Comparison Study and Sensitivity Analysis of Flight Test Techniques for Air Data Position Error Correction in Small Aircraft

Total Page:16

File Type:pdf, Size:1020Kb

Comparison Study and Sensitivity Analysis of Flight Test Techniques for Air Data Position Error Correction in Small Aircraft Trans. Japan Soc. Aero. Space Sci. Vol. 53, No. 182, pp. 250–257, 2011 Comparison Study and Sensitivity Analysis of Flight Test Techniques for Air Data Position Error Correction in Small Aircraft By Sang-Jong LEE,1Þ Jae Won CHANG,1Þ Jeong Ho PARK,2Þ Byoung Soo KIM3Þ and Kie Jeong SEONG1Þ 1ÞFlight Control Team, Korea Aerospace Research Institute, Daejeon, Republic of Korea 2ÞPGM R&D Lab, LIG Nex1 Co. Ltd., Yongin, Republic of Korea 3ÞSchool of Mechanical and Aerospace Engineering, Gyeongsang National University, Jinju, Republic of Korea (Received May 18th, 2009) The flight test is important in the development and certification phases of an aircraft. It is composed of various tests, but the position error correction test should be performed first to determine error of the pitot-static measurement system that is the basis for evaluating flight characteristics. This paper investigates and compares recent test methods using real flight test results. The ground course and arbitrary heading method are both considered using GPS and DGPS to measure ground speed. The arbitrary heading method was most efficient and precise. In addition, new method is proposed and successfully used to determine accurate position error by comparison with DGPS results. Finally, sensitivity analysis was performed to analyze the effect of error sources. It shows that the most important error is the measured indicated airspeed following by measured true airspeed, outside air temperature, and pressure altitude. Key Words: Flight Testing, Aircraft, Airworthiness, Position Error Correction, Analysis Nomenclature CAM: measured by camcorder DGPS: measured by DGPS aSL: speed of sound at sea level GPS: measured by GPS HI: indicated pressure altitude s: standard day condition HIC: indicated pressure altitude corrected for instrument W: wind error x: vector component of x-axis ÁHPC: altimeter position error y: vector component of y-axis Pa: ambient pressure PSL: pressure at sea level 1. Introduction qc: dynamic pressure t: time The flight test plays a key role in evaluating the per- Át: time taken flying between waypoints of ground course formance of an aircraft and its subsystems. The ICAO VC: calibrated airspeed (International Civil Aviation Organization) certifies new ÁVC: compressibility error commercial aircraft using its own certification system. Con- VE: equivalent airspeed sequently, every country has its own certification regula- VG: ground airspeed tions and government certifying agency, such as the FAA VI: indicated airspeed (Federal Aviation Administration) in the USA, JCAB (Japan VIC: indicated airspeed corrected for instrument error Civil Aviation Bureau) in Japan, and EASA (European ÁVIC: instrument error Aviation Safety Agency) in the EU. At certification, the ÁVPC: airspeed position error flight test is the final compliance test for evaluating flight VT: true airspeed characteristics and certifying that design, flight safety, and 1) VW: wind speed structural safety meet all requirements. The flight test : pressure ratio includes various tests, including performance, handling, : temperature ratio aero-elastic/flutter stability, structural loads, and avionics/ a: ambient air density equipment performance. The position error correction SL: ambient air density at sea level (PEC) flight test is the starting point to process the other : air density ratio of test day tests because aircraft performance is based on airspeed s: air density ratio of standard day and altitude from the pitot-static measurement system. : heading angle Errors are generated by the pressure field and flow angular- Subscripts ity as a result of the position of the pitot and static port. This A: one waypoint of ground course creates a difference between the readings and true airspeed B: one waypoint at ground course and altitude. Therefore, this error must be defined at the PEC flight test and corrected. Ó 2011 The Japan Society for Aeronautical and Space Sciences Feb. 2011 S.-J. LEE et al.: Comparison Study of Flight Test for Air Data Position Error Correction 251 The classic PEC flight tests use a test boom, trailing cone, 2–4) ðVGA þ VGB Þ tower-fly-by, pacer aircraft, ground course method, etc. VT ¼ ð1Þ GPS (Global Positioning System) is used with the ground 2 course method to measure ground speed during reciprocal This method has several limitations: (1) timing error, (2) test flying along a track. This implementation reduces error from altitude, (3) crosswind. Use of GPS or DGPS removes lim- measuring time to fly a known distance. Lewis5) of the itations (1) and (2), but (3) cannot be removed because exact NTPS (National Test Pilot School) proposed a flight track true airspeed can be calculated from components parallel to along the wind