© Copyright 2017 Sarah M. Vorpahl
Total Page:16
File Type:pdf, Size:1020Kb
© Copyright 2017 Sarah M. Vorpahl Correlating nanoscale optoelectronic and mechanical properties of solution processable thin film photovoltaic materials using scanning probe microscopy Sarah Marie Vorpahl A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2017 Reading Committee: David Ginger, Chair Brandi Cossairt Xiaosong Li Program Authorized to Offer Degree: Chemistry University of Washington Abstract Correlating nanoscale optoelectronic and mechanical properties of solution processable thin film photovoltaic materials using scanning probe microscopy Sarah Marie Vorpahl Chair of the Supervisory Committee: Professor David S. Ginger Chemistry Solution processable materials present a competitive alternative to traditional silicon solar cells based on inexpensive processing and flexible form factors. Several competing technologies have entered the market in the past few years, including cadmium telluride and copper, indium, gallium, sulfur (CIGS) alloys. In addition to this nascent commercialized product, several emerging technologies also offer promising alternatives. Copper, zinc, tin, sulfur (CZTS) kesterite materials offers an earth abundant option, moving away from more price volatile minerals such as the indium used in CIGS. Hybrid perovskites (HPs) have been revealed as one of the most exciting new solution processable materials, with efficiency improving exponentially in just the past several years. This dissertation explores the underlying electrical and mechanical properties of both CZTS and HP thin films using scanning probe microscopy (SPM). Using several correlated SPM techniques, local functional properties are related to bulk performance as a way to help understand the fundamental properties that drive material characteristics. TABLE OF CONTENTS TABLE OF CONTENTS Chapter 1. Introduction ................................................................................................................... 9 1.1 Motivation For Advanced Energy Materials .................................................................. 9 1.2 Inorganic Thin Film Photovoltaic Material: CZTSSe .................................................. 10 1.3 Organic-Inorganic Thin Film Materials: Hybrid Perovskites ....................................... 12 1.4 Scanning Probe Microscopy ......................................................................................... 14 1.5 Summary ....................................................................................................................... 18 1.6 References ..................................................................................................................... 21 Chapter 2. Investigating electrical properties of CZTSSe ............................................................ 23 2.1 Nanoscale Surface Potential Variation Correlates with Local S/Se Ratio in Solution- Processed CZTSSe Solar Cells ................................................................................................. 23 2.1.1 Overview ................................................................................................................... 23 2.1.2 Introduction ............................................................................................................... 24 2.1.3 Discussion and Results ............................................................................................. 26 2.1.4 Conclusion ................................................................................................................ 30 2.1.5 Appendix A ............................................................................................................... 30 2.1.6 Acknowledgements ................................................................................................... 30 2.1.7 Figures....................................................................................................................... 31 2.1.8 References ................................................................................................................. 35 2.2 Lithium-Doping Inverts the Nanoscale Electric Field at the Grain Boundaries in Cu2ZnSn(S,Se)4 and Increases Photovoltaic Efficiency .......................................................... 37 2.2.1 Overview ................................................................................................................... 37 2.2.2 Introduction ............................................................................................................... 37 2.2.3 Results and Discussion ............................................................................................. 41 2.2.4 Conclusions ............................................................................................................... 49 2.2.5 Appendix B ............................................................................................................... 50 2.2.6 Acknowledgements ................................................................................................... 50 i 2.2.7 Figures....................................................................................................................... 50 2.2.8 References ................................................................................................................. 54 Chapter 3. Local heterogeneties and Degradation of Hybrid Perovskites .................................... 56 3.1 Correlating Local Chemical Heterogeneities with Photoluminescence in Hybrid Perovskites* .............................................................................................................................. 56 3.1.1 Introduction ............................................................................................................... 56 3.1.2 Results and Discussion ............................................................................................. 57 3.1.3 Conclusion ................................................................................................................ 59 3.1.4 Acknowledgements ................................................................................................... 60 3.1.5 Figures....................................................................................................................... 61 3.1.6 References ................................................................................................................. 63 3.2 Photodecomposition and Morphology Evolution of Organometal Halide Perovskite Solar Cells ................................................................................................................................. 65 3.2.1 Overview ................................................................................................................... 65 3.2.2 Introduction ............................................................................................................... 66 3.2.3 Results and Discussion ............................................................................................. 67 3.2.4 Conclusion ................................................................................................................ 73 3.2.5 Appendix C ............................................................................................................... 74 3.2.6 Acknowledgements ................................................................................................... 74 3.2.7 Figures....................................................................................................................... 74 3.2.8 References ................................................................................................................. 79 Chapter 4. Investigating ferroelectric properties of methylammonium lead iodide perovskite films .............................................................................................................................................. 83 4.1 Disappearance of ferroic domain structure upon heating methylammonium lead triiodide perovskite from tetragonal to cubic phase .................................................................. 83 4.1.1 Overview ................................................................................................................... 83 4.1.2 Introduction ............................................................................................................... 84 4.1.3 Results and Discussion ............................................................................................. 85 4.1.4 Conclusion ................................................................................................................ 91 ii 4.1.5 Appendix D ............................................................................................................... 92 4.1.6 Acknowledgements ................................................................................................... 92 4.1.7 Figures....................................................................................................................... 93 4.1.8 References ................................................................................................................. 95 Chapter 5. Policy Tools for Renewable Energy Innovation and Commercialization ................... 97 5.1.1 Introduction ............................................................................................................... 97 5.1.2 U.S. Infrastructure for Innovation ............................................................................