BASICS A recent Tech Tip covered the basics of selecting a computer caseand made mention of the various sizes that correspond to motherboards of different form factors. A few people wrote in expressing interest in understanding more about the basics of motherboards, and that’s exactly what this Tech Tip intends to address. A motherboard, also known as a main board, is the primary circuit board inside of a computer, and is where the central processing unit (CPU), memory, expansion slots, drives, and other peripheral devices are connected. The circuitry on a motherboard facilitates the communication between all of the devices in the computer, making them as critical to a system’s performance as items such as the CPU or memory. The core circuitry of a motherboard is referred to as its chipset, and generally the manufacturer of the motherboard is not the manufacturer of the chipset. Intel does produce motherboards with their own chipsets, but buying a motherboard brand such as Gigabyte, Biostar, and ASUS means getting a board with either a VIA, Nvidia, SIS, or Intel brand chipset. 1. Form Factor The different basic shapes and sizes of motherboards are categorized as form factors. There are several standard form factors available, but some of the more common ones found in desktop computers include: (http://www.formfactors.org/developer/specs/atx2_2.pdf), ATX (http://www.formfactors.org/developer/specs/matxspe1.2.pdf), Micro ATX (mATX) (http://www.formfactors.org/developer/specs/FlexATXaddn1_0.pdf) FlexATX (http://www.via.com.tw/en/initiatives/spearhead/mini-itx/) and Mini-ITX The basic sizes of each are as follows: ATX: 12" x 9.6" (305mm x 244mm) Micro ATX: 9.6" x 9.6" (244mm x 244mm) FlexATX: 9.0" x 7.5" (229mm x 191mm) Mini ITX: 6.7" x 6.7" (170mm x 170mm) ATX and mATX are by far the most popular motherboard sizes for desktop computers, and as seen in the list above, are also some of the largest. -
939Dual-SATA2 Uli 1695 Chipset (Uli M1695/ Uli M1567) Detail Specification
Socket 939 for AMD Athlon 64x2 Athlon 64, Athlon 64FX and Sempron processorr 939Dual-SATA2 ULi 1695 chipset (ULi M1695/ ULi M1567) Detail Specification CPU - Socket 939 for AMD Athlon 64x2 Athlon 64FX / Athlon 64 and Sempron processor - FSB 1000 MHz (2.0GT/s) - Supports HyperTransport Technology - Supports AMD Cool'n'Quiet Technology Chipset - Northbridge: ULi M1695 - Southbridge: ULI M1567 Memory - DIMM slots: 4 supported - Max. capacity: 4GB Hybrid Booster- CPU Frequency Stepless control - CPU Multiplier - ASRock U-COP - Boot Failure Guard (B.F.G) Expansion Slot- 1 x ASRock Future CPU Port (Yellow-colored): Flexible Socket M2 upgrade interface for ASRock M2CPU Board - 1 x AGP8X/4X slot , 1.5V only - 1 x PCI Express x16 slot - 1 x PCI Express x1 slot - 3 x PCI slots Graphics N/A ASRock Future CPU Port: Flexible M2 Socket upgrade interface for ASRock M2CPU Board Audio - Realtek 850 7.1channel AC'97 audio codec Support AMD Dual Core Athlon 64 X2 processor LAN - Realtek RTL8201CL 10/100 Ethernet LAN PHY - 802.3u, WOL supported PCI Express (x16) and AGP8X/4X VGA Card Rear Panel I/O ASRock 8CH I/O Interface to adopt both PCI Express and AGP - 4 x USB2.0 ports - 1 x RJ45 LAN port display card - 1 x Serial port (COM1) - 1 x PS2 Keyboard connector PCI Express x1 slot for other hi-speed peripheral - 1 x PS2 Mouse connectors cards - 1 x Parallel port (LPT1) - 2 x Audio ports to support 8 Ch audio Advanced storage interface : 2 x Serial ATA ( Line In/Out, Mic In) 1.5Gb/s, RAID 0,1,JBOD, and 1 x SATAII 3.0Gb/s Connector - 2 x SerialATA connectors support RAID,0,1, JBOD Luxury sound effect: 7.1channel superior Audio - 1 x SATA2 connector (based on PCIE SATA2 controller JMB360) Adopts Worldwide First PCI Express SATA II - 2 x ATA 133/100/66 IDE connectors ( supports 4 x IDE devices) controller on board, optimizing the support for - 1 x Floppy connector SATA2 HDD - CPU/Chassis FAN connectors - 20 pin ATX power connector - 4 pin ATX 12V power connector Product brief - Power LED connector 1.