direction and Bailey6) of the AFFTC (Air the flying track as defined in Eq. (2). The magnitude as well Force Flight Test Center) suggested a 90 track to the wind as the source of the error is described by Rogers,7) and we in both directions. However, both methods require knowl- describe the derivation of Eq. (2) in Appendix A. edge of the wind direction before the test flight. Rogers7) V GA À V GB VGAx þ VGBx calculated the error due to variation in wind speed and angle VT ¼jV Tj¼ ¼ ð2Þ 2 2 for the ground course method using GPS. New test methods using GPS have been proposed by several researchers and 2.2. Arbitrary heading method institutes. All are based on multi-track flying of least This paper uses Gray’s method11) for the PEC flight test, three legs. In addition, no information on wind direction is and it is the recommended FAA certification method.14) needed. Fox8) first proposed an accurate method for deter- Both GPS and DGPS were used to measure ground speed mining true airspeed using GPS. The test aircraft is flown and the results are compared. It is necessary to fly three along three ground tracks 90 to each other. It is more con- legs to determine three unknown parameters such as the venient for pilots to adjust the heading instead of the ground true airspeed and two components of wind speed. Since track on the fly, so a three-orthogonal heading technique ground speed is a vector sum of true airspeed and wind was suggested.9,10) This is known as the horseshoe heading speed, they can be solved from the simultaneous equations method and extends from Fox’s method. However, these defined in Eqs. (3), (4), and (5). Gray provided a spread- techniques are limited to successive 90 headings. Although sheet to calculate the unknown parameters and this paper the true airspeed calculation is more complex, the arbitrary shows the mathematical procedure to reach the solution in heading method proposed by Gray11) can be applied easily Appendix B. to the PEC flight test. Finally, some of these methods are ðV À V Þ2 þðV À V Þ2 ¼ V 2 ð3Þ compared with classical methods.12,13) G1x Wx G1y Wy T 2 2 2 This paper investigates the flight test results for various ðVG2x À VWx Þ þðVG2y À VWy Þ ¼ VT ð4Þ PEC test methods using GPS or DGPS (Differential GPS) ðV À V Þ2 þðV À V Þ2 ¼ V 2 ð5Þ and compares their effectiveness and usefulness. Further- G3x Wx G3y Wy T more, sensitivity analysis is used to analyze error due to 2.3. Single camcorder method indicated airspeed (IAS), true airspeed (TAS), outside air This method is similar to the ground course method for temperature, and indicated altitude. DGPS is common today, eliminating the timing error. With the progress of digital so it deserves investigating. Five PEC methods were com- technologies, a small camcorder is easily installed on an pared: (1) arbitrary heading using DGPS, (2) arbitrary head- aircraft to record video with time synchronization. In this ing using handheld GPS, (3) ground course using DGPS, (4) paper, one camcorder was installed under the left wing. ground course using GPS, and (5) single camcorder method. By using this technique, ground observers and other equip- The last method records a video using an under-wing ment are not required and the exact time required to fly camera. Analysis of time frames gives accurate ground between known waypoints can be determined. speed without the timing error of classic ground course methods. 3. Flight Data Reduction 2. Flight Test Methods and Mathematics The same data reduction procedure can be applied to three methods explained in the previous section. Several To find position error, all PEC methods using GPS calcu- kinds of airspeed are used for calibration of the pitot-static late true airspeed from ground speed measured by GPS and system as shown in Fig. 1. Using ground speed, the true then compare it with indicated airspeed. Hence, the key role airspeed can be determined by a flight test and equivalent of GPS is how it can be used to obtain the accurate true airspeed (EAS) can be obtained by correcting the density airspeed under the existing wind conditions. altitude. This EAS is the calibrated airspeed (CAS) corrected 2.1. Ground course method for compressibility. Assuming that instrument error is cor- To find true airspeed, the test aircraft is flown back and rected (ÁVIC ¼ 0), the indicated airspeed (IAS) can be used forth between two fixed waypoints (A and B) to eliminate directly to obtain CAS. Therefore, the reduction procedure wind effects. Usually, observers on the ground use a chro- provides CAS and airspeed position error can be defined nometer to measure time and true airspeed is calculated in Eq. (6). simply using Eq. (1). 252 Trans. Japan Soc. Aero. Space Sci. Vol. 53, No. 182 Never Exceed VI (IAS) : Indicated Airspeed from instrument in aircraft MTOW 2,850 lbs Speed 180 kts ∆ VVVIC=+I V IC Max. Cruise Max. Fuel 68 gal Speed 160 kts VIC (IAS) : Indicated Airspeed corrected for instrument error ∆ Length 22 ft Stall Speed 61 kts VVVCICPC=+ V 1,100 Width 34 ft Max.
