Uva-DARE (Digital Academic Repository)
Total Page:16
File Type:pdf, Size:1020Kb
UvA-DARE (Digital Academic Repository) Quantifying the efficiency and stability potential of perovskite-based devices Futscher, M.H. Publication date 2020 Document Version Other version License Other Link to publication Citation for published version (APA): Futscher, M. H. (2020). Quantifying the efficiency and stability potential of perovskite-based devices. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:01 Oct 2021 References 1. International Energy Agency -IEA-. Global energy and CO2 status report 2018 tech. rep. March (International Energy Agency, 2019), 15. 2. Kharas, H. The unprecedented expansion of the global middle class an update tech. rep. February (2017), 1–2. 3. Asafu-Adjaye, J. The relationship between energy consumption, energy prices and economic growth: Time series evidence from Asian developing countries. Energy Economics 22, 615–625 (2000). 4. Anderson, M. G. & Katz, P. B. Strategic sourcing. The International Journal of Logistics Management 9, 1–13 (1998). 5. Oreskes, N. Beyond the ivory tower: The scientific consensus on climatic change. Science 306, 1686 (2004). 6. Creutzig, F. et al. The underestimated potential of solar energy to mitigate climate change. Nature Energy 2, 17140 (2017). 7. Kost, C. et al. Levelized cost of electricity - renewable energy technologies tech. rep. (Fraunhofer ISE, 2018). 8. Green, M. A. How did solar cells get so cheap? Joule 3, 631–633 (2019). 9. Willuhn, M. Brazil A-4 auction signs 211 MW of solar for record-low price of $0.0175 kWh. PV-Magazine (2019). 10. Weaver, J. Los Angeles seeks record setting solar power price under 2 ¢/kWh. PV-Magazine (2019). 11. Weaver, J. New record low solar power price? 2.175 ¢/kWh in Idaho. PV- Magazine (2019). 12. Sivaram, V. & Kann, S. Solar power needs a more ambitious cost target. Nature Energy 1, 16036 (2016). 13. Sivaram, V., Dabiri, J. O. & Hart, D. M. The need for continued innovation in solar, wind, and energy storage. Joule 2, 1639–1642 (2018). 14. Egan, R. J. & Chang, N. L. When every cent counts. Nature Energy 3, 361–362 (2018). 166 REFERENCES 15. Goldschmidt, V. M. Die Gesetze der Krystallochemie. Die Naturwissenschaften 14, 477–485 (1926). 16. De Wolf, S et al. Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. Journal of Physical Chemistry Letters 5, 1035–1039 (2014). 17. Wehrenfennig, C., Eperon, G. E., Johnston, M. B., Snaith, H. J. & Herz, L. M. High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Advanced Materials 26, 1584–1589 (2014). 18. Johnston, M. B. & Herz, L. M. Hybrid perovskites for photovoltaics: charge- carrier recombination, diffusion, and radiative efficiencies. Accounts of Chemi- cal Research 49, 146–154 (2016). 19. Green, M. A. & Ho-Baillie, A. Perovskite solar cells: The birth of a new era in photovoltaics. ACS Energy Letters 2, 822–830 (2017). 20. Snaith, H. J. Present status and future prospects of perovskite photovoltaics. Nature Materials 17, 372–376 (2018). 21. Moller, C. K. Crystal structure and photoconductivity of caesium plumbo- halides. Nature 182, 1436 (1958). 22. Weber, D. CH3NH3Pb3X3, ein Pb(II)-System mit kubischer Perowskitstruktur. Zeitschrift fur Naturforschung - Section B Journal of Chemical Sciences 33, 1443– 1445 (1978). 23. Baruch, P., De Vos, A., Landsberg, P. T. & Parrott, J. E. On some thermody- namic aspects of photovoltaic solar energy conversion. Solar Energy Materials and Solar Cells 36, 201–222 (1995). 24. Kojima, A, Teshima, K, Shirai, Y & Miyasaka, T. Organometal halide per- ovskites as visible-light sensitizers for photovoltaic cells. Journal of the Ameri- can Chemical Society 131, 6050–6051 (2009). 25. Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Effi- cient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012). 26. Kim, H. S. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific Reports 2 (2012). 27. Green, M. A. et al. Solar cell efficiency tables (version 54). Progress in Photo- voltaics: Research and Applications 27, 565–575 (2019). 28. NREL. Best research-cell efficiency chart — photovoltaic research — NREL tech. rep. (2019). REFERENCES 167 29. Rong, Y. et al. Challenges for commercializing perovskite solar cells. Science 361, eaat8235 (2018). 30. Avila,´ J., Momblona, C., Boix, P. P., Sessolo, M. & Bolink, H. J. Vapor-deposited perovskites: The route to high-performance solar cell production? Joule 1, 431– 442 (2017). 31. Deng, Y. et al. Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules. Nature Energy 3, 560– 566 (2018). 32. Galagan, Y. Perovskite solar cells: Toward industrial-scale methods. Journal of Physical Chemistry Letters 9, 4326–4335 (2018). 33. Li, Z. et al. Scalable fabrication of perovskite solar cells. Nature Reviews Mate- rials 3, 18017 (2018). 34. Eames, C. et al. Ionic transport in hybrid lead iodide perovskite solar cells. Nature Communications 6, 7497 (2015). 35. Frost, J. M. & Walsh, A. What is moving in hybrid halide perovskite solar cells? Accounts of Chemical Research 49, 528–535 (2016). + 36. Senocrate, A. et al. Slow CH3NH3 diffusion in CH3NH3PbI3 under light mea- sured by solid-state NMR and tracer diffusion. Journal of Physical Chemistry C 122, 21803–21806 (2018). 37. Senocrate, A. et al. The nature of ion conduction in methylammonium lead iodide: A multimethod approach. Angewandte Chemie International Edition 56, 7755–7759 (2017). 38. Li, C., Guerrero, A., Huettner, S. & Bisquert, J. Unravelling the role of vacan- cies in lead halide perovskite through electrical switching of photolumines- cence. Nature Communications 9, 5113 (2018). 39. Yuan, Y. et al. Photovoltaic switching mechanism in lateral structure hybrid perovskite solar cells. Advanced Energy Materials 5, 1500615 (2015). 40. Li, C., Guerrero, A., Zhong, Y. & Huettner, S. Origins and mechanisms of hys- teresis in organometal halide perovskites. Journal of Physics: Condensed Matter 29, 193001 (2017). 41.W urfel,¨ P. The chemical potential of radiation. Journal of Physics C: Solid State Physics 15, 3967–3985 (1982). 42. Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p-n junc- tion solar cells. Journal of Applied Physics 32, 510–519 (1961). 43. Vos, A. D. Detailed balance limit of the efficiency of tandem solar cells. Journal of Physics D: Applied Physics 13, 839–849 (1980). 168 REFERENCES 44. Nelson, J. The Physics of Solar Cells (Imperial College Press, 2003). 45. Rau, U. Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells. Physical Review B - Condensed Matter and Materials Physics 76, 1–8 (2007). 46. Wheeler, S. et al. Transient optoelectronic analysis of the impact of material en- ergetics and recombination kinetics on the open-circuit voltage of hybrid per- ovskite solar cells. The Journal of Physical Chemistry C 121, 13496–13506 (2017). 47. Stellwag, T. et al. Effects of perimeter recombination on GaAs-based solar cells in IEEE Conference on Photovoltaic Specialists (IEEE, 1990), 442–447. 48. Chegaar, M. et al. Effect of illumination intensity on solar cells parameters. Energy Procedia 36, 722–729 (2013). 49. Verschraegen, J., Burgelman, M. & Penndorf, J. Temperature dependence of the diode ideality factor in CuInS2-on-Cu-tape solar cells. Thin Solid Films 480- 481, 307–311 (2005). 50. Weber, S. A. L. et al. How the formation of interfacial charge causes hysteresis in perovskite solar cells. Energy & Environmental Science 11, 2404–2413 (2018). 51. Polman, A., Knight, M., Garnett, E. C., Ehrler, B. & Sinke, W. C. Photovoltaic materials – present efficiencies and future challenges. Science 352, 307 (2016). 52. Tiedje, T., Yablonovitch, E., Cody, G. D. & Brooks, B. G. Limiting efficiency of silicon solar cells. IEEE Transactions on Electron Devices 31, 711–716 (1984). 53. Noh, J. H., Im, S. H., Heo, J. H., Mandal, T. N. & Seok, S. I. Chemical manage- ment for colorful, efficient, and stable inorganic - organic hybrid nanostruc- tured solar cells. Nano Letters 13, 1764–1769 (2013). 54. Noel, N. K. et al. Lead-free organic-inorganic tin halide perovskites for photo- voltaic applications. Energy and Environmental Science 7, 3061–3068 (2014). 55. Pazos-Outon,´ L. M. et al. Photon recycling in lead iodide perovskite solar cells. Science 351, 1430–1433 (2016). 56. Mart´ı, A. & Araujo,´ G. L. Limiting efficiencies for photovoltaic energy con- version in multigap systems. Solar Energy Materials and Solar Cells 43, 203–222 (1996). 57. Brown, A. S. & Green, M. A. Detailed balance limit for the series constrained two terminal tandem solar cell. Physica E: Low-dimensional Systems and Nanos- tructures 14, 96–100 (2002). 58. Brown, A. S. & Green, M. A. Limiting efficiency for current-constrained two- terminal tandem cell stacks. Progress in Photovoltaics: Research and Applications 10, 299–307 (2002). REFERENCES 169 59. White, T. P., Lal, N. N. & Catchpole, K. R. Tandem solar cells based on high- efficiency c-Si bottom cells: Top cell requirements for >30% efficiency. IEEE Journal of Photovoltaics 4, 208–214 (2014).