Recommended publications
  • Airspeed Indicator Calibration
    TECHNICAL GUIDANCE MATERIAL AIRSPEED INDICATOR CALIBRATION This document explains the process of calibration of the airspeed indicator to generate curves to convert indicated airspeed (IAS) to calibrated airspeed (CAS) and has been compiled as reference material only. i Technical Guidance Material BushCat NOSE-WHEEL AND TAIL-DRAGGER FITTED WITH ROTAX 912UL/ULS ENGINE APPROVED QRH PART NUMBER: BCTG-NT-001-000 AIRCRAFT TYPE: CHEETAH – BUSHCAT* DATE OF ISSUE: 18th JUNE 2018 *Refer to the POH for more information on aircraft type. ii For BushCat Nose Wheel and Tail Dragger LSA Issue Number: Date Published: Notable Changes: -001 18/09/2018 Original Section intentionally left blank. iii Table of Contents 1. BACKGROUND ..................................................................................................................... 1 2. DETERMINATION OF INSTRUMENT ERROR FOR YOUR ASI ................................................ 2 3. GENERATING THE IAS-CAS RELATIONSHIP FOR YOUR AIRCRAFT....................................... 5 4. CORRECT ALIGNMENT OF THE PITOT TUBE ....................................................................... 9 APPENDIX A – ASI INSTRUMENT ERROR SHEET ....................................................................... 11 Table of Figures Figure 1 Arrangement of instrument calibration system .......................................................... 3 Figure 2 IAS instrument error sample ........................................................................................ 7 Figure 3 Sample relationship between
    [Show full text]
  • Joint Aviation Requirements JAR–FCL 1 ЛИЦЕНЗИРОВАНИЕ ЛЕТНЫХ ЭКИПАЖЕЙ (САМОЛЕТЫ)
    Joint Aviation Requirements JAR–FCL 1 ЛИЦЕНЗИРОВАНИЕ ЛЕТНЫХ ЭКИПАЖЕЙ (САМОЛЕТЫ) Joint Aviation Authorities 1 JAR-FCL 1 ЛИЦЕНЗИРОВАНИЕ ЛЕТНЫХ ЭКИПАЖЕЙ (САМОЛЕТЫ) Издано 14 февраля 1997 года ПРЕДИСЛОВИЕ ПРЕАМБУЛА ЧАСТЬ 1 - ТРЕБОВАНИЯ ПОДЧАСТЬ A – ОБЩИЕ ТРЕБОВАНИЯ JAR-FCL 1.001 Определения и Сокращения JAR-FCL 1.005 Применимость JAR-FCL 1.010 Основные полномочия членов летного экипажа JAR-FCL 1.015 Признание свидетельств, допусков, разрешений, одобрений или сер- тификатов JAR-FCL 1.016 Кредит, предоставляемый владельцу свидетельства, полученного в государстве не члене JAA JAR-FCL 1.017 Разрешения/квалификационные допуски для специальных целей JAR-FCL 1.020 Учет военной службы JAR-FCL 1.025 Действительность свидетельств и квалификационных допусков JAR-FCL 1.026 Свежий опыт для пилотов, не выполняющих полеты в соответствии с JAR-OPS 1 JAR-FCL 1.030 Порядок тестирования JAR-FCL 1.035 Годность по состоянию здоровья JAR-FCL 1.040 Ухудшение состояния здоровья JAR-FCL 1.045 Особые обстоятельства JAR-FCL 1.050 Кредитование летного времени и теоретических знаний JAR-FCL 1.055 Организации и зарегистрированные предприятия JAR-FCL 1.060 Ограничение прав владельцев свидетельств, достигших 60-летнего возраста и более JAR-FCL 1.065 Государство выдачи свидетельства 2 JAR-FCL 1.070 Место обычного проживания JAR-FCL 1.075 Формат и спецификации свидетельств членов летных экипажей JAR-FCL 1.080 Учет летного времени Приложение 1 к JAR-FCL 1.005 Минимальные требования для выдачи свиде- тельства/разрешения JAR-FCL на основе нацио- нального свидетельства/разрешения, выданного в государстве-члене JAA. Приложение 1 к JAR-FCL 1.015 Минимальные требования для признания дейст- вительности свидетельств пилотов, выданных государствами не членами JAA.
    [Show full text]
  • FAHRZEUGTECHNIK Studiengang Flugzeugbau
    fachhochschule hamburg FACHBEREICH FAHRZEUGTECHNIK Studiengang Flugzeugbau Berliner Tor 5 D - 20099 Hamburg in Zusammenarbeit mit: University of Limerick Department of Mechanical & Aeronautical Engineering Limerick, Ireland Diplomarbeit - Flugzeugbau - Development of an aircraft performance model for the prediction of trip fuel and trip time for a generic twin engine jet transport aircraft Verfasser: Gerold Straubinger Abgabedatum: 15.03.00 Betreuer: Trevor Young, Lecturer 1. Prüfer: Prof. Dr.-Ing. Dieter Scholz, MSME 2. Prüfer: Prof. Dr.-Ing. Hans-Jürgen Flüh Fahrzeugtechnik Abstract This report gives an overview of methods for aircraft performance calculations. After explain- ing the necessary background and the International Standard Atmosphere, it deals with a com- plete mission of a generic twin engine jet transport aircraft, including the required reserves of a diversion. Every part of the mission is considered. This includes climb, cruise, descent and hold. Equations for determining significant parameters of all parts are derived and differences between idealized calculations (based on mathematical performance models) and real ones (based on aircraft flight test data) are explained. A computer program has been written as a macro in Lotus 1-2-3, with data obtained during flights. In the main report simple flowcharts are given to illustrate the methods used. The pro- gram results show the required fuel and the time for an airliner of a certain weight performing a mission with a certain range. In the appendix all data and the flowcharts
    [Show full text]
  • Introduction
    CHAPTER 1 Introduction "For some years I have been afflicted with the belief that flight is possible to man." Wilbur Wright, May 13, 1900 1.1 ATMOSPHERIC FLIGHT MECHANICS Atmospheric flight mechanics is a broad heading that encompasses three major disciplines; namely, performance, flight dynamics, and aeroelasticity. In the past each of these subjects was treated independently of the others. However, because of the structural flexibility of modern airplanes, the interplay among the disciplines no longer can be ignored. For example, if the flight loads cause significant structural deformation of the aircraft, one can expect changes in the airplane's aerodynamic and stability characteristics that will influence its performance and dynamic behavior. Airplane performance deals with the determination of performance character- istics such as range, endurance, rate of climb, and takeoff and landing distance as well as flight path optimization. To evaluate these performance characteristics, one normally treats the airplane as a point mass acted on by gravity, lift, drag, and thrust. The accuracy of the performance calculations depends on how accurately the lift, drag, and thrust can be determined. Flight dynamics is concerned with the motion of an airplane due to internally or externally generated disturbances. We particularly are interested in the vehicle's stability and control capabilities. To describe adequately the rigid-body motion of an airplane one needs to consider the complete equations of motion with six degrees of freedom. Again, this will require accurate estimates of the aerodynamic forces and moments acting on the airplane. The final subject included under the heading of atmospheric flight mechanics is aeroelasticity.
    [Show full text]
  • Volume 2 – General Navigation (JAR Ref 061) Table of Contents
    Volume 2 – General Navigation (JAR Ref 061) Table of Contents CHAPTER 1 The Form of the Earth Shape of the Earth ........................................................................................................................................1-1 The Poles......................................................................................................................................................1-2 East and West...............................................................................................................................................1-2 North Pole and South Pole ...........................................................................................................................1-2 Cardinal Directions........................................................................................................................................1-3 Great Circle...................................................................................................................................................1-3 Vertex of a Great Circle ................................................................................................................................1-4 Small Circle...................................................................................................................................................1-5 The Equator ..................................................................................................................................................1-5 Meridians ......................................................................................................................................................1-6
    [Show full text]
  • Air Data Computers
    TECHNOLOGY Air Data Computers BY KIM WIOLLAND PORTER-STRAIT INSTRUMENT CO. INC ir Data Computers have been The Beginning with us for many years now Initially, the main air data sensing A and have become increasingly application that concerned us was for more important, never more so then an altitude hold capability with the now as the RVSM mandate deadline autopilot. This “Altitude Capsule,” a approaches. The conventional aneroid simple aneroid just like an altimeter, pressure altimeter has been around is interfaced to a locking solenoid that for decades and is surprisingly accu- allows an error signal to be gener- Rockwell rate for a mechanical instrument. This Collinsʼ ated as the diaphragm changes with ADC-3000 instrument however will slowly lose altitude. All these capsules used gears, accuracy with increasing altitude. This cams, potentiometers and solenoids to eliminated these mechanical concerns. scale error is why they will not meet maintain a given altitude when com- Solid state pressure sensors and digital todayʼs stringent RVSM accuracy manded. In those days if the aircraft instruments are much more forgiving. requirements. The history of RVSM held within +/-100 feet, that was con- Current generation air data computers goes back further then you think, it sidered nominal, but then the accuracy have evolved into a separate sensor/ was first proposed in the mid–1950s would also vary at different altitudes. amplifier that provides a multitude of and again in 1973, and both times was These mechanically sensing instru- functions and information. rejected. With RVSM going into effect ments have at times been problems for The first generation of a Central Air this month, it will provide six new us all, failing to maintain proper pres- Data Computer (CADC) evolved out flight levels, increase airspace capac- sure rates on them during normal rou- of the Navy F14A Tomcat program in ity and most likely save hundreds of tine maintenance would cause undo the 1967-1969 time period.
    [Show full text]
  • CS-Definitions / Amendment 2
    Annex to Decision 2010/014/R European Aviation Safety Agency Definitions and abbreviations used in Certification Specifications for products, parts and appliances CS-Definitions Amendment 2 23 December 2010 Amendment 2 Annex to Decision 2010/014/R CS-Definitions CONTENTS CS—Definitions Definitions and abbreviations used in Certification Specifications for products, parts and appliances PREAMBLE 1 GENERAL DEFINITIONS 2 ABBREVIATIONS AND SYMBOLS C-2 Amendment 2 Annex to Decision 2010/014/R CS-Definitions PREAMBLE CS-Definitions Amendment 2 Effective: 23/12/2010 The following is a list of paragraphs affected by this amendment. General Definitions ETOPS New (NPA 2008-01) CS-Definitions Amendment 1 The following is a list of definitions affected by this amendment. 1. GENERAL DEFINITIONS Aircraft-Supplied Data Created (NPA 04/2005) Aircraft-Supplied Electrical Power Created (NPA 04/2005) Alternate Mode (Engine related definition) Created (NPA 04/2005) Back-up Mode (Engine related definition) Created (NPA 04/2005) Back-up System Created (NPA 04/2005) Control Mode (Engine related definition) Created (NPA 04/2005) Covered Fault Created (NPA 04/2005) Electronic Engine Control System (EECS) Created (NPA 04/2005) Engine Control System Created (NPA 04/2005) Fault (or) Failure Created (NPA 04/2005) Fault (or) Failure Accommodation Created (NPA 04/2005) Full-up Configuration (Engine related definition) Created (NPA 04/2005) Primary Mode (Engine related definition) Created (NPA 04/2005) Primary System Created (NPA 04/2005) Programmable Logic Device (PLD) Created (NPA 04/2005) Propeller Amended to align with CS-P definition of “Propeller System” introduced by NPA 05/2005. Reversible Pitch Propeller Created (NPA 05/2005) Uncovered Fault Created (NPA 04/2005) Variable Pitch Propeller Amended (NPA 05/2005) P-1 Amendment 2 Annex to Decision 2010/014/R CS-Definitions 1.
    [Show full text]
  • Use of the GPS Reciprocal Heading Method for Determining Pitot-Static Position Error in Helicopter Flight Testing
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 12-2004 Use of the GPS Reciprocal Heading Method for Determining Pitot- Static Position Error in Helicopter Flight Testing Rucie James Moore University of Tennessee, Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Management and Operations Commons Recommended Citation Moore, Rucie James, "Use of the GPS Reciprocal Heading Method for Determining Pitot-Static Position Error in Helicopter Flight Testing. " Master's Thesis, University of Tennessee, 2004. https://trace.tennessee.edu/utk_gradthes/4692 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Rucie James Moore entitled "Use of the GPS Reciprocal Heading Method for Determining Pitot-Static Position Error in Helicopter Flight Testing." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Aviation Systems. Rodney C. Allison, Major Professor We have read this thesis and recommend its acceptance: Peter Solies, Ralph Kimberlin Accepted for the
    [Show full text]
  • Aerospace Micro-Lesson Aiaa
    AIAA AEROSPACE MICRO-LESSON Easily digestible Aerospace Principles revealed for K-12 Students and Educators. These lessons will be sent on a bi-weekly basis and allow grade-level focused learning. - AIAA STEM K-12 Committee AIR SPEED One of the most important pieces of knowledge for any pilot is the speed of an aircraft. There are two ways to measure the speed of an airplane: airspeed and ground speed. Airspeed is the speed of the airplane with respect to the air through which it is flying; ground speed is its speed relative to the ground over which it is flying. Airspeed is important when calculating lift and drag; ground speed is important when calculating flight times between different places. Calculating speeds is a major part of designing and flying aircraft. G RADES K-2 Flying a paper airplane on a windy day shows the difference between airspeed and ground speed very well. Fly the paper airplane indoors—in the classroom or down the hall, if you have permission—and note how far it goes and in what direction. Then go outside to a place where the wind is blowing and fly the paper airplane again. There does not need to be much wind at all. For the clearest illustration of the difference, launch the paper airplane at right angles to the wind, so that it flies through a crosswind and gets blown sideways. The airspeed is the same as it was when it flew indoors, but the ground speed now has a serious sideways component. You can also launch it into the wind and downwind, showing that even though the airspeed is the same, the wind always adds a component to the ground speed in the direction in which it is blowing.
    [Show full text]
  • Glider Handbook, Chapter 4: Flight Instruments
    Chapter 4 Flight Instruments Introduction Flight instruments in the glider cockpit provide information regarding the glider’s direction, altitude, airspeed, and performance. The categories include pitot-static, magnetic, gyroscopic, electrical, electronic, and self-contained. This categorization includes instruments that are sensitive to gravity (G-loading) and centrifugal forces. Instruments can be a basic set used typically in training aircraft or a more advanced set used in the high performance sailplane for cross- country and competition flying. To obtain basic introductory information about common aircraft instruments, please refer to the Pilot’s Handbook of Aeronautical Knowledge (FAA-H-8083-25). Instruments displaying airspeed, altitude, and vertical speed are part of the pitot-static system. Heading instruments display magnetic direction by sensing the earth’s magnetic field. Performance instruments, using gyroscopic principles, display the aircraft attitude, heading, and rates of turn. Unique to the glider cockpit is the variometer, which is part of the pitot-static system. Electronic instruments using computer and global positioning system (GPS) technology provide pilots with moving map displays, electronic airspeed and altitude, air mass conditions, and other functions relative to flight management. Examples of self-contained instruments and indicators that are useful to the pilot include the yaw string, inclinometer, and outside air temperature gauge (OAT). 4-1 Pitot-Static Instruments entering. Increasing the airspeed of the glider causes the force exerted by the oncoming air to rise. More air is able to There are two major divisions in the pitot-static system: push its way into the diaphragm and the pressure within the 1. Impact air pressure due to forward motion (flight) diaphragm increases.
    [Show full text]
  • Evaluation of Aircraft Performance Algorithms in Federal Aviation Administration's Integrated Noise Model by Wei-Nian Su
    Evaluation of Aircraft Performance Algorithms in Federal Aviation Administration's Integrated Noise Model by Wei-Nian Su B.S. Aerospace Engineering, Iowa State University, 1996 Submitted to the Department of Aeronautics and Astronautics in partial fulfillment of the requirement for the Degree of Master of Science in Aeronautics and Astronautics at the Massachusetts Institute of Technology February, 1999 ©1999 Massachusetts Institute of Technology. All rights reserved. Author........... .................... ,. ....... .. ... ............................................................................ Department of Aeronautics and Astronautics January 14, 1999 Certifie d b y .............................. ............... .............. ..................... V. ... ... ..o..... ... ..C r Certe b( (Professor John-Paul Clarke Department of Aeronautics and Astronautics Thesis Supervisor Accepted by .................................................................... ..... ........ ........ .. .... ...... Professor Jaime Peraire Chairman, epartment Graduate Committee MASSACHUSETTS INSTITUTE OF TECHNOLOGY MAY 1 7 1999 -oWWW LIBRARIES Evaluation of Aircraft Performance Algorithms in Federal Aviation Administration's Integrated Noise Model by Wei-Nian Su Submitted to the Department of Aeronautics and Astronautics Engineering on January 14, 1999 in partial fulfillment of the requirement for the Degree of Master of Science in Aeronautics and Astronautics Engineering Abstract The Integrated Noise Model (INM) has been the Federal Aviation Administration's
    [Show full text]
  • Development of Air Data Computation Function of a Combined Air Data and Aoa Computer
    DEVELOPMENTOFAIRDATACOMPUTATIONFUNCTIONOFACOMBINEDAIR DATAANDAOACOMPUTER ATHESISSUBMITTEDTO THEGRADUATESCHOOLOFNATURALANDAPPLIEDSCIENCESOFÇANKAYA UNIVERSITY BY RAFETIL)IN INPARTIALFULLFILLMENTOFTHEREQUIREMENTS FOR THEDEGREEOFMASTEROFSCIENCE IN ELECTRONICSANDCOMMUNICATIONSENGINEERING SEPTEMBER,2011 ACKNOWLEDGEMENTS The author wishes to express his deepest gratitude to his supervisor Prof. Dr. Celal Ăŝŵ7> for his guidance, advice, criticism, encouragements and insight throughout the research. The author would also like to thank Mehmet Mustafa KARABULUT for his suggestions and comments iv ABSTRACT DEVELOPMENT OF AIR DATA COMPUTATION FUNCTION OF A COMBINED AIR DATA AND AOA COMPUTER />)/E, Rafet M.Sc., Department of Electronics and Communication Engineering ^ƵƉĞƌǀŝƐŽƌ͗WƌŽĨ͘ƌ͘ĞůĂůĂŝŵ7> September 2011, 51 Pages In this thesis, Air Data Computer part of a Combined Air Data System (CADS) and the simulator environment to test the developed CADS are developed on standard personal computers. Normally, a CADS system on an aircraft is composed of two separate equipments, the Air Data Computer (ADC) and the Angle of Attack (AOA) system. Therefore the developed CADS system combines both functionalities in an integral manner on a card. This approach not only reduces the volume but the total cost of the CADS system as well. Keywords: Avionic, System Integration, Flight Simulation, Software, Air Data Calculation, Sensor Simulation v Y dmD>b7<,ssZ7s,mhD/^/7>'7^zZ/ ,ssZ7 &KE<^7zKE>Z/HESAPLAMALARI '>7bd7ZDE>Z7 />)/E, Rafet zƺŬƐĞŬ>ŝƐĂŶƐ͕ůĞŬƚƌŽŶŝŬǀĞ,ĂďĞƌůĞƔŵĞDƺŚĞŶĚŝƐůŝŒŝŶĂďŝůŝŵĂůŦ
    [Show full